# Monday, January 23 :::{.remark} Recall - $(\wait)\tensor_R B$ is right-exact for any $B\in \rmod$ and $\Hom_R(\wait, B)$ is left-exact. - For $A\in \modsright{R}$ and $B\in \modsleft{R}$, define $\Tor_*^R(A, B)$ as $H_*(P_A \tensor_R B)$ where $P_A\covers A$ is a projective resolution. - $\Tor_0^R(A, B) = A\tensor_R B$. Here $B[n] \da \ts{b\in B\st nb=0}$. - $\Ext_R^*(A, B) = H_*(\Hom_R(P_A, B))$. ::: :::{.example title="?"} \[ \Tor_*^R(C_n, B) \cong B/nB\cdot t^0 + B[n]\cdot t^1 \] for any $B\in \zmod$ using $\ZZ\injectsvia{\cdot n} \ZZ\surjects C_n$ to get $P_B = (0\to B\to B\to 0)$. Similarly, \[ \Ext^*_\ZZ(C_m, B) = B[m]\cdot t^0 + B/mB \cdot t^1 .\] :::