# Wednesday, February 15 :::{.definition title="Gerstenhaber bracket"} For $f\in \Hom_k(A\tensorpowerk m, A)$ and $g\in \Hom_k(A\tensorpowerk n, A)$, set \[ [f, g] \da f\circ g - (-1)^{m-1} g \circ f \] where \[ (f \circ g )(a_1 \otimes \cdots \otimes a_{m+n-1}) \da \\ \sum_{i=1}^m (-1)^{(n-1)(m-1)} f(a_1 \otimes \cdots \otimes a_{i-1} \otimes g\qty{a_i \otimes \cdots \otimes a_{n+i-1}} \otimes a_{n+i} \otimes \cdots \otimes a_{m+n-1} ) .\] ::: :::{.lemma title="?"} Let $f, g$ as above and $h\in \Hom_k(A\tensorpowerk p, A)$. Then 1. Graded anticommutativity: $[f,g] = (-1)^{(m-1)(n-1)}[g, f]$ 2. Graded Jacobi identity: \[ (-1)^{(m-1)(p-1)}[f, [g,h]] + (-1)^{(n-1)(m-1)} [g, [h,f]] + (-1)^{(p-1)(n-1)} [h, [f,g]] .\] 3. Graded derivation: $d^*([f,g]) = (-1)^{n-1}[d^*(f), g] + [f, d^*(g)]$. ::: :::{.proof title="?"} Define $\abs f = m-1, \abs g = n-1, \abs h = p-1$ and $f g \da f\circ g$. **Part 1**: \[ [f, g] = fg - (-1)^{\abs f \abs g} g f &= -(-1)^{\abs f \abs g}(g f - (-1)^{\abs f \abs g} f g ) \\ &= -(-1)^{\abs f \abs g} [g f] .\] **Part 2**: \[ &(-1)^{\abs f \abs h} [f, g h - (-1)^{\abs g \abs h} h g] \\ &+ (-1)^{\abs g \abs f} [g, h f - (-1)^{\abs h \abs f} f h] \\ &+ (-1)^{\abs h \abs g} [h, f g - (-1)^{\abs f \abs g} g f] \\ \\ \, =& (-1)^{\abs f \abs h} [fgh - (-1)^{\abs g \abs h} f h g - (-1)^{\abs f\cdot(\abs g + \abs h) } \qty{g h f - (-1)^{\abs g \abs h} h g f } \\ &(-1)^{\abs g \abs f} [ghf - (-1)^{\abs h \abs f} g f h - (-1)^{\abs g\cdot(\abs f + \abs h) } \qty{h f g - (-1)^{\abs h \abs f} f h g } \\ &(-1)^{\abs h \abs g} [hfg - (-1)^{\abs f \abs g} h g f - (-1)^{\abs h\cdot(\abs f + \abs g)} \qty{f g h - (-1)^{\abs f \abs g} g f h } \\ \\ \, =& (-1)^{(m-1)(p-1)} f g h - (-1)^{(p-1)(m+n-2)} f h g - (-1)^{(m-1)(n+2p-3)} g h f + (-1)^{mn + np - m - p} h g f \\ &(-1)^{(n-1)(m-1)} g h f - (-1)^{(m-1)(n+p-2)} g f h - (-1)^{(n-1)(p+2m-3)} h f g + (-1)^{mp + np -m - n} h f g \\ &(-1)^{(p-1)(n-1)} h f g - (-1)^{(n-1)(m+p-2)} h f g - (-1)^{(p-1)(m+2n-3)} f g h + (-1)^{mp + mn - p -n} f g h ,\] and everything cancels. ::: :::{.exercise title="?"} Check part 3, this shows why the bracket is generally difficult to compute. ::: :::{.remark} Properties 1 and 2 make \( \bigoplus _{i\geq 0} \Hom_k( {A\tensorpowerk i, A} ) \) into a graded Lie algebra, and property 3 makes it into a DGLA with graded derivation $\delta$: for $f$ as above, \[ \delta(f) \da (-1)^{\abs f}d^*(f), \quad \delta([f,g]) = [\delta(f), g] + (-1)^{\abs f}[f, \delta(g)] .\] Thus $\HoH^*(A)$ is a graded Lie algebra. ::: :::{.lemma title="?"} Let $f, g$ as above, then 1. \[ (-1)^{(\abs f + 1)(\abs g + 1)}f \cupprod g - g\cup f = d^*(g) \circ f + (-1)^{\abs f + 1} d^*(g \circ f) + (-1)^{\abs f} g \circ d^*(f) .\] 2. $[f, \pi] = -d^*(f)$ where $\pi$ is multiplication. ::: :::{.proof title="?"} Follows from a direct calculation. ::: :::{.theorem title="?"} Let $A\in \Assoc\kalg$ for $k\in \CRing$. Then the cup product on $\HoH^*(A)$ is graded commutative, so \( a \cupprod b = (-1)^{\abs a \abs b }b \cup a \) for $a\in \HoH^m(A), b\in \HoH^n(A)$ and $\abs{a}\da m, \abs b\da n$. ::: :::{.proof title="?"} Let $a,b$ be images of cocycles $f,g$ in $\Hom_k(A\tensorpowerk m, A)$ and $\Hom_k(A\tensorpowerk n, A)$ respectively. By part 1 of the lemma, \[ (-1)^{\abs a \abs b} f \circ g - g \circ f = d^*(g) \circ f - (-1)^{\abs a} d^* (g \circ f) + (-1)^{\abs a - 1}g \circ d^*(f) .\] Since $f,g$ are cocycles, $d^*(f) = d^*(g) = 0$, so \[ (-1)^{\abs a \abs b} f \cupprod g = g \cupprod f + (-1)^{\abs a} d^*(g \circ f) .\] The error term vanishes in homology yielding \[ (-1)^{\abs a \abs b} a \cupprod b = b \cupprod a \quad \in \HoH^*(A) .\] ::: :::{.lemma title="?"} Let $a\in \HoH^m(A)$ and $b\in \HoH^n(A)$ and $g \in \HoH^p(A)$. Then \[ [g, a \cupprod b] = [ g, a]\cupprod b + (-1)^{\abs a \cdot (\abs g - 1)} a \cupprod [g, b] .\] ::: :::{.proof title="?"} See *The Cohomology Structure of an Associative Algebra*, Gerstenhaber 1963. ::: :::{.definition title="Gerstenhaber algebras"} A **Gerstenhaber algebra** or **$G\dash$algebra** $(H, \cupprod, [])$ is a free $\ZZ\dash$graded $k\dash$module $H$ where $(H, \cupprod)$ is a commutative associative algebra and $(H, [])$ is a graded Lie algebra, where the two operations are compatible as in the lemma above. ::: :::{.theorem title="?"} $\HoH^*(A)$ is a Gerstenhaber algebra. :::