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1 Wednesday, January 18

1 Wednesday, January 18

Remark 1.0.1: Some review:

• M ∈ kAlg ⇐⇒ M ∈ kMod ∩ Ring and ∃m : M ⊗k M → M a multiplication map.

• M ∈ Lie-Alg ⇐⇒ ∃[−, −] : M ⊗k M → M satisfying the usual identities.

– E.g. Endk(V ) ∈ Lie-Alg when V ∈ kMod.

• Derk(M) is not closed under composition, but is a Lie algebra under [δ1δ2] := δ1 ◦ δ2 − δ2 ◦ δ1.

– Counterexample: Derk(k[x]) = k[x] ∂
∂x

∼= k[D] but ∂
∂x ◦ ∂

∂x s not a derivation.

• HH(M) will make meaningful higher analogs of derivations, δn : A⊗n
k → A.

– 1-cocycles are derivations
– 2-cocyles are δ : M ⊗2

k → M such that δ(ab, c) − δ(a, bc) = aδ(b, c) − δ(a, b)c.
– n-cocycles will be δ : M ⊗n

k → M satisfying
n∑

i=1
(−1)iδ (a1, a2, · · · , aiai+1, · · · , an+1) = −a1δ (a2, · · · , an+1) + (−1)nδ (a1, · · · , an) an+1..

• Define Zn(M) to be n-cycles – this is not a Lie algebra for n ≥ 2 unless the bracket is trivial.

• Gerstenhaber’s idea: define a new bracket [−, −] : Zm(M) ⊗k Zn(M) → Zn+m−1(M) with
for m = n = 1 is the commutator; this makes Z∗(M) into a graded Lie algebra.

• Define boundaries Bn(M) and HHn(M) := Zn(M)/Bn(M).

– HH1(M) = Z(M) is the center.
– HH2(M) = Der(M) when M is commutative.

• Recall the definitions of chain complexes and their morphisms.

• Recall the different formulations of projectives P in RMod:

– ∃F ∈ RModfree with F ∼= P ⊕ T for some T ∈ RMod (not necessarily free).
– Every B ↠ P and B′ → P lifts to B′ → B.
– Every SES A ↪→ B ↠ P splits.

• Some useful resolutions:

– Z ·n−→ Z ε−→→ Z/nZ for R = Z where ε is the quotient and ker ε = nZ.
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3 Wednesday, February 01

– k[x] ·x
↪−→ k[x] ε(x)=0−−−−→→ k ∈ RMod for R = k[x], where the kernels are all ⟨x⟩.

– · · · → k[x] ·x−→ k[x] ·x−→ k[x] ε(x)=0−−−−→→ k for R = k[x]/
〈
x2〉

where the kernels are all ⟨x⟩.
Note that this is an infinite periodic resolution.

2 Monday, January 23

Remark 2.0.1: Recall

• (−) ⊗R B is right-exact for any B ∈ RMod and HomR(−, B) is left-exact.
• For A ∈ ModR and B ∈ RMod, define TorR

∗ (A, B) as H∗(PA ⊗R B) where PA ⇒ A is a
projective resolution.

• TorR
0 (A, B) = A ⊗R B. Here B[n] :=

{
b ∈ B

∣∣∣ nb = 0
}

.
• Ext∗

R(A, B) = H∗(HomR(PA, B)).

Example 2.0.2(?):

TorR
∗ (Cn, B) ∼= B/nB · t0 + B[n] · t1

for any B ∈ ZMod using Z ·n
↪−→ Z ↠ Cn to get PB = (0 → B → B → 0). Similarly,

Ext∗
Z(Cm, B) = B[m] · t0 + B/mB · t1.

3 Wednesday, February 01

Exercise 3.0.1 (?)
Show HH∗k[x] = k[x]⊕2 and find HH∗k[x]. Use the complex

k[x]⊕2
↪→ k[x]⊕2

↠ k[x].

Example 3.0.2(?): Let A = k[x]/ ⟨xn⟩ and consider

· · · v−→ Ae u−→ Ae v−→ Ae u−→ Ae π−→ A → 0

where u = (x ⊗ 1 − 1 ⊗ x)· and v =
(
(xn−1 ⊗ x0) + (xn−2 ⊗ x1) + (xn−3 ⊗ x2) + · · · + (x0 ⊗ xn−1)

)
·.

Compute uv(xi ⊗ xj) = 0 and vu = 0, πu = 0 to verify that this is a complex. Show it is exact
using the contracting homotopy s−1(1) = 1 ⊗ 1 and

s2m(1 ⊗ xj) = −
j∑

ℓ=1
xj−ℓ ⊗ xℓ−1, s2m−1(1 ⊗ xj) = δj,n−1 ⊗ 1.
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4 Wednesday, February 15

Apply HomAe(−, A) to get

0 → A
u∗
−→ A

v∗
−→ A

u∗
−→ · · · ,

using HomAe(Ae, A) ∼= A via f 7→ f(1 ⊗ 1). Show that u∗(a) = 0 for a ∈ A corresponding to fa

where fa(1 ⊗ 1) = a:

u∗(a) = u∗(fa(1 ⊗ 1)) = (u∗fa)(1 ⊗ 1) = fa(u(1 ⊗ 1)) = fa(x ⊗ 1 − 1 ⊗ x) = xfa(1 ⊗ 1) − f(1 ⊗ 1)x = xa − ax = 0

and similarly

v∗(a) = v∗(fa(1 ⊗ 1)) = (v∗fa)(1 ⊗ 1) = fav(1 ⊗ 1) = fa(xn−1 ⊗ 1 + · · · + 1 ⊗ xn−1) = xn−1fa(1 ⊗ 1) + · · · + fa(1 ⊗ 1)xn−1 = xn−1a + xn−2ax + · · · + axn−1 = nxn−1a.

This yields

0 → A
0−→ A

nxn−1·−−−−→ A
0−→ A → · · · .

So the homology depends on if ch k
∣∣ n:

• If so, HH∗A = A +
∑

n≥0 ⟨x⟩ t2n+1 +
∑

n≥0 A/
〈
xn−1〉

.
• If not, check!

Exercise 3.0.3 (?)
How can you interpret HH(A; M) in low degrees?

4 Wednesday, February 15

Definition 4.0.1 (Gerstenhaber bracket)
For f ∈ Homk(A⊗m

k , A) and g ∈ Homk(A⊗n
k , A), set

[f, g] := f ◦ g − (−1)m−1g ◦ f

where

(f ◦ g)(a1 ⊗ · · · ⊗ am+n−1) :=
m∑

i=1
(−1)(n−1)(m−1)f(a1 ⊗ · · · ⊗ ai−1 ⊗ g (ai ⊗ · · · ⊗ an+i−1) ⊗ an+i ⊗ · · · ⊗ am+n−1).

Lemma 4.0.2(?).
Let f, g as above and h ∈ Homk(A⊗p

k , A). Then

1. Graded anticommutativity: [f, g] = (−1)(m−1)(n−1)[g, f ]
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4 Wednesday, February 15

2. Graded Jacobi identity:

(−1)(m−1)(p−1)[f, [g, h]] + (−1)(n−1)(m−1)[g, [h, f ]] + (−1)(p−1)(n−1)[h, [f, g]].

3. Graded derivation: d∗([f, g]) = (−1)n−1[d∗(f), g] + [f, d∗(g)].

Proof (?).
Define |f | = m − 1, |g| = n − 1, |h| = p − 1 and fg := f ◦ g.
Part 1:

[f, g] = fg − (−1)|f ||g|gf = −(−1)|f ||g|(gf − (−1)|f ||g|fg)
= −(−1)|f ||g|[gf ].

Part 2:

(−1)|f ||h|[f, gh − (−1)|g||h|hg]
+ (−1)|g||f |[g, hf − (−1)|h||f |fh]
+ (−1)|h||g|[h, fg − (−1)|f ||g|gf ]

=(−1)|f ||h|[fgh − (−1)|g||h|fhg − (−1)|f |·(|g|+|h|)
(
ghf − (−1)|g||h|hgf

)
(−1)|g||f |[ghf − (−1)|h||f |gfh − (−1)|g|·(|f |+|h|)

(
hfg − (−1)|h||f |fhg

)
(−1)|h||g|[hfg − (−1)|f ||g|hgf − (−1)|h|·(|f |+|g|)

(
fgh − (−1)|f ||g|gfh

)

=(−1)(m−1)(p−1)fgh − (−1)(p−1)(m+n−2)fhg − (−1)(m−1)(n+2p−3)ghf + (−1)mn+np−m−phgf

(−1)(n−1)(m−1)ghf − (−1)(m−1)(n+p−2)gfh − (−1)(n−1)(p+2m−3)hfg + (−1)mp+np−m−nhfg

(−1)(p−1)(n−1)hfg − (−1)(n−1)(m+p−2)hfg − (−1)(p−1)(m+2n−3)fgh + (−1)mp+mn−p−nfgh,

and everything cancels.
■

Exercise 4.0.3 (?)
Check part 3, this shows why the bracket is generally difficult to compute.

Remark 4.0.4: Properties 1 and 2 make
⊕

i≥0 Homk(A⊗i
k , A) into a graded Lie algebra, and

property 3 makes it into a DGLA with graded derivation δ: for f as above,

δ(f) := (−1)|f |d∗(f), δ([f, g]) = [δ(f), g] + (−1)|f |[f, δ(g)].

Thus HH∗(A) is a graded Lie algebra.

Lemma 4.0.5(?).
Let f, g as above, then
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4 Wednesday, February 15

1.

(−1)(|f |+1)(|g|+1)f ⌣ g − g ∪ f = d∗(g) ◦ f + (−1)|f |+1d∗(g ◦ f) + (−1)|f |g ◦ d∗(f).

2. [f, π] = −d∗(f) where π is multiplication.

Proof (?).
Follows from a direct calculation.

■

Theorem 4.0.6(?).
Let A ∈ AssockAlg for k ∈ CRing. Then the cup product on HH∗(A) is graded commutative,
so a ⌣ b = (−1)|a||b|b ∪ a for a ∈ HHm(A), b ∈ HHn(A) and |a| := m, |b| := n.

Proof (?).
Let a, b be images of cocycles f, g in Homk(A⊗m

k , A) and Homk(A⊗n
k , A) respectively. By part

1 of the lemma,

(−1)|a||b|f ◦ g − g ◦ f = d∗(g) ◦ f − (−1)|a|d∗(g ◦ f) + (−1)|a|−1g ◦ d∗(f).

Since f, g are cocycles, d∗(f) = d∗(g) = 0, so

(−1)|a||b|f ⌣ g = g ⌣ f + (−1)|a|d∗(g ◦ f).

The error term vanishes in homology yielding

(−1)|a||b|a ⌣ b = b ⌣ a ∈ HH∗(A).

■

Lemma 4.0.7(?).
Let a ∈ HHm(A) and b ∈ HHn(A) and g ∈ HHp(A). Then

[g, a ⌣ b] = [g, a] ⌣ b + (−1)|a|·(|g|−1)a ⌣ [g, b].

Proof (?).
See The Cohomology Structure of an Associative Algebra, Gerstenhaber 1963.

■

Definition 4.0.8 (Gerstenhaber algebras)
A Gerstenhaber algebra or G-algebra (H, ⌣, []) is a free Z-graded k-module H where
(H, ⌣) is a commutative associative algebra and (H, []) is a graded Lie algebra, where the two
operations are compatible as in the lemma above.
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4 ToDos

Theorem 4.0.9(?).
HH∗(A) is a Gerstenhaber algebra.
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