\input{"preamble.tex"} \addbibresource{HochschildHomology.bib} \let\Begin\begin \let\End\end \newcommand\wrapenv[1]{#1} \makeatletter \def\ScaleWidthIfNeeded{% \ifdim\Gin@nat@width>\linewidth \linewidth \else \Gin@nat@width \fi } \def\ScaleHeightIfNeeded{% \ifdim\Gin@nat@height>0.9\textheight 0.9\textheight \else \Gin@nat@width \fi } \makeatother \setkeys{Gin}{width=\ScaleWidthIfNeeded,height=\ScaleHeightIfNeeded,keepaspectratio}% \title{ \rule{\linewidth}{1pt} \\ \textbf{ Hochschild Homology } \\ {\normalsize Lectures by Tekkin. University of Georgia, Spring 2023} \\ \rule{\linewidth}{2pt} } \titlehead{ \begin{center} \includegraphics[width=\linewidth,height=0.45\textheight,keepaspectratio]{figures/cover.png} \end{center} \begin{minipage}{.35\linewidth} \begin{flushleft} \vspace{2em} {\fontsize{6pt}{2pt} \textit{Notes: These are notes live-tex'd from a graduate course in Hochschild Homology taught by Tekkin at the University of Georgia in Spring 2023. As such, any errors or inaccuracies are almost certainly my own. } } \\ \end{flushleft} \end{minipage} \hfill \begin{minipage}{.65\linewidth} \end{minipage} } \begin{document} \date{} \maketitle \begin{flushleft} \textit{D. Zack Garza} \\ \textit{University of Georgia} \\ \textit{\href{mailto: dzackgarza@gmail.com}{dzackgarza@gmail.com}} \\ {\tiny \textit{Last updated:} 2023-02-15 } \end{flushleft} \newpage % Note: addsec only in KomaScript \addsec{Table of Contents} \tableofcontents \newpage \hypertarget{wednesday-january-18}{% \section{Wednesday, January 18}\label{wednesday-january-18}} \begin{remark} Some review: \begin{itemize} \item \(M\in {}_{k} \mathsf{Alg}\iff M\in {}_{k}{\mathsf{Mod}}\cap\mathsf{Ring}\) and \(\exists m: M\otimes_k M\to M\) a multiplication map. \item \(M\in {\mathsf{Lie}{\hbox{-}} \mathsf{Alg}}\iff \exists [{-},{-}]: M\otimes_k M\to M\) satisfying the usual identities. \begin{itemize} \tightlist \item E.g. \({ \operatorname{End} }_k(V) \in{\mathsf{Lie}{\hbox{-}} \mathsf{Alg}}\) when \(V\in {}_{k}{\mathsf{Mod}}\). \end{itemize} \item \(\mathop{\mathrm{Der}}_k(M)\) is \emph{not} closed under composition, but is a Lie algebra under \([\delta_1 \delta_2] \coloneqq\delta_1 \circ \delta_2 - \delta_2 \circ \delta_1\). \begin{itemize} \tightlist \item Counterexample: \(\mathop{\mathrm{Der}}_k(k[x]) = k[x] {\frac{\partial }{\partial x}\,} \cong k[D]\) but \({\frac{\partial }{\partial x}\,}\circ {\frac{\partial }{\partial x}\,}\) s not a derivation. \end{itemize} \item \({\operatorname{HH}}(M)\) will make meaningful higher analogs of derivations, \(\delta^n: A{ {}^{ \scriptscriptstyle\otimes_{k}^{n} } } \to A\). \begin{itemize} \tightlist \item 1-cocycles are derivations \item 2-cocyles are \(\delta: M{ {}^{ \scriptscriptstyle\otimes_{k}^{2} } } \to M\) such that \(\delta(ab,c) - \delta(a, bc) = a\delta(b,c) - \delta(a,b)c\). \item \(n{\hbox{-}}\)cocycles will be \(\delta: M{ {}^{ \scriptscriptstyle\otimes_{k}^{n} } } \to M\) satisfying \begin{align*} \sum_{i=1}^n(-1)^i \delta\left(a_1, a_2, \cdots, a_i a_{i+1}, \cdots, a_{n+1}\right)=-a_1 \delta\left(a_2, \cdots, a_{n+1}\right)+(-1)^n \delta\left(a_1, \cdots, a_n\right) a_{n+1} . .\end{align*} \end{itemize} \item Define \(Z^n(M)\) to be \(n{\hbox{-}}\)cycles -- this is not a Lie algebra for \(n\geq 2\) unless the bracket is trivial. \item Gerstenhaber's idea: define a new bracket \([{-}, {-}]: Z^m(M) \otimes_k Z^n(M) \to Z^{n+m-1}(M)\) with for \(m=n=1\) is the commutator; this makes \(Z^*(M)\) into a graded Lie algebra. \item Define boundaries \(B_n(M)\) and \({\operatorname{HH}}^n(M) \coloneqq Z^n(M)/B^n(M)\). \begin{itemize} \tightlist \item \({\operatorname{HH}}^1(M) = Z(M)\) is the center. \item \({\operatorname{HH}}^2(M) = \mathop{\mathrm{Der}}(M)\) when \(M\) is commutative. \end{itemize} \item Recall the definitions of chain complexes and their morphisms. \item Recall the different formulations of projectives \(P\) in \({}_{R}{\mathsf{Mod}}\): \begin{itemize} \tightlist \item \(\exists F \in {}_{R}{\mathsf{Mod}}^{\mathrm{free}}\) with \(F \cong P \oplus T\) for some \(T\in {}_{R}{\mathsf{Mod}}\) (not necessarily free). \item Every \(B\twoheadrightarrow P\) and \(B'\to P\) lifts to \(B'\to B\). \item Every SES \(A\hookrightarrow B\twoheadrightarrow P\) splits. \end{itemize} \item Some useful resolutions: \begin{itemize} \tightlist \item \({\mathbf{Z}}\xrightarrow{\cdot n} {\mathbf{Z}} \xrightarrow[]{{\varepsilon}} { \mathrel{\mkern-16mu}\rightarrow }\, {\mathbf{Z}}/n{\mathbf{Z}}\) for \(R = {\mathbf{Z}}\) where \({\varepsilon}\) is the quotient and \(\ker {\varepsilon}= n{\mathbf{Z}}\). \item \(k[x] \xhookrightarrow{\cdot x} k[x] \xrightarrow[]{{\varepsilon}(x) = 0} { \mathrel{\mkern-16mu}\rightarrow }\, k \in {}_{R}{\mathsf{Mod}}\) for \(R = k[x]\), where the kernels are all \(\left\langle{x}\right\rangle\). \item \(\cdots \to k[x] \xrightarrow{\cdot x} k[x] \xrightarrow{\cdot x} k[x] \xrightarrow[]{{\varepsilon}(x) = 0} { \mathrel{\mkern-16mu}\rightarrow }\, k\) for \(R= k[x]/\left\langle{x^2}\right\rangle\) where the kernels are all \(\left\langle{x}\right\rangle\). Note that this is an infinite periodic resolution. \end{itemize} \end{itemize} \end{remark} \hypertarget{monday-january-23}{% \section{Monday, January 23}\label{monday-january-23}} \begin{remark} Recall \begin{itemize} \tightlist \item \(({-})\otimes_R B\) is right-exact for any \(B\in {}_{R}{\mathsf{Mod}}\) and \(\mathop{\mathrm{Hom}}_R({-}, B)\) is left-exact. \item For \(A\in {\mathsf{Mod}}_{R}\) and \(B\in {}_{R}{\mathsf{Mod}}\), define \(\operatorname{Tor}_*^R(A, B)\) as \(H_*(P_A \otimes_R B)\) where \(P_A\rightrightarrows A\) is a projective resolution. \item \(\operatorname{Tor}_0^R(A, B) = A\otimes_R B\). Here \(B[n] \coloneqq\left\{{b\in B{~\mathrel{\Big\vert}~}nb=0}\right\}\). \item \(\operatorname{Ext}_R^*(A, B) = H_*(\mathop{\mathrm{Hom}}_R(P_A, B))\). \end{itemize} \end{remark} \begin{example}[?] \begin{align*} \operatorname{Tor}_*^R(C_n, B) \cong B/nB\cdot t^0 + B[n]\cdot t^1 \end{align*} for any \(B\in {}_{{\mathbf{Z}}}{\mathsf{Mod}}\) using \({\mathbf{Z}}\xhookrightarrow{\cdot n} {\mathbf{Z}}\twoheadrightarrow C_n\) to get \(P_B = (0\to B\to B\to 0)\). Similarly, \begin{align*} \operatorname{Ext}^*_{\mathbf{Z}}(C_m, B) = B[m]\cdot t^0 + B/mB \cdot t^1 .\end{align*} \end{example} \hypertarget{wednesday-february-01}{% \section{Wednesday, February 01}\label{wednesday-february-01}} \begin{exercise}[?] Show \({\operatorname{HH}}^* k[x] = k[x]{ {}^{ \scriptscriptstyle\oplus^{2} } }\) and find \({\operatorname{HH}}_* k[x]\). Use the complex \begin{align*} k[x]{ {}^{ \scriptscriptstyle\oplus^{2} } } \hookrightarrow k[x]{ {}^{ \scriptscriptstyle\oplus^{2} } } \twoheadrightarrow k[x] .\end{align*} \end{exercise} \begin{example}[?] Let \(A = k[x]/\left\langle{x^n}\right\rangle\) and consider \begin{align*} \cdots \xrightarrow{v} A^e \xrightarrow{u} A^e \xrightarrow{v} A^e \xrightarrow{u} A^e \xrightarrow{\pi} A \to 0 \end{align*} where \(u = (x\otimes 1 - 1\otimes x)\cdot\) and \(v = \qty{ (x^{n-1}\otimes x^0) + (x^{n-2} \otimes x^1) + (x^{n-3}\otimes x^2) + \cdots + (x^0 \otimes x^{n-1})} \cdot\). Compute \(uv(x^i \otimes x^j) = 0\) and \(vu= 0, \pi u = 0\) to verify that this is a complex. Show it is exact using the contracting homotopy \(s_{-1}(1) = 1\otimes 1\) and \begin{align*} s_{2m}(1\otimes x^j) = - \sum_{\ell =1}^j x^{j-\ell} \otimes x^{\ell-1},\qquad s_{2m-1}(1\otimes x^j) = \delta_{j, n-1}\otimes 1 .\end{align*} Apply \(\mathop{\mathrm{Hom}}_{A^e}({-}, A)\) to get \begin{align*} 0 \to A \xrightarrow{u^*} A \xrightarrow{v^*} A \xrightarrow{u^*} \cdots ,\end{align*} using \(\mathop{\mathrm{Hom}}_{A^e}(A^e, A) \cong A\) via \(f\mapsto f(1\otimes 1)\). Show that \(u^*(a) = 0\) for \(a\in A\) corresponding to \(f_a\) where \(f_a(1\otimes 1) = a\): \begin{align*} u^*(a) = u^*(f_a(1\otimes 1)) = (u^* f_a)(1\otimes 1) = f_a(u(1\otimes 1)) = f_a(x\otimes 1 - 1\otimes x) = x f_a(1\otimes 1) - f(1\otimes 1)x = xa-ax = 0 \end{align*} and similarly \begin{align*} v^*(a) = v^*(f_a(1\otimes 1)) = (v^* f_a)(1\otimes 1) = f_a v(1\otimes 1) = f_a(x^{n-1}\otimes 1 + \cdots + 1\otimes x^{n-1}) = x^{n-1} f_a(1\otimes 1) + \cdots + f_a(1\otimes 1) x^{n-1} = x^{n-1} a + x^{n-2}ax + \cdots + ax^{n-1} = nx^{n-1} a .\end{align*} This yields \begin{align*} 0 \to A \xrightarrow{0} A \xrightarrow{nx^{n-1}\cdot} A \xrightarrow{0} A \to \cdots .\end{align*} So the homology depends on if \(\operatorname{ch}k \divides n\): \begin{itemize} \tightlist \item If so, \(HH^* A = A + \sum_{n\geq 0} \left\langle{x}\right\rangle t^{2n+1} + \sum_{n\geq 0} A/\left\langle{x^{n-1}}\right\rangle\). \item If not, check! \end{itemize} \end{example} \begin{exercise}[?] How can you interpret \({\operatorname{HH}}(A; M)\) in low degrees? \end{exercise} \hypertarget{wednesday-february-15}{% \section{Wednesday, February 15}\label{wednesday-february-15}} \begin{definition}[Gerstenhaber bracket] For \(f\in \mathop{\mathrm{Hom}}_k(A{ {}^{ \scriptscriptstyle\otimes_{k}^{m} } }, A)\) and \(g\in \mathop{\mathrm{Hom}}_k(A{ {}^{ \scriptscriptstyle\otimes_{k}^{n} } }, A)\), set \begin{align*} [f, g] \coloneqq f\circ g - (-1)^{m-1} g \circ f \end{align*} where \begin{align*} (f \circ g )(a_1 \otimes \cdots \otimes a_{m+n-1}) \coloneqq\\ \sum_{i=1}^m (-1)^{(n-1)(m-1)} f(a_1 \otimes \cdots \otimes a_{i-1} \otimes g\qty{a_i \otimes \cdots \otimes a_{n+i-1}} \otimes a_{n+i} \otimes \cdots \otimes a_{m+n-1} ) .\end{align*} \end{definition} \begin{lemma}[?] Let \(f, g\) as above and \(h\in \mathop{\mathrm{Hom}}_k(A{ {}^{ \scriptscriptstyle\otimes_{k}^{p} } }, A)\). Then \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item Graded anticommutativity: \([f,g] = (-1)^{(m-1)(n-1)}[g, f]\) \item Graded Jacobi identity: \begin{align*} (-1)^{(m-1)(p-1)}[f, [g,h]] + (-1)^{(n-1)(m-1)} [g, [h,f]] + (-1)^{(p-1)(n-1)} [h, [f,g]] .\end{align*} \item Graded derivation: \(d^*([f,g]) = (-1)^{n-1}[d^*(f), g] + [f, d^*(g)]\). \end{enumerate} \end{lemma} \begin{proof}[?] Define \({\left\lvert {f} \right\rvert} = m-1, {\left\lvert {g} \right\rvert} = n-1, {\left\lvert {h} \right\rvert} = p-1\) and \(f g \coloneqq f\circ g\). \textbf{Part 1}: \begin{align*} [f, g] = fg - (-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {g} \right\rvert}} g f &= -(-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {g} \right\rvert}}(g f - (-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {g} \right\rvert}} f g ) \\ &= -(-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {g} \right\rvert}} [g f] .\end{align*} \textbf{Part 2}: \begin{align*} &(-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {h} \right\rvert}} [f, g h - (-1)^{{\left\lvert {g} \right\rvert} {\left\lvert {h} \right\rvert}} h g] \\ &+ (-1)^{{\left\lvert {g} \right\rvert} {\left\lvert {f} \right\rvert}} [g, h f - (-1)^{{\left\lvert {h} \right\rvert} {\left\lvert {f} \right\rvert}} f h] \\ &+ (-1)^{{\left\lvert {h} \right\rvert} {\left\lvert {g} \right\rvert}} [h, f g - (-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {g} \right\rvert}} g f] \\ \\ \, =& (-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {h} \right\rvert}} [fgh - (-1)^{{\left\lvert {g} \right\rvert} {\left\lvert {h} \right\rvert}} f h g - (-1)^{{\left\lvert {f} \right\rvert}\cdot({\left\lvert {g} \right\rvert} + {\left\lvert {h} \right\rvert}) } \qty{g h f - (-1)^{{\left\lvert {g} \right\rvert} {\left\lvert {h} \right\rvert}} h g f } \\ &(-1)^{{\left\lvert {g} \right\rvert} {\left\lvert {f} \right\rvert}} [ghf - (-1)^{{\left\lvert {h} \right\rvert} {\left\lvert {f} \right\rvert}} g f h - (-1)^{{\left\lvert {g} \right\rvert}\cdot({\left\lvert {f} \right\rvert} + {\left\lvert {h} \right\rvert}) } \qty{h f g - (-1)^{{\left\lvert {h} \right\rvert} {\left\lvert {f} \right\rvert}} f h g } \\ &(-1)^{{\left\lvert {h} \right\rvert} {\left\lvert {g} \right\rvert}} [hfg - (-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {g} \right\rvert}} h g f - (-1)^{{\left\lvert {h} \right\rvert}\cdot({\left\lvert {f} \right\rvert} + {\left\lvert {g} \right\rvert})} \qty{f g h - (-1)^{{\left\lvert {f} \right\rvert} {\left\lvert {g} \right\rvert}} g f h } \\ \\ \, =& (-1)^{(m-1)(p-1)} f g h - (-1)^{(p-1)(m+n-2)} f h g - (-1)^{(m-1)(n+2p-3)} g h f + (-1)^{mn + np - m - p} h g f \\ &(-1)^{(n-1)(m-1)} g h f - (-1)^{(m-1)(n+p-2)} g f h - (-1)^{(n-1)(p+2m-3)} h f g + (-1)^{mp + np -m - n} h f g \\ &(-1)^{(p-1)(n-1)} h f g - (-1)^{(n-1)(m+p-2)} h f g - (-1)^{(p-1)(m+2n-3)} f g h + (-1)^{mp + mn - p -n} f g h ,\end{align*} and everything cancels. \end{proof} \begin{exercise}[?] Check part 3, this shows why the bracket is generally difficult to compute. \end{exercise} \begin{remark} Properties 1 and 2 make \(\bigoplus _{i\geq 0} \mathop{\mathrm{Hom}}_k( {A{ {}^{ \scriptscriptstyle\otimes_{k}^{i} } }, A} )\) into a graded Lie algebra, and property 3 makes it into a DGLA with graded derivation \(\delta\): for \(f\) as above, \begin{align*} \delta(f) \coloneqq(-1)^{{\left\lvert {f} \right\rvert}}d^*(f), \quad \delta([f,g]) = [\delta(f), g] + (-1)^{{\left\lvert {f} \right\rvert}}[f, \delta(g)] .\end{align*} Thus \({\operatorname{HH}}^*(A)\) is a graded Lie algebra. \end{remark} \begin{lemma}[?] Let \(f, g\) as above, then \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \item \begin{align*} (-1)^{({\left\lvert {f} \right\rvert} + 1)({\left\lvert {g} \right\rvert} + 1)}f \smile g - g\cup f = d^*(g) \circ f + (-1)^{{\left\lvert {f} \right\rvert} + 1} d^*(g \circ f) + (-1)^{{\left\lvert {f} \right\rvert}} g \circ d^*(f) .\end{align*} \item \([f, \pi] = -d^*(f)\) where \(\pi\) is multiplication. \end{enumerate} \end{lemma} \begin{proof}[?] Follows from a direct calculation. \end{proof} \begin{theorem}[?] Let \(A\in \mathsf{Assoc} {}_{k} \mathsf{Alg}\) for \(k\in \mathsf{CRing}\). Then the cup product on \({\operatorname{HH}}^*(A)\) is graded commutative, so \(a \smile b = (-1)^{{\left\lvert {a} \right\rvert} {\left\lvert {b} \right\rvert} }b \cup a\) for \(a\in {\operatorname{HH}}^m(A), b\in {\operatorname{HH}}^n(A)\) and \({\left\lvert {a} \right\rvert}\coloneqq m, {\left\lvert {b} \right\rvert}\coloneqq n\). \end{theorem} \begin{proof}[?] Let \(a,b\) be images of cocycles \(f,g\) in \(\mathop{\mathrm{Hom}}_k(A{ {}^{ \scriptscriptstyle\otimes_{k}^{m} } }, A)\) and \(\mathop{\mathrm{Hom}}_k(A{ {}^{ \scriptscriptstyle\otimes_{k}^{n} } }, A)\) respectively. By part 1 of the lemma, \begin{align*} (-1)^{{\left\lvert {a} \right\rvert} {\left\lvert {b} \right\rvert}} f \circ g - g \circ f = d^*(g) \circ f - (-1)^{{\left\lvert {a} \right\rvert}} d^* (g \circ f) + (-1)^{{\left\lvert {a} \right\rvert} - 1}g \circ d^*(f) .\end{align*} Since \(f,g\) are cocycles, \(d^*(f) = d^*(g) = 0\), so \begin{align*} (-1)^{{\left\lvert {a} \right\rvert} {\left\lvert {b} \right\rvert}} f \smile g = g \smile f + (-1)^{{\left\lvert {a} \right\rvert}} d^*(g \circ f) .\end{align*} The error term vanishes in homology yielding \begin{align*} (-1)^{{\left\lvert {a} \right\rvert} {\left\lvert {b} \right\rvert}} a \smile b = b \smile a \quad \in {\operatorname{HH}}^*(A) .\end{align*} \end{proof} \begin{lemma}[?] Let \(a\in {\operatorname{HH}}^m(A)\) and \(b\in {\operatorname{HH}}^n(A)\) and \(g \in {\operatorname{HH}}^p(A)\). Then \begin{align*} [g, a \smile b] = [ g, a]\smile b + (-1)^{{\left\lvert {a} \right\rvert} \cdot ({\left\lvert {g} \right\rvert} - 1)} a \smile[g, b] .\end{align*} \end{lemma} \begin{proof}[?] See \emph{The Cohomology Structure of an Associative Algebra}, Gerstenhaber 1963. \end{proof} \begin{definition}[Gerstenhaber algebras] A \textbf{Gerstenhaber algebra} or \textbf{\(G{\hbox{-}}\)algebra} \((H, \smile, [])\) is a free \({\mathbf{Z}}{\hbox{-}}\)graded \(k{\hbox{-}}\)module \(H\) where \((H, \smile)\) is a commutative associative algebra and \((H, [])\) is a graded Lie algebra, where the two operations are compatible as in the lemma above. \end{definition} \begin{theorem}[?] \({\operatorname{HH}}^*(A)\) is a Gerstenhaber algebra. \end{theorem} \addsec{ToDos} \listoftodos[List of Todos] \cleardoublepage % Hook into amsthm environments to list them. \addsec{Definitions} \renewcommand{\listtheoremname}{} \listoftheorems[ignoreall,show={definition}, numwidth=3.5em] \cleardoublepage \addsec{Theorems} \renewcommand{\listtheoremname}{} \listoftheorems[ignoreall,show={theorem,proposition}, numwidth=3.5em] \cleardoublepage \addsec{Exercises} \renewcommand{\listtheoremname}{} \listoftheorems[ignoreall,show={exercise}, numwidth=3.5em] \cleardoublepage \addsec{Figures} \listoffigures \cleardoublepage \newpage \printbibliography[title=Bibliography] \end{document}