# Monday, March 13 :::{.definition title="Hopf algebras"} Define a Hopf algebra as - $A\in \kalg$ with $\pi: A\tensorpowerk 2 \to A$ multiplication and unit $\eta: k\to A$, - $\Delta: A\to A\tensorpowerk 2$ comultiplication - $\eps: A\to k$ counit/augmentation - $s: A\to A^\op$ the coinverse/antipode - Coassociativity: $(\Delta\tensor \id)\Delta = (1\tensor \Delta) \Delta$ - $(\eps \tensor \id) \Delta = \id = (\id\tensor \eps) \Delta$. - $\pi (s \tensor \id) \Delta = \eta \eps = \pi(\id \tensor s) \Delta$. This can be summarized in a diagram: \begin{tikzcd} & {A\tensorpowerk 2} && {A\tensorpowerk 2} \\ A && k && A \\ & {A\tensorpowerk 2} && {A\tensorpowerk 2} \arrow["\Delta", from=2-1, to=1-2] \arrow["{\id\tensor s}", from=1-2, to=1-4] \arrow["\Delta"', from=2-1, to=3-2] \arrow["\eta"', from=2-1, to=2-3] \arrow["{s\tensor \id}"', from=3-2, to=3-4] \arrow["\pi", from=1-4, to=2-5] \arrow["\varepsilon"', from=2-3, to=2-5] \arrow["\pi"', from=3-4, to=2-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwxLCJBIl0sWzEsMCwiQVxcdGVuc29ycG93ZXJrIDIiXSxbMywwLCJBXFx0ZW5zb3Jwb3dlcmsgMiJdLFsxLDIsIkFcXHRlbnNvcnBvd2VyayAyIl0sWzMsMiwiQVxcdGVuc29ycG93ZXJrIDIiXSxbMiwxLCJrIl0sWzQsMSwiQSJdLFswLDEsIlxcRGVsdGEiXSxbMSwyLCJcXGlkXFx0ZW5zb3IgcyJdLFswLDMsIlxcRGVsdGEiLDJdLFswLDUsIlxcZXRhIiwyXSxbMyw0LCJzXFx0ZW5zb3IgXFxpZCIsMl0sWzIsNiwiXFxwaSJdLFs1LDYsIlxcdmFyZXBzaWxvbiIsMl0sWzQsNiwiXFxwaSIsMl1d) **Cocommutative** if $z\Delta = \Delta$ where $z: A\tensorpowerk 2\selfmap$ is the twist map $z(a\tensor b) = b\tensor a$. ::: :::{.example title="?"} 1. For $G\in \Fin\Grp$, the group algebra $kG \da \ts{\sum_{g\in G} a_g g \st a_g\in k }$ with multiplication $\qty{\sum a_g g}\qty{\sum b_h h} \da \sum_{g,h} a_g b_h gh$, $\Delta(g) = g\tensor g, \eps(g) = 1_k, s(g) = g\inv$ is a commutative Hopf algebra. 2. For $V\in \mods{k}$, the tensor algebra $T(V)$ is a cocommutative Hopf algebra with $\Delta(x) \da x\tensor 1 + 1\tensor x, \eps(x) = 0, s(x) = -x$. 3. Similarly $\Sym(V)$ is commutative and cocommutative, and $\Extalg V$ is cocommutative. 4. For $\lieg\in \liealg\slice k$, the enveloping algebra $\mcu(\lieg) = T(V)/ (v\tensor w-w\tensor v = [vw])$ is cocommutative. ::: :::{.remark} Sweedler's Hopf algebra: over $\characteristic k \neq 2$, let $A\da T_2\in \kalg$ be presented as $\gens{g,x\st g^2=1, x^2=0, xg=-gx}$. This is a Hopf algebra under $\Delta(g)\da g\tensor g, \Delta(x) \da 1\tensor x + x\tensor g, \eps(g) = 1, \eps(x) = 0, s(g) = g, s(x) = -xg$. Note $\dim_k T_2 = 4$, generated by $\gens{1,g,x,xg}_k \in \kmod$. This is the smallest example of a non-commutative *and* non-cocommutative Hopf algebra. How to prove this: \[ (\Delta\tensor 1) \Delta(g) &= (\Delta\tensor 1)(g\tensor g) = g\tensorpower{}{3} \\ (1 \tensor \Delta) \Delta(g) &= ( \Delta\tensor 1)(1 \tensor x + x \tensor g) = (1 \tensor \Delta)(g \tensor g) = g\tensor{}{3} \\ (\Delta\tensor 1) \Delta(x) &= \cdots 1 \tensor 1 \tensor x + 1 \tensor x \tensor g + x \tensor g \tensor g \\ (1 \tensor \Delta) \Delta(x) &= \cdots = \text{same} \\ (\eps \otimes 1) \Delta(g) = (\eps \otimes 1)(g \otimes g) = 1 \otimes g \cong g = \id_A(g) \\ (1 \otimes \eps) \Delta(g) = (1 \otimes \eps)(g \otimes g) = g \otimes 1 \cong g = \id_A(g) \\ (\eps \otimes 1) \Delta(x) &= \cdots = 1 \otimes x + 0 \otimes g \cong x = \id_A(x) (1 \otimes \eps) \Delta(x) = \cdots = 1 \otimes 0 + x \otimes 1 \cong x = \id_A(x) ,\] etc. Non-cocommutativity follows from checking the following: \[ z \Delta(x) = z(1 \otimes x + x \otimes g) = x \otimes 1 + g \otimes x \neq \Delta(x) .\] Later we'll see it has a Gerstenhaber bracket, but is not quasitriangular. ::: :::{.remark} Taft algebras: for $n\geq 2, q = \zeta_n \in k$, let $A\da T_n \da \gens{g,x \st g^n = 1, x^n=0, xg = qgx}$ with \( \Delta(g) = g \otimes g, \Delta(x) = 1 \otimes x + x \otimes g, \eps(g) = 1, \eps(x) = 0, s(g) = g\inv, s(x) = -x g\inv \). Then $A$ is Hopf, with $\dim A = n^2$, non-commutative and non-cocommutative. :::