

Notes: These are notes live-tex'd from a graduate
course in K3 surfaces taught by Phil Engel at the
University of Georgia in Spring 2023. As such, any
errors or inaccuracies are almost certainly my own.

K3 Surfaces

Lectures by Phil Engel. University of Georgia, Spring 2023
D. Zack Garza

University of Georgia
dzackgarza@gmail.com
Last updated: 2023-11-16

Table of Contents

Contents

Table of Contents 2
1 Tuesday, January 10 3
2 Thursday, January 12 6
3 Tuesday, January 17 7
4 Thursday, January 19 (Divisors) 12
5 Tuesday, January 24 14
6 Thursday, February 02 17
7 Tuesday, February 07 20
8 Thursday, February 09 22
9 Tuesday, February 14 24
10 Tuesday, February 21 27
11 Tuesday, March 14 32
12 Thursday, March 16 34
ToDos 37
Definitions 38
Theorems 39
Exercises 40
Figures 41

1 Tuesday, January 10

Remark 1.0.1: References:

- Beauville, "Complex Algebraic Surfaces"
- Huybrechts, "Lectures on K3 Surfaces"
- Gathmann, "Algebraic Geometry" (2002)

Remark 1.0.2: K3s are amazing and used in many fields! Named after Kähler, Kodaira, and Kummer. An accomplishment of the early 1900s Italian school of algebraic geometry was classification of complex surfaces (4 real dimensions, admitting holomorphic charts to \mathbf{C}^{2}). These can be studied topologically or using algebraic geometry.

A rough plan:

- Review algebraic varieties:
- Riemann-Roch,
- Curves,
- Divisors,
- Line bundles,
- Picard group,
- The canonical bundle.
- Complex analytic tools:
- The exponential exact sequence,
- Betti numbers,
- Topological Euler characteristic.
- K3s:
- Examples of K3s,
- Enriques-Kodaira classification,
- The intersection form.
- Hodge theory:
- Periods, etc.

Remark 1.0.3: Recall the definition of an affine variety, e.g. $V\left(x_{1}, x_{2}\right) \subseteq \mathbf{A}_{j k}^{2}$ the union of the coordinate axes, or the cone $V\left(x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) \subseteq \mathbf{A}_{/ k}^{3}$. Alternatively, view them as schemes: $X=V\left(f_{1}, \cdots, f_{m}\right)=\operatorname{Spec} k[X]$ where $k[X]:=k\left[x_{1}, \cdots, x_{n}\right] /\left\langle f_{1}, \cdots, f_{m}\right\rangle$ is the ring of regular functions on X. The association: for any point $\left(a_{1}, \cdots, a_{n}\right) \in k^{n}$ one can take the maximal ideals $\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle$, this is a bijection by the Nullstellensatz.

Remark 1.0.4: An example of why schemes are useful: consider $V(y)$ and $V\left(y-x^{2}\right)$ in $\mathbf{A}_{/ k}^{2}$. The set-theoretic intersection is $X:=V\left(y, y-x^{2}\right)=\{0\} \in \mathbf{A}^{2}$, but note that $k[X]=[x, y] /\left\langle y, x^{2}\right\rangle \neq k=$
$k[x, y] /\langle x, y\rangle$, so although e.g. $V(x)=V\left(x^{2}\right)$ these are distinguished as schemes by remembering the regular functions. A scheme like $V\left(x^{2}\right)$ is often drawn as a point with a tangent direction - the scheme remembers not only the values of the x_{i}, but also their various partial derivatives.

Remark 1.0.5: Recall that varieties carry the Zariski topology: the closed sets are of the form $V_{X}(I)$ for $I \unlhd k[X]$. From a scheme-theoretic perspective,

$$
V(I):=\{\text { prime ideals } p \in X \mid p \supseteq I\}
$$

Exercise 1.0.6 (?)
Consider $X:=V(x y) \subseteq \mathbf{A}^{2}$, one has $k[X]=k[x, y] /\langle x y\rangle$ and $I=\langle y-x-1\rangle$ corresponding to the line $y=x+1$. What are the closed sets?

Remark 1.0.7: Note that $\mathbf{A}_{/ \mathbf{C}}^{1}$ with the Zariski topology differs from $\mathbf{A}_{/ \mathbf{C}}^{1}$ with the analytic topology. The closed sets are of the form $V(I)$, and since $\mathbf{C}[x]$ has GCDs every ideal is principal and $I=\langle f\rangle \subseteq k[X]$ for some f. So closed sets are finite or the entire space, i.e. the cofinite topology. By Serre's GAGA, miraculously many results and computations are the same in either topology for compact (proper) varieties over \mathbf{C}.

Remark 1.0.8: Affine varieties/schemes form a category and there is an equivalence AffSch ${ }^{\circ \mathrm{op}} \xrightarrow{\sim}$ CRing.

Example 1.0.9(?): An example of a morphism:

$$
\begin{aligned}
\varphi: \mathbf{A}^{1} & \rightarrow \mathbf{A}^{2} \\
t & \mapsto\left(t^{2}, t^{3}\right)
\end{aligned}
$$

This induces a map on regular functions $\varphi^{*}: \mathbf{C}\left[\mathbf{A}^{2}\right] \rightarrow \mathbf{C}\left[\mathbf{A}^{1}\right]$ which is of the form

$$
\begin{aligned}
\varphi^{*}: \mathbf{C}[x, y] & \rightarrow \mathbf{C}[t] \\
x & \mapsto t^{2} \\
y & \mapsto t^{3}
\end{aligned}
$$

One could similarly define φ with codomain $V\left(y^{2}-x^{3}\right)$.

Remark 1.0.10: What are the regular functions on open sets? Let $U \subseteq X$ in the Zariski topology, then regular functions on U are ratios f / g of polynomials.

Example 1.0.11(?): Let $U:=\mathbf{A}^{1} \backslash\{0,1\} \subseteq \mathbf{A}^{1}$, then regular functions include $\frac{1}{x}$ and $\frac{1}{x-1}$.
Remark 1.0.12: Recall the definition of a sheaf; we'll write \mathcal{O}_{X} for the structure sheaf and regard $\mathcal{O}_{X}(U)$ as the k-algebra of functions on U, satisfying the sheaf axioms of existence and uniqueness of gluing.

Remark 1.0.13: Write $\mathcal{O}_{\mathbf{C}}$ for the sheaf of regular functions, then e.g. $\mathcal{O}_{\mathbf{C}}\left(\left\{a_{1}, \cdots, a_{n}\right\}^{c}\right)=$ $\mathbf{C}[x]\left[\frac{1}{x-a_{1}}, \cdots, \frac{1}{x-a_{n}}\right]$, and more generally $\mathcal{O}_{X}\left(V(f)^{c}\right)=\mathbf{C}[x]\left[\frac{1}{f}\right]$. We'll sometimes distinguish $\mathcal{O}_{\mathbf{C}}^{\text {hol }}$
which is defined on $X^{\text {an }}$ instead (in the Euclidean topology), which is a priori different as a ringed space. Later we'll use this in the exponential exact sequence

$$
\begin{aligned}
2 \pi i \underline{\mathbf{Z}} \rightarrow & \mathcal{O} \xrightarrow{\text { exp }} \mathcal{O}^{\times} \\
& f \mapsto e^{f} .
\end{aligned}
$$

Example 1.0.14(?): Schemes are useful in number theory: consider $X:=\operatorname{Spec} \mathbf{Z}$, then $\mathcal{O}_{X}(X)=\mathbf{Z}$. There is a point p for every prime, and a generic point 0 . Note that e.g. $20 \in \mathcal{O}_{X}(X)$ can be regarded as a function on $\operatorname{Spec} \mathbf{Z}$, and $V(20):=\{p \mid p \supseteq\langle 20\rangle\}$. It contains 2 and 5 , but contains 2 more! So one might draw its "graph" in the following way:

Moreover one has $\mathcal{O}_{\text {Spec } \mathbf{Z}}\left(\{2,3\}^{c}\right)=\left\{f / g \mid f, g \in \mathbf{Z}, g=2^{a} 3^{b}\right\}$.

Remark 1.0.15: We can formulate manifolds and varieties in terms of transition functions: for $U, V \subseteq X$ and charts $\varphi_{U}, \varphi_{V}: X \rightarrow M$ for M some model space like \mathbf{A}^{n} or \mathbf{R}^{n}, we can require $t_{U V}=\left.\varphi_{V} \circ \varphi_{U}^{-1}\right|_{\varphi_{U}(U \cap V)}$ be continuous, smooth, holomorphic, etc. For schemes, the gluing will be by regular maps, e.g. $\mathbf{P}^{1}=\mathbf{A}_{1} \amalg_{t \rightarrow s=\frac{1}{t}} \mathbf{A}_{1}$ where t, s are the coordinates on each factor.

2 Thursday, January 12

Remark 2.0.1: Recall the definition of $\mathbf{P}_{/ k}^{n}$ as a variety: lines in $\mathbf{A}_{/ k}^{n+1}$ passing through the origin. In the classical topology, it is compact since it can be realized as a quotient $S^{2 n+1} / S^{1}$. One can also cover it by affine charts $U_{0}=\operatorname{Spec} \mathbf{C}\left[\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}\right]$ and U_{2}, U_{3} defined similarly, using that $\left[x_{0}: \cdots x_{k} \cdots: x_{n}\right]=\left[\frac{x_{0}}{x_{k}}: \cdots 1: \cdots \frac{x_{n}}{x_{k}}\right]$ on $\left\{x_{k} \neq 0\right\}$. Recall that $\mathcal{O}_{\mathbf{P}^{n}}(U)=\left\{f \in \mathcal{O}_{U_{i}}\left(U \cap U_{i}\right)|f|_{U \cap U}=\left.f\right|_{U \text { r }}\right.$

Example 2.0.2(?): $\mathcal{O}_{\mathbf{P}^{1}}\left(\mathbf{P}^{1}\right)=\left\{\left(f_{0}, f_{1}\right) \in k[s] \times k[t] \mid f_{0}(s)=f_{1}\left(s^{-1}\right)\right.$ on $\left.\mathbf{A}^{1} \backslash\{0\}\right\}$ using that $t=s^{-1}$ on the overlap. This equals $k[s] \cap k\left[s^{-1}\right]=k$, so the only global regular functions are constant.

Proposition 2.0.3(?).
Considering $\mathbf{P}_{/ \mathbf{C}}^{1}$ in the analytic (classical) topology,

$$
\mathcal{O}_{\mathbf{P}_{/ \mathbf{C}}}^{\text {hol }}\left(\mathbf{P}_{/ \mathbf{C}}^{1}\right)=\left\{f: \mathbf{P}_{/ \mathbf{C}}^{1} \rightarrow \mathbf{C} \text { holomorphic }\right\}=\mathbf{C} .
$$

Proof (?).

Since $\mathbf{P}_{/ \mathbf{C}}^{1}$ is compact, f achieves a maximum value m at some point p, so write $f(p)=m$. Letting $U \ni p$ be a closed disk containing p, then f has a maximum on U. By the maximum modulus principle, $\left.f\right|_{U}$ is constant, and so f is constant.

Remark 2.0.4: Call $k\left[x_{0}, \cdots, x_{n}\right]$ the projective coordinate ring of $\mathbf{P}_{/ k}^{n}$. Recall that $f \in k\left[x_{0}, \cdots, x_{n}\right]$ is not a regular function on \mathbf{P}^{n}, but if f is homogeneous then $V(f)$ is well-defined since $f\left(\lambda x_{0}, \cdots, \lambda x_{n}\right)=$ $0 \Longleftrightarrow \lambda^{n} f\left(x_{0}, \cdots, x_{n}\right)=0$.

Example 2.0.5(?): Consider $V\left(s^{2}-s t\right) \subseteq \mathbf{P}_{/ k}^{1}$, then $s(s-t)$ vanishes on $[0: 1]$ and $[1: 1]$.
Example 2.0.6(?): Consider $V\left(x^{3}+y^{3}+z^{3}\right) \subseteq \mathbf{P}_{/ \mathbf{C}}^{2}-$ topologically this is $S^{1} \times S^{1}$ and defines an elliptic curve over \mathbf{C}.

Example 2.0.7 (of a K3 surface): $V\left(x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}\right) \subseteq \mathbf{P}_{/ \mathbf{C}}^{3}$ is a K3 surface.

Remark 2.0.8: More generally, $V\left(f_{1}, \cdots, f_{m}\right) \subseteq \mathbf{P}_{/ k}^{n}$ with f_{i} homogeneous of degrees d_{i} is a projective scheme, where we use the scheme structure to distinguish e.g. $V\left(s^{2}-s t\right)$ and $V\left(s^{3}-s^{2} t\right)$.

Remark 2.0.9: Some recollections:

- The definition of irreducibility: X is reducible if $X=A \cup B$ for A, B proper nontrivial closed sets.
- E.g. $V(x y)=V(x) \cup V(y)$ is not irreducible in \mathbf{A}^{2}.
- Dimension is defined in terms of lengths of chains of closed irreducible subsets.
- X is irreducible iff $k[X]:=k\left[x_{1}, \cdots, x_{n}\right] / I(X)$ is a domain iff $I(X)$ is prime
- Krull's PID theorem, used to show $\operatorname{dim} R /\langle f\rangle=\operatorname{dim} R-1$ if f is not a zero divisor
- To see why this is, consider $R=\mathbf{C}[x, y]$, then $\operatorname{dim} R /\langle x y\rangle=1=\operatorname{dim} \mathbf{C}[x]=\operatorname{dim} R /\langle x\rangle$.
- $\operatorname{Spec} R$ is reduced iff R has no nilpotents
- E.g. $V\left(x^{2}\right)=\operatorname{Spec} k[x] /\left\langle x^{2}\right\rangle$ is not reduced, since x is nilpotent $\left(x^{2}=0\right.$ but $\left.x \neq 0\right)$.
- $X \in$ Sch is reduced iff $\mathcal{O}_{X}(U)$ has no nilpotents, so every regular function f satisfies $f^{n} \neq 0$ for every n.
- Spec R is quasicompact.
- E.g. \mathbf{A}^{1} in the Zariski topology is the cofinite topology, so if $\mathcal{U} \rightrightarrows \mathbf{A}^{1}$ the U_{1} covers all but finitely many points p_{k} and each p_{k} is in some U_{k}.
- Open sets are big: they are essentially the whole space, minus lower dimensional things.
- Completeness replaces compactness, where X is (universally) complete iff for all Y, the projection $X \times Y \rightarrow Y$ is a closed map.
$-\mathbf{A}^{1}$ is not complete: take $Y:=\mathbf{A}^{1}$, then $V(x y-1) \mapsto \mathbf{A}^{1} \backslash\{0\}$ is a closed set mapping to an open set.
- Producing varieties that aren't manifolds: $V(x y) \subseteq \mathbf{A}_{/ \mathbf{C}}^{2}$ is singular at the origin and has no local chart to \mathbf{C} there.
- $V(f) \subseteq \mathbf{R}^{n}$ is a manifold when 0 is a regular value of f, so $d f: T_{p} \mathbf{R}^{n} \rightarrow T_{0} \mathbf{R}$ is surjective at all $p \in V(f)$.
- Can be formulated as $J f:=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ has maximal rank everywhere.

3 Tuesday, January 17

Remark 3.0.1: Recall $X=V\left(f_{1}, \cdots, f_{m}\right)=\operatorname{Spec} R \subseteq \mathbf{A}_{/ k}^{n}$ where $R:=\mathbf{C}\left[x_{1}, \cdots, x_{n}\right] /\left\langle f_{1}, \cdots, f_{m}\right\rangle$ is smooth if Jac $\left\{f_{i}\right\}=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ has maximal rank $r=\operatorname{codim}_{\mathbf{A}^{n}} X$ at all points $x \in X$, and we'll give a more intrinsic notion of smoothness which does not depend on the choice of equations $\left\{f_{i}\right\}$. Over $k=\mathbf{C}$, if X is smooth it is a complex manifold.

Example 3.0.2(?): For $X:=V\left(x^{2}+y^{2}+1\right)$, note $\nabla f=[2 x, 2 y]$ has rank 1 everywhere except 0 , but since $0 \notin X$, in fact X is smooth.

Definition 3.0.3 (Kähler differentials)
Recall that $\Omega^{1} R / k:=\bigoplus R d r / I$ where

$$
I=\langle d(r s)=r d s+s d r, d(c r)=c d r, d(r+s)=d r+d s \mid r, s \in R, c \in k\rangle
$$

Note that $\Omega_{R / \mathbf{C}}^{1} \in{ }_{R}$ Mod, while $\Omega_{X / \mathbf{C}}^{1} \in \mathcal{O}_{X}$ Mod is a sheaf.

Example 3.0.4(?): Example: for $R=\mathbf{C}[x, y] /\left\langle x^{2}+y^{2}+1\right\rangle$, we have $\Omega_{R / \mathbf{C}}^{1}=R d x+R d y / I$. Noting $x^{2}+y^{2}+1=0$ in R, we have

$$
0=d\left(x^{2}+y^{2}+1\right)=2 x d x+2 y d y
$$

Definition 3.0.5 (Smoothness)
X is smooth iff the rank of $\Omega_{X / \mathbf{C}}^{1}$ at p is $\operatorname{dim} X$ for every $p \in X$. For X a variety, point $p \in X$ correspond to $\mathfrak{m}_{p} \in \operatorname{mSpec} R$ and $\Omega_{R / \mathbf{C}}^{1} / \mathfrak{m}_{x} \in \bmod R / \mathfrak{m}_{p}$, so we take

$$
\operatorname{rank}_{p} \Omega_{X / \mathbf{C}}^{1}:=\operatorname{dim}_{R / \mathfrak{m}_{p}}\left(\Omega_{R / \mathbf{C}}^{1} / k\right)
$$

where $R / \mathfrak{m}_{p} \cong k$ is a fixed field via the map $f \mapsto f(p)$.

Example 3.0.6(?): The previous example is still smooth: we have

$$
\Omega_{R / \mathbf{C}}^{1} / \mathfrak{m}_{p}=\frac{\mathbf{C} d x \oplus \mathbf{C} d y}{x(p) d x+y(p) d y}
$$

which has C-dimension 1 if we don't have $x(p)=y(p)=0$. This exactly recovers the Jacobi criterion.

Definition 3.0.7 (\mathcal{O}_{X} Mod)
An \mathcal{O}_{X}-module is a sheaf \mathcal{F} on X where

- $\mathcal{F}(U) \in \mathcal{O}_{X}(U)$ Mod, so the sections are modules over regular functions, and
- $\mathcal{F}(U) \xrightarrow{\operatorname{Res}_{U V}} \mathcal{F}(V)$ is compatible with the module structure and $\mathcal{O}_{X}(U) \xrightarrow{\operatorname{Res}_{U V}} \mathcal{O}_{X}(V)$, so $\operatorname{Res}_{U V}(f . s)=\operatorname{Res}_{U V}(f) . \operatorname{Res}_{U V}(s)$ for $f \in \mathcal{O}_{X}(U)$ and $s \in \mathcal{F}(U)$.

Example 3.0.8(?): $\Omega_{X / \mathbf{C}}^{1} \in \mathcal{O}_{X}$ Mod, where the sections are 1-forms on open sets, as is \mathcal{O}_{X} itself. An example: $\Omega_{\mathbf{A}^{1} \backslash\{0\}}^{1}=\mathbf{C}\left[x, x^{-1}\right] d x$.

Example 3.0.9(?): Let $X=\mathbf{A}_{/ \mathbf{C}}^{1}$, then let \mathcal{O}_{p} be the skyscraper sheaf at p. This can be made into an \mathcal{O}_{X}-module in the following way: for $f \in \mathcal{O}_{X}(U), s \in \mathcal{O}_{p}$, define $f . s=f(p) s$. How to visualize: think of \mathcal{O}_{X} as a trivial bundle.

Compare to the skyscraper sheaf:

Definition 3.0.10 (Morphisms in \mathcal{O}_{X} Mod)
If $\mathcal{F}, \mathcal{G} \in \mathcal{O}_{X}$ Mod then $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ is a morphism iff it is a morphism of sheaves, so a collection $\varphi(U): \mathcal{F}(U) \rightarrow \mathcal{G}(U)$, which are compatible with the module actions.

Example 3.0.11(?): There is a morphism $\mathcal{O}_{X} \rightarrow \mathcal{O}_{p}$ of sheaves determined by

$$
\begin{aligned}
\varphi(U): \mathcal{O}_{X}(U) & \rightarrow \mathcal{O}_{p} \\
f & \mapsto f(p),
\end{aligned}
$$

which is a morphism in \mathcal{O}_{X} Mod since $(g \cdot f)(p)=g(p) \cdot f(p)$ is defined by pointwise multiplication.

Recall that the presheaf $\operatorname{ker} \varphi$ is a sheaf, and here $\operatorname{ker} \varphi(U)=\left\{f \in \mathcal{O}_{X}(U) \mid f(p)=0\right\}$ is the ideal sheaf of p, I_{p}, so we get a SES

$$
I_{p} \hookrightarrow \mathcal{O}_{\mathbf{A}_{/ \mathbf{C}}^{1}} \rightarrow \mathcal{O}_{p} .
$$

Definition 3.0.12 (Ideal sheaf)
For $V \subseteq W$ a subvariety, define

$$
I_{V}(U)=\left\{f \in \mathcal{O}_{W}(U)|f|_{V \cap U}=0\right\}
$$

Example 3.0.13(?): Let $X=\mathbf{P}_{/ \mathbf{C}}^{1}$, then recall $\mathcal{O}_{X}(X)=\mathbf{C}$ in this case. Letting $p \neq q \in X$, there is a map

$$
\begin{aligned}
\mathcal{O}_{X} & \rightarrow \mathcal{O}_{p} \oplus \mathcal{O}_{q} \\
f & \mapsto f(p) \oplus f(q)
\end{aligned}
$$

This is a surjection of sheaves, despite not being surjective on global sections: $\mathcal{O}_{X}(X)=\mathbf{C}$, while $\left(\mathcal{O}_{p} \oplus \mathcal{O}_{q}\right)(X)=\mathbf{C} \oplus \mathbf{C}$. However, this is an open cover $\mathcal{U} \rightrightarrows X$ where this is a surjection on sections: take $U_{1}:=X \backslash\{p\}$ and $U_{2}:=X \backslash\{q\}$. Here we get a SES

$$
I_{\{p, q\}} \hookrightarrow \mathcal{O}_{\mathbf{P}_{/ \mathrm{C}}^{1}} \rightarrow \mathcal{O}_{p} \oplus \mathcal{O}_{q} .
$$

Example 3.0.14(?): For $X=\mathbf{A}_{/ \mathbf{C}}^{1}$, there is an isomorphism

$$
\begin{aligned}
\Omega_{X}^{1} & \xrightarrow{\sim} \mathcal{O}_{X} \in \mathcal{O}_{X} \text { Mod } \\
f & \mapsto f d x
\end{aligned}
$$

Remark 3.0.15: For X not affine, what is Ω_{X}^{1} ? If $\omega=\sum f_{i} d x_{i}$ in one chart and $\sum g_{i} d y_{i}$ in another via charts \vec{x}, \vec{y}, how are they related? One needs a notion of pullbacks. We define $\Omega_{X}^{1}(U)$ to be well-defined 1-forms $\omega_{i} \in \Omega_{X}^{1}\left(U \cap U_{i}\right)$ which are compatible on overlaps.

Example 3.0.16(?): Let $X=\mathbf{P}^{1}$, glued from affines $U_{0}=\operatorname{Spec} \mathbf{C}[s]$ and $U_{1}=\operatorname{Spec} \mathbf{C}[t]$ by

$$
\begin{aligned}
t_{01}: U_{0} & \rightarrow U_{1} \\
s & \mapsto t=s^{-1}
\end{aligned}
$$

Take $\omega_{i} \in \Omega_{X}^{1}\left(U_{i}\right)$, then

- $\omega_{0}=f_{0}(s) d s \in \mathbf{C}[s] d s$
- $\omega_{1}=f_{1}(t) d t \in \mathbf{C}[t] d t$

Then the compatibility condition is that

$$
t_{01}^{*}\left(\omega_{1}\right)=f_{1}\left(s^{-1}\right) d\left(s^{-1}\right)=f_{0}(s) d s
$$

This becomes

$$
\begin{aligned}
-\frac{f_{1}\left(s^{-1}\right)}{s^{2}} d s & =f_{0}(s) d s \\
\Longrightarrow f_{1}\left(s^{-1}\right) & =-s^{2} f_{0}(s) \\
\Longrightarrow c_{0}+c_{1} s^{-1}+c_{2} s^{-2}+\cdots+c_{k} s^{-k} & =d_{0} s^{2}+d_{1} s^{3}+\cdots+d_{r} s^{r}
\end{aligned}
$$

which can only be true if $f \equiv 0$. This implies that Ω_{X}^{1} is a line bundle.

Definition 3.0.17 (Vector bundle)
A line bundle on X is $\mathcal{F} \in \mathcal{O}_{X}$ Mod where $\mathcal{Z} \rightrightarrows X$ where $\left.\mathcal{F}\right|_{U_{i}}=\mathcal{O}_{U_{i}}$. A vector bundle of rank r is such an \mathcal{F} where $\left.\mathcal{F}\right|_{U_{i}}=\mathcal{O}_{U_{i}} \oplus^{r}$ for some r.

Example 3.0.18(?): \mathcal{O}_{p} is not a vector bundle, since $\mathcal{O}_{p}(U) \stackrel{\sim}{\sim} \mathcal{O}_{X}(U)^{\oplus^{r}}$ for any r or any affine open $U \ni p$.

Definition 3.0.19 (Divisors)
A Weil divisor on X is a \mathbf{Z}-linear combination of irreducible codimension 1 subvarieties. For $D=\sum n_{i} p_{i}$, its degree is $\sum n_{i}$.

Example 3.0.20(?): The irreducible codimension 1 subvarieties of \mathbf{P}^{1} are points, so

$$
\operatorname{WDiv}\left(\mathbf{P}^{1}\right)=\bigoplus_{p \in \mathbf{P}^{1}} \mathbf{Z}[p] .
$$

For example, $\operatorname{WDiv}\left(\mathbf{P}_{/ \mathbf{C}}^{1}\right) \ni D:=2[0]-[\pi]+3[\infty]$ and $\operatorname{deg} D=4$. Similarly, $\operatorname{WDiv}\left(\mathbf{A}^{2}\right) \ni$ $[V(x)]-[V(y)]$.

Definition 3.0.21 (Divisors of functions)
Let X be irreducible and $f \in \mathcal{O}_{X}(U)$ with $U \subseteq X$ Zariski open, and define $\operatorname{div}(f):=\sum n_{i}\left[D_{i}\right]$ where n_{i} is the order of zeros/poles of f along D_{i}.

Example 3.0.22(?): Let $x / y^{2} \in \mathcal{O}_{\mathbf{A}^{2}}\left(V(y)^{c}\right)$, then $\operatorname{div}\left(x / y^{2}\right)=[V(x)]-2[V(y)]$. Similarly, $f:=\frac{s^{2}-t^{2}}{s t} \in \mathcal{O}_{\mathbf{P}^{1}}\left(\mathbf{P}^{1} \backslash\{0, \infty\}\right)$ has divisor $\operatorname{div}(f)=[1]+[-1]-[0]-[\infty]$.

4 Thursday, January 19 (Divisors)

Remark 4.0.1: Recall that exp is surjective as a map of sheaves. On open contractible subsets $U \subseteq \mathbf{C}$, for any $g \in \mathcal{O}_{\text {hol }}^{\times}(U)$ there is an $f:=\log (g)$, but $z \mapsto \log (z) \notin \mathcal{O}_{\text {hol }}\left(\mathbf{C}^{\times}\right)$. Thus surjections of sheaves need not induce surjections on global sections, the failure is measured by sheaf cohomology.

Definition 4.0.2 (Divisor class group)
Define the principal Weil divisors as

$$
\text { Prin } \mathrm{W} \text { Div }=\{\operatorname{div}(f) \mid f \in K(X)\},
$$

divisors of nonzero rational functions. Here $\operatorname{div}(f)=\sum n_{Y}[Y]$ where n_{Y} is the order of vanishing/poles along Y. We then define the (Weil) divisor class group as

$$
\mathrm{WCl}(X):=\mathrm{WDiv}(X) / \operatorname{Prin} \operatorname{Div}(X) .
$$

Example 4.0.3(?): On $\mathbf{P}^{1}, \operatorname{div}\left(\frac{s^{2}-t^{2}}{s t}\right)=[1]+[-1]-[0]-[\infty]$, regarding $\infty=s / t$.

Example 4.0.4(?): $\mathrm{Cl}\left(\mathbf{A}^{1}\right)=0$ since $\sum n_{p}[p]=\operatorname{div} f$ where $f=\Pi(x-p)^{n_{p}}$.
Example 4.0.5(?): There is an isomorphism

$$
\begin{aligned}
& \operatorname{deg}: \mathrm{WCl}\left(\mathbf{P}^{1}\right) \\
& \stackrel{\sim}{\rightarrow} \mathbf{Z} \\
& \sum n_{p}[p] \mapsto \sum n_{p} .
\end{aligned}
$$

E.g. considering $\operatorname{div}()[1]+[-1]-[0]=[\infty]$ in $\mathrm{Cl}\left(\mathbf{P}^{1}\right)$.

Example 4.0.6(?): Consider $\mathrm{Cl}(\operatorname{Spec} \mathbf{Z})$: principal divisors are primes, so $\operatorname{WDiv}(\operatorname{Spec} \mathbf{Z})=$ $\left\{\sum_{p \text { prime }} n_{p}[p]\right\}$. Rational functions on $\operatorname{Spec} \mathbf{Z}$ are identified with \mathbf{Q}, and if $r=\prod p_{i}^{n_{i}} \in \mathbf{Q}$ then $\operatorname{div}(r)=\sum n_{i}\left[p_{i}\right]$, so $\operatorname{Cl}(\operatorname{Spec} \mathbf{Z})=0$ since every $\sum_{p \text { prime }} n_{p}[p]$ is the divisor of some $r \in \mathbf{Z} \subseteq \mathbf{Q}$.

Example 4.0.7(?): For $X=\operatorname{Spec} R$ for $R:=\mathbf{Z}[\sqrt{-5}]$, we have $\operatorname{WDiv}(X)=\sum_{p \neq 0}$ prime ideals $n_{p}[p]$, and the rational functions on X are $\mathbf{Q}(\sqrt{-5})$. Since $R \in \mathbb{D}$, there is unique factorization of (fractional) ideals, so writing $(r)=\prod p_{i}^{n_{i}}$ we have $\operatorname{div} r=\sum n_{i}\left[p_{i}\right]$. However, R is not a UFD, considering $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.

```
Consider r = 1 \cdot [p] for p}=(2,1+\sqrt{}{-5})\mathrm{ ? Ask.
```

Definition 4.0.8 (Cartier divisors)
A Cartier divisor is a collection of rational functions f_{i} on U_{i} such that $\operatorname{div}\left(f_{i}\right)=\operatorname{div}\left(f_{j}\right)$ on $U_{i j}$. These form a group $\operatorname{CDiv}(X)$, and there is a corresponding class group $\mathrm{Ca} \operatorname{Cl}(X):=$ $\operatorname{CDiv}(X) / \operatorname{Prin} \operatorname{CDiv}(X)$.

Example 4.0.9(?): Write $\mathbf{P}^{1}=U_{0} \cup U_{1}$ and consider

- $f_{0}=s$ on $U_{0}=\operatorname{Spec} \mathbf{C}[s]$
- $f_{1}=1$ on $U_{1}=\operatorname{Spec} \mathbf{C}[t]$

Note div $f_{0}=[0]$ on U_{0} and div $f_{1}=0$ on U_{1}, but $\left.f_{0}\right|_{U_{01}}$ has no poles or zeros and thus div $\left.f_{0}\right|_{U_{01}}=$ $0=\left.\operatorname{div} f_{1}\right|_{U_{01}}$.

Fact 4.0.10

If X is smooth then $\operatorname{WDiv}(X)=\operatorname{CDiv}(X)$. Note all Weil divisors are Cartier: consider $X=$ $V\left(x y-z^{2}\right) \subseteq \mathbf{A}^{3}$, which is a circular cone. Note that $V(z)$ is a union of two lines along the edge of the cone. Consider $D=V_{X}(z, y)$, an irreducible codimension 1 subvariety, so $D \in \operatorname{WDiv}(X)$. This is locally principal away from the origin, since one can slice by the plane $z=0$. Suppose $f(x, y, z)$ cuts out D at 0 , then write $f=c_{0}+c_{1} x+c_{2} y+c_{3} z+\cdots$. Since $f(0)=0$ we have $c_{0}=0$, and the remaining terms always cut out two lines. On the other hand, $2 D$ is Cartier and principal, since the tangent plane along the cone $V_{X}(y)=V_{X}\left(y, z^{2}\right)$ cuts out a doubled line.

Remark 4.0.11: Recall that line bundles are $\mathcal{L} \in \mathcal{O}_{X}$ Mod locally isomorphic to $\mathcal{O}_{U_{i}}$. Given $D \in \operatorname{CDiv}(X)$ with Cartier data $\left\{\left(f_{i}, U_{i}\right)\right\}$ with f_{i} rational on U_{i} and $\operatorname{div}\left(f_{i}\right)=\operatorname{div}\left(f_{j}\right)$ on overlaps.

Define $\mathcal{O}_{X}(D) \in \operatorname{Pic}(X)$ to be the sheaf whose sections over U are $\left\{\left(s_{i}\right) \in \mathcal{O}_{X}\left(U \cap U_{i}\right) s_{i} f_{i}=s_{j} f_{j}\right\}$, so the sections are related by $s_{j}=\frac{f_{i}}{f_{j}} s_{i}$ on $U_{i j}$. Write $t_{i j}=\frac{f_{j}}{f_{i}} \in \mathcal{O}_{X}\left(U_{i} \cap U_{j}\right)$ for the transition functions.

Example 4.0.12(?): Write $\mathbf{P}^{1}=U_{0} \cup U_{1}$ and $D=\left\{\left(s, U_{0}\right),\left(1, U_{1}\right)\right\} \in \operatorname{CDiv}\left(\mathbf{P}^{1}\right)$, and consider $\mathcal{O}_{\mathbf{P}^{1}}(D)$. This is given by $\{p \in k[s], q \in k[t] \mid p=s q\}$. Writing $t=s^{-1}$, we have $p(s)=s q\left(s^{-1}\right)$, so if $q=1$ then $p=s$ and if $q(t)=t$ then $p=1$. One can check $\mathcal{O}_{\mathbf{P}^{1}}(D)=\mathbf{C}\langle s, 1\rangle \oplus \mathbf{C}\langle 1, t\rangle$.

Exercise 4.0.13 (?)

Show that if $D=\left\{\left(s^{k}, U_{0}\right),\left(1, U_{1}\right)\right\}$ then $\mathcal{O}_{\mathbf{P}^{1}}(D)=\mathcal{O}_{\mathbf{P}^{1}}(k)$, whose global sections are homogeneous degree k polynomials on \mathbf{P}^{1}.

5 |uesday, January 24

Remark 5.0.1: Recall that $\operatorname{WDiv}(X)=\operatorname{Ca} \operatorname{Div}(X)$ if X is smooth or if codim $X_{\text {sing }} \geq 3$, and for any $D \in \operatorname{CDiv}(X)$,

$$
\mathcal{O}_{X}(D)(U):=\{f \in k(U) \mid \operatorname{div} f+D \geq 0\} \in \operatorname{Pic}(X)
$$

is a line bundle.

Example 5.0.2(?): Let $D=V(x y z) \subseteq \mathbf{P}^{2}$, then D is 3 copies of \mathbf{P}^{1} linked in a triangle. Consider $f \in \mathcal{O}_{\mathbf{P}^{2}}(D)\left(\mathbf{P}^{2}\right)$, so div $f=-L_{1}-L_{2}-L_{3}+\sum n_{p} P$ for some $n_{p} \geq 0$. Since $f \in k\left(\mathbf{P}^{2}\right) \Longrightarrow f=a / b$ with a, b homogeneous polynomials of the same degree, one example is $f(x, y, z)=a(x, y, z) / x y z$ with a homogeneous of degree 3 . Thus $\mathrm{H}^{0}\left(\mathcal{O}_{\mathbf{P}^{2}}(D)\right) \cong k[x, y, z]^{3, \text { homog }}$.

Proposition 5.0.3(?).
If $D \equiv D^{\prime} \in \operatorname{Cl}(X)$, so $D-D^{\prime}=\operatorname{div} h$ for some h, then $\mathcal{O}_{X}(D) \cong \mathcal{O}_{X}\left(D^{\prime}\right)$ as sheaves.

Proof (?).

One needs a map $\mathcal{O}_{X}(D)(U) \rightarrow \mathcal{O}_{X}\left(D^{\prime}\right)(U)$ for every open $U \subseteq X$, so take the map

$$
\begin{aligned}
\mathcal{O}_{X}\left(D^{\prime}\right)(U) & \rightarrow \mathcal{O}_{X}(D)(U) \\
f^{\prime} & \mapsto f:=f^{\prime} \cdot h^{-1}
\end{aligned}
$$

Since $\operatorname{div}\left(f^{\prime} h^{-1}\right)=\operatorname{div}\left(f^{\prime}\right)-\operatorname{div}(h)$, we have

$$
\operatorname{div} f^{\prime}+D^{\prime} \geq 0 \Longleftrightarrow \operatorname{div} f^{\prime}+D^{\prime}+\operatorname{div} h \geq \operatorname{div} h \Longleftrightarrow \operatorname{div} f+D \geq 0
$$

Remark 5.0.4: Note that if $D \geq 0$ then $\mathcal{O}_{X}(D)(X) \ni 1$, the constant function, and this is a global section so $H^{0}\left(\mathcal{O}_{X}(D)\right)>0$.

Fact 5.0.5

Any irreducible codimension $1 D \subseteq \mathbf{P}^{n}$ is of the form $V(f)$ for a single function f, which follows from the fact that any height 1 prime in $k\left[x_{0}, \cdots, x_{n}\right]$ is principal. Thus $\operatorname{Div}\left(\mathbf{P}^{n}\right)=$ $\left\{\sum_{f \in k\left[x_{0}, \cdots, x_{n}\right]^{\text {homog,irr }}} n_{f}[V(f)]\right\}$, and if $D=\sum n_{f}[V(f)]$ and $D^{\prime}=\sum n_{f^{\prime}}\left[V\left(f^{\prime}\right)\right]$, then $D \equiv D^{\prime} \Longleftrightarrow$ $\sum n_{f} \operatorname{deg} f=\sum n_{f^{\prime}} \operatorname{deg} f^{\prime}$, noting $\left.D-D^{\prime}=\operatorname{div}\left(\prod f^{n} f^{n} f^{\prime}\right)^{n} f^{\prime}\right)$ which is a rational function on \mathbf{P}^{n}. So $\mathrm{Cl}\left(\mathbf{P}^{n}\right) \underset{\operatorname{deg}}{\sim} \mathbf{Z}$ where $\sum n_{f}[V(f)] \mapsto \sum n_{f} \operatorname{deg} f$.

Definition 5.0.6 (?)
$\operatorname{Pic}(X)$ is the group of line bundles on X up to isomorphism, with group structure given by the following: for $L_{1}, L_{2} \in \operatorname{Pic}(X)$, define

$$
\left(L_{1} \otimes L_{2}\right)(U):=L_{1}(U) \otimes_{\mathcal{O}_{X}(U)} L_{2}(U)
$$

Alternatively, the transition functions on the tensor product are products of transition functions:

$$
t_{U V}^{L_{1} \otimes L_{2}}=t_{U V}^{L_{1}} \cdot t_{U V}^{L_{2}}
$$

The identity element is \mathcal{O}_{X}, since $L_{1}(U) \otimes_{\mathcal{O}_{X}(U)} \mathcal{O}_{X}(U)=L_{1}(U)$. Inverses are given by $L^{-1}:=\mathcal{H o m}\left(L, \mathcal{O}_{X}\right)$, so $L^{-1}(U)=\operatorname{Hom}_{\mathcal{O}_{X}(U)}\left(L(U), \mathcal{O}_{X}(U)\right)$ on small enough open sets, and the transition functions are given by

$$
t_{U V}^{L^{-1}}=\left(t_{U V}^{L}\right)^{-1}
$$

It can be checked that if L satisfies the cocycle condition iff L^{-1} does, and similarly for $L_{1} \otimes L_{2}$.

Proposition 5.0.7(?).

If X is smooth then $\operatorname{Pic}(X) \cong \mathrm{Cl}(X)$ via $D \rightleftharpoons \mathcal{O}_{X}(D)$.

Proof (?).

This uses that $\mathcal{O}_{X}(D) \cong \mathcal{O}_{X}\left(D^{\prime}\right) \Longleftrightarrow D \equiv D^{\prime}$, the interesting part is to show surjectivity. Let $L \in \operatorname{Pic}(X)$, then $\left.L\right|_{U}=\mathcal{O}_{U}$ for some U, and we can consider $1 \in \mathcal{O}_{U}(U) \cong L(U)$. In any other trivialization, $\left.L\right|_{V} \cong \mathcal{O}_{V}$ and there is a transition function $t_{U V} \in k(V)$. Since $1 \in \mathcal{O}_{U}(U)$, we have $\operatorname{div}(1)=D$ where the LHS is regarded as a rational section of L, and $L \cong \mathcal{O}_{X}(D)$.

Definition 5.0.8 (Rational sections)
A rational section of L is a section of $L \otimes k(X)$.
Remark 5.0.9: This allows for a section $s \in H^{0}(L)$ to have poles, and $L \cong \mathcal{O}(\operatorname{div}(s))$ for any section s of L. If s, s^{\prime} are rational sections, then s / s^{\prime} is a rational function. Concretely, if $s=$ $\left\{s_{u} \in k(U) \mid t_{U V} s_{U}=s_{V}\right\}$ and $s^{\prime}=\left\{s_{U}^{\prime} \in k(U) \mid t_{U V} s_{U}^{\prime}=s_{V}^{\prime}\right\}$. Then $s / s^{\prime}=\left\{\frac{s_{U}}{s_{U}=s_{V} / s_{V}^{\prime}}\right\} \in k(X)$, so $\operatorname{div}(s)=\operatorname{div}\left(s^{\prime}\right)$.

Remark 5.0.10: The degree of any principal divisor on a curve is zero.

Example 5.0.11(?): More interesting examples come from elliptic curves. Write $X=\mathbf{C} / \Lambda$ where $\Lambda=\mathbf{Z} \oplus \mathbf{Z} \tau$ with $\tau \in \mathbb{H}$ This yields a complex manifold, since the transition functions are translations and thus holomorphic. We can write $\operatorname{Div}(X) \ni D=\sum n_{p}[p]$ where $p \in X$ are points. A meromorphic function is a rational function $f: X \rightarrow \mathbf{C}$ which extends to a holomorphic map $f: X \rightarrow \mathbf{C P}^{1}$ by mapping poles to ∞ - note that this extension only works because X is complex dimension 1 , and does not work in higher dimensions. This pulls back to $\tilde{f}: \mathbf{C} \rightarrow \mathbf{P}^{1}$ which satisfies $\tilde{f}(z+\lambda)=\tilde{f}(z)$ for all $\lambda \in \Lambda$. The Weierstrass \wp-function is defined by

$$
\wp(z):=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda \backslash\{0\}}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)
$$

which averages over the lattice and is thus periodic. Note

$$
\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}=\frac{\lambda^{2}-(z-\lambda)^{2}}{(z-\lambda)^{2} \lambda^{2}}
$$

where the denominator is $\geq C|\lambda|^{4}$ for $|z| \gg 1$ and the numerator is $\leq c|\lambda|$ for $|z| \gg 1$, so

$$
\sum_{\lambda \in \Lambda \backslash\{0\}} C|\lambda|^{-3} \leq C \int_{\mathbf{R}^{2}}|\lambda|^{-3}=C \iint r^{-3} r d r d \theta
$$

which converges. So the extra constant $\frac{1}{\lambda^{2}}$ is necessary to make the series converge. Since translating by $\lambda \in \Lambda$ rearranges the series, $\wp(z)$ is a well-defined rational function on X with a double pole at every $z \in \Lambda$, corresponding to $0 \in \mathbf{C} / \Lambda$. So $\operatorname{div} \wp(z)=-2[0]$, and it induces $X \xrightarrow{\pi} \mathbf{P}^{1}$ where we have $\operatorname{deg} \pi=\operatorname{deg} \pi^{-1}(0)=\operatorname{deg} \pi^{-1}(\infty)$.

Proposition 5.0.12(?).

Let $f \in \mathbf{C}(X)$ be meromorphic and let $\operatorname{div} f=\sum n_{p}[p]$.

1. $\sum n_{p}=0$
2. $\sum n_{p}[p] \equiv 0 \bmod \Lambda$

Proof (?).

Let $f \in \mathbf{C}(X)$ with some zeros and poles.
Take the following contour:

Note that $\int_{\gamma} \mathrm{d} \log (f)=\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{p \text { inside }} n_{p}$ by the residue theorem. Recall that in local coordinates w, if $f(w)=c w^{-k}+\cdots$ then $\mathrm{d} \log (f)=-k \frac{d w}{w}+h(w)$ where h is holomorphic. However, by periodicity, the edge integrals cancel and $\int_{C_{1}+C_{2}} \operatorname{dLog}(f)=\sum_{p \text { edge }}-n_{p}$, forcing $\sum n_{p}=0$.
Now considering $\int_{\gamma} z \mathrm{~d} \log (f)=\sum_{p \text { inside }} n_{p} p$ and $\operatorname{Res}_{p} z \mathrm{~d} \log (f)=n_{p} \cdot z(p)$. On the other hand, $-\sum_{p \text { edge }} n_{p} p+\int_{A \backslash A^{\prime}} z \mathrm{~d} \log (f)$.

6 Thursday, February 02

Theorem 6.0.1(Riemann-Hurwitz).

If $f: C \rightarrow D$ is a map of smooth complete curves then

$$
2 g(C)-2=\operatorname{deg}(f) \cdot(2 g(D)-2)+\operatorname{deg} R(f)
$$

where $R(f)=\sum_{p \in C}\left(e_{p}-1\right)[p]$ is the ramification divisor.

Example 6.0.2(?): Take

$$
\begin{aligned}
& \mathbf{C} \rightarrow \mathbf{C} \\
& z \mapsto z^{4}
\end{aligned}
$$

which is a 4 -fold cover

Example 6.0.3(?): If $f: C \rightarrow \mathbf{P}^{1}$ is degree 2 then $f=a / b$ where $a, b \in H^{0}\left(C ; K_{C}\right)$, and RiemannHurwitz gives deg $R(f)=6$. If [$s: t$] are homogeneous coordinates on \mathbf{P}^{1}, then one can take an equation of the form $z^{2}=f_{6}(s, t)$ for $f_{6}(s, t)=\prod_{i=1}^{6}\left(a_{i} s-b_{i} t\right)$ is a homogeneous degree 6 polynomial, so $f \in H^{0}\left(\mathbf{P}^{1} ; \mathcal{O}_{\mathbf{P}^{1}}(6)\right)$ and $z \in \operatorname{Tot} \mathcal{O}_{\mathbf{P}^{1}}(-3)$:

Exercise 6.0.4 (?)
Describe why $z \notin \operatorname{Tot} \mathcal{O}_{\mathbf{P}^{1}}(3)$ instead.

Exercise 6.0.5 (?)
Recall that the normalization of a ring R is the integral closure of R in $\mathrm{ff}(R)$. Compute the
normalization of $y^{2}=x^{3}$ using the algebraic definition.

Example 6.0.6(?): An example of normalization:

Fact 6.0.7
Integrally closed and 1-dimensional implies smooth.

Exercise 6.0.8 (?)
Recall the definition of the Čech cochain complex and compute $\check{H}\left(S^{1} ; \mathcal{F}\right)$ using an open cover of two sets.

7 Tuesday, February 07

Remark 7.0.1: Last time: Čech cochains defined as $C_{\mathcal{U}}^{p}(X ; \mathcal{F}):=\bigoplus_{i_{0}<\cdots<i_{p}} \mathcal{F}\left(U_{i_{0}, \cdots, i_{p}}\right)$ with homol-
 Recall $\mathrm{Cl}(X) \xrightarrow{\sim} \operatorname{Pic}(X)$ in our setting via $D \mapsto \mathcal{O}_{X}(D)$ which sends U to $\{f \in k(U) \mid \operatorname{div} f+D \geq 0\}$.

Claim:

$$
\begin{aligned}
\operatorname{Pic}(X) & \xrightarrow{\sim} H^{1}\left(X ; \mathcal{O}_{X}^{\times}\right) \\
L & \mapsto\left[\left(t_{U V}\right)\right] .
\end{aligned}
$$

Proof (?).
Write $C_{\mathcal{U}}^{1}\left(X ; \mathcal{O}_{X}^{\times}\right)=\left\{\left(t_{U V}\right) \in \mathcal{O}^{\times}(U \cap V) \mid U, V \in \mathcal{U}\right\}$ for some open cover $\mathcal{U} \rightrightarrows X$, and $Z_{\mathcal{U}}^{1}\left(X ; \mathcal{O}_{X}^{\times}\right)=\left\{\left(t_{U V}\right) \in \mathcal{O}^{\times}(U \cap V)\right\}$ with boundary $\partial^{1}\left(t_{U V}\right)=\left(t_{V W} t_{U W}^{-1} t_{U V}\right)$. Note that $t_{U W}=t_{U V} t_{V W}$.
A line bundle $L \xrightarrow{\pi} X$ has a trivialization, and we can refine \mathcal{U} to a cover that trivializes L, so $\left.L\right|_{U} \cong \mathcal{O}_{U}$ as sheaves for each U. We have $\pi^{-1}(U) \xrightarrow{\sim} U \times \mathbf{C}$, and $h_{V} \circ h_{U}^{-1}:(U \cap V) \times \mathbf{C} \rightarrow$ $(U \cap V) \times \mathbf{C}$ is multiplication by $t_{U V}(p)$ on the fiber over $p \in U \cap V$. These satisfy $t_{U V} t_{V W}=t_{U W}$, so any L defines an element of $Z^{1}\left(X ; \mathcal{O}_{X}^{\times}\right)$by sending L to its transition function.
Conversely, given $\left(t_{U V}\right)$, one can attempt to glue these to form a line bundle, but which collections define the same bundle? Given two line bundles, refine their trivializing covers so that they coincide. Then any two trivializations $L_{U} \xrightarrow{h_{U}, h_{U}^{\prime}} \mathcal{O}_{U}$ differ by an element $f_{U} \in \mathcal{O}^{\times}(U)$:

Link to Diagram
On overlaps, we have $t_{U V} \mapsto f_{U}^{-1} t_{U V}$ and $t_{V U} \mapsto f_{U} t_{V U}$, so at the level of tuples, $\left(t_{U V}\right) \mapsto$ $\left(t_{U V}\right) \cdot \partial^{0}\left(f_{U}\right)$ and thus $\left(t_{U V}\right)$ is uniquely defined up to $\partial^{0}\left(C_{\mathcal{U}}^{0}\left(X ; \mathcal{O}_{X}^{\times}\right)\right)$.

Remark 7.0.2: This works for higher rank vector bundles: one has $t_{V W} t_{U V}=t_{U W}$ in $\operatorname{Hol}(U \cap$ $\left.V \cap W, \mathrm{GL}_{n}(\mathbf{C})\right)$, however for $n \geq 2$ this is a nonabelian group and order matters. In this case we
get e.g. $\partial^{1}\left(t_{U V}\right)=\left(t_{U V} t U W^{-1} t_{V W}\right)$. One has

$$
\{\text { Vector bundles on } X\} \xrightarrow{\sim} H^{1}\left(X ; \operatorname{GL}_{n}(\mathcal{O})\right)
$$

where $\mathrm{GL}_{n}(\mathcal{O})(U)=\left\{\right.$ holomorphic functions $\left.U \rightarrow \mathrm{GL}_{n}(\mathbf{C})\right\}$.
Remark 7.0.3: Recall the exponential SES; taking the LES yields $c_{1}: \operatorname{Pic}(X) \rightarrow H^{2}(X ; \mathbf{Z})$. For X a smooth curve, $c_{1}=\operatorname{deg}$. For $D \in \operatorname{Div}(X)$, one can define the fundamental class in X by taking the fundamental class $[D] \in H_{\operatorname{dim}_{\mathbf{R}} D}(D ; \mathbf{Z}) \xrightarrow{\sim} H_{\operatorname{dim}_{\mathbf{R}} D}(X ; \mathbf{Z}) \underset{\mathrm{PD}}{\sim} H^{2}(X ; \mathbf{Z})$.

Remark 7.0.4: Why is $c_{1}=\operatorname{deg}$ true? Consider $\mathcal{L}=\mathcal{O}_{C}(p)$ for $p \in C$ a point on a curve. One can take the point bundle construction: let $U \ni p$ be a neighborhood of p and V the complement of a smaller neighborhood of p, so $U \cap V$ is an annulus. For $z: U \rightarrow \mathbf{C}$ a local coordinate, one can form a Cartier divisor $\{(U, z),(V, 1)\}$ with transition function $t_{U V}=1 / z$. Note that $H^{0}\left(\mathcal{O}_{C}(p)\right) \ni s=\left(s_{U}=z, s_{V}=1\right)$ has a section which vanishes precisely at p.

Refine the open cover to split U into two open subsets, then

$$
c_{1}\left(\mathcal{O}_{C}(p)\right)=\left(\left(z^{-1}\right)_{U_{1} V},\left(z^{-1}\right)_{U_{2} V},(1)_{U_{1} U_{2}}\right) \in Z^{1}\left(C ; \mathcal{O}^{\times}\right) .
$$

Lifting to $C^{1}(C ; \mathcal{O})$ using that exponential surjects on sheaves yields $(-\log (z),-\log (z), 0) \in$ $C^{1}(C ; \mathcal{O})$. Taking its boundary yields

$$
\partial^{1}\left((-\log z)_{U_{1} V},(-\log z)_{U_{2} V},(0)_{U_{1} U_{2}}\right)=\left((-\log z)_{U_{2} V}+(\log z)_{U_{i} V}\right)_{U_{1} U_{2} V}
$$

which is 0 on the top component of $U_{1} \cap U_{2} \cap V$ and $2 \pi i$ on the bottom. This is an element of $\underline{2 \pi i \mathbf{Z}}\left(U_{1} \cap U_{2} \cap V\right) \in Z^{2}(C ; \underline{2 \pi i \mathbf{Z}}) \rightarrow H^{2}(X ; \underline{\mathbf{Z}})$. Thus $c_{1}\left(\mathcal{O}_{C}(p)\right)=[p]$ is the fundamental class of p.

Definition 7.0.5 (?)

$$
\operatorname{NS}(X):=\operatorname{im} c_{1}, \quad \operatorname{Pic}^{0}(X):=\operatorname{ker} c_{1}
$$

Example 7.0.6(?): For $X=E$ an elliptic curve, $\operatorname{Pic} X=E \times \mathbf{Z}$ where $D \mapsto(D, \operatorname{deg} D)$. Thus $\operatorname{NS}(E)=\mathbf{Z}$ and $E=\operatorname{Pic}^{0}(E)=\{[p]-[0] \mid p \in E\}$. Note that $\operatorname{Pic}^{0}(X) \cong \operatorname{Jac}(X)$ in this case.

Remark 7.0.7: If X is smooth projective, global holomorphic functions are constant, so part of the LES breaks into an exact piece:

$$
H^{0}(\mathbf{Z})=\mathbf{Z}^{n} \hookrightarrow H^{0}(\mathcal{O})=\mathbf{C}^{n} \rightarrow H^{0}\left(\mathcal{O}^{\times}\right)=\left(\mathbf{C}^{\times}\right)^{n} \quad n=\sharp \pi_{0} X
$$

Thus $\operatorname{Pic}^{0}(X)=H^{1}(X ; \mathcal{O}) / H^{1}(X ; \mathbf{Z})$, and Hodge theory shows rank $H^{1}(X ; \mathbf{Z})=2 \operatorname{dim}_{\mathbf{C}} H^{1}(X ; \mathcal{O})$ and the image of $H^{1}(X ; \mathbf{Z}) \rightarrow H^{1}(X ; \mathcal{O})$ is discrete. This yields $\mathbf{Z}^{2 r} \hookrightarrow \mathbf{C}^{r}$ with image Λ a lattice and $\operatorname{Pic}^{0} X \cong \mathbf{C}^{r} / \Lambda$. In particular, for C a smooth genus g curve, $\operatorname{Pic}^{0} X \cong \mathbf{C}^{g} / \Lambda$. Note that $H^{1}(C ; \mathbf{Z})$ carries the intersection pairing, which induces a symplectic form and thus a polarization.

8 Thursday, February 09

Remark 8.0.1: Last time: $\operatorname{Pic}(X) \cong H^{1}\left(X ; \mathcal{O}_{X}^{\times}\right)$and

$$
\begin{aligned}
c_{1}: \operatorname{Pic}(X) & \rightarrow H^{2}(X ; \mathbf{Z}) \\
\mathcal{O}(D) & \mapsto[D]
\end{aligned}
$$

with $\operatorname{im} c_{1}=\operatorname{NS}(X)$ and $\operatorname{ker} c_{1}=\operatorname{Pic}^{0}(X) \cong \mathbf{C}^{g} / \Lambda$ where $H^{1}(X ; \mathcal{O}) \cong \mathbf{C}^{g}$. Today: consider the cohomology of vector bundles on a complex manifold X.

Definition 8.0.2 ((p, q)-forms)
A smooth (p, q)-form is locally of the form

$$
\sum_{|I|=p,|J|=q} a_{I, \bar{J}} d z_{i_{1}} \wedge \cdots d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}}
$$

Let $A^{p, q}$ be the sheaf of smooth (p, q)-forms

Example 8.0.3(?): Some examples:

- $A^{0,1}(\mathbf{C}) \ni \omega:=z \bar{z} d \bar{z}$.
- $A^{1,0}\left(\mathbf{C}^{\times}\right) \ni \alpha:=\log |z| d z$
- $A^{1,1}\left(\mathbf{C}^{2}\right) \ni \alpha:=e^{z_{1}} d z_{1} \wedge d \bar{z}_{2}+\bar{z}_{2} d \bar{z}_{1} \wedge d z_{2}$.
- An example of differentiation: $d\left(e^{z_{2}} d z_{1}+d \bar{z}_{1} d z_{2}\right)=e^{z_{2}} d z_{2} \wedge d z_{1}+d \bar{z}_{1} \wedge d z_{2}$.

Remark 8.0.4: Let Ω^{p} be the holomorphic $(p, 0)$ forms, noting that differentiation d on smooth forms is not a map of $C^{\infty}(X, \mathbf{C})$-modules since $d(f \alpha)=f d(\alpha)+d f \wedge \alpha$ for $f \in C^{\infty}(U, \mathbf{C})$ and $\alpha A^{k}(U)$. There is a decomposition

$$
A^{k}(U)=\bigoplus_{p+q=k} A^{p, q}(U)
$$

which leads to a decomposition of sheaves. Define $\partial=\pi_{p+1, q}(d)$ and $\bar{\partial}: \pi_{p, q+1}(d)$, this yields a complex

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow A^{0,0} \xrightarrow{\bar{\partial}} A^{0,1} \xrightarrow{\bar{\partial}} A^{0,2} \rightarrow \cdots \rightarrow A^{0, \operatorname{dim} X} \rightarrow 0
$$

which is an exact sequence of sheaves. Noting that $d^{2}=0$, one has

- $\partial^{2}=0$,
- $\bar{\partial}^{2}=0$,
- $\partial \bar{\partial}+\bar{\partial} \partial=0$.

See the Poincaré $\bar{\partial}$ lemma.

Remark 8.0.5: More generally, for a vector bundle $E \in \mathcal{O}_{X}$ Mod, note that $\mathcal{O} \hookrightarrow A^{0,0}$ yields $\mathcal{O} \hookrightarrow$ \mathbf{C}^{∞}, so can form $E \otimes_{\mathcal{O}} C^{\infty}$. Locally, $E \cong \mathcal{O}^{\oplus^{r}}$ on U, so one has $E \otimes A^{0,0} \cong\left(C^{\infty}\right)^{\oplus^{r}}$ on U. This yields $0 \rightarrow E \hookrightarrow E \otimes A^{0,0}$, and the claim is that there is a well-defined map $E \otimes A^{0,0} \rightarrow E \otimes A^{0,1}$. Locally this is given by $\left[f_{1}, \cdots, f_{r}\right] \mapsto\left[\bar{\partial} f_{1}, \cdots, \bar{\partial} f_{r}\right]$. In a different trivialization, $s_{V}=t_{U V}\left(f_{1}, \cdots, f_{r}\right)$ where $t_{U V}$ is a holomorphic function valued in $\mathrm{GL}_{r}(\mathbf{C})$. One has $\bar{\partial}\left(t_{U V} \circ\left(f_{1}, \cdots, f_{r}\right)\right)=t_{U V}\left(\bar{\partial} f_{1}, \cdots, \bar{\partial} f_{r}\right)$ since $\bar{\partial}\left(t_{U V}\right)=0$, noting that in the first expression one is carrying out matrix multiplication.

Definition 8.0.6 (Dolbeault complex)

$$
0 \rightarrow E \xrightarrow{i} E \otimes A^{0,0} \xrightarrow{\bar{\delta}} E \otimes A^{0,1} \xrightarrow[\rightarrow]{\overline{\bar{\delta}}} \cdots \xrightarrow{\bar{\partial}} E \otimes A^{0, \operatorname{dim} X} \rightarrow 0
$$

and $H^{*}(X ; E)$ can be computed from the homology of this complex.

Fact 8.0.7

For any smooth vector bundle $V \rightarrow M$ over a manifold $M, \check{H}^{i \geq 1}(M ; V)=0$ since M admits partitions of unity. Moreover if $\mathcal{F} \hookrightarrow I_{\bullet}$ with I_{\bullet} acyclic, so $H^{i \geq 1}\left(I_{\bullet}\right)=0$, then $H^{k}(X ; F)$ is computed as the homology of I_{\bullet}.

Remark 8.0.8: Since Ω^{p} is a holomorphic vector bundle on X, this yields the Dolbeault resolution

$$
0 \rightarrow \Omega^{p} \rightarrow A^{p, 0} \rightarrow A^{p, 1} \rightarrow \cdots
$$

and $H^{p, q}:=H^{q}\left(X ; \Omega^{p}\right)$ is the homology of this complex. Define $h^{p, q}:=\operatorname{dim}_{\mathbf{C}} H^{p, q}-$ note that this forms a diamond since for $p, q \geq \operatorname{dim} X$ there are no p-forms or q-forms whatsoever.

Theorem 8.0.9 (Hodge decomposition and symmetry theorems).
There is a decomposition

$$
H^{k}(X ; \underline{\mathbf{C}}) \cong \bigoplus_{p+q=k} H^{p, q}
$$

and a symmetry

$$
H^{p, q}(X) \cong \overline{H^{q, p}(X)}
$$

Remark 8.0.10: Note that \bar{V} doesn't necessarily make sense yet for $V=H^{p, q}(X)$, since we don't know that it is a subspace of some real vector space W - here we'll take $H^{k}(X ; \underline{\mathbf{C}})=H^{k}(X ; \underline{\mathbf{R}}) \otimes \mathbf{C}$. E.g. writing $\mathbf{C}^{2}=\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{C}$, if $V=\langle u, v\rangle_{\mathbf{C}}$ then $\bar{V}=\langle\bar{u}, \bar{v}\rangle_{\mathbf{C}}$.

9 Tuesday, February 14

Proposition 9.0.1(Riemann-Roch for curves).

$$
h^{0}(C, L)-h^{0}\left(C, K_{C} \otimes L^{-1}\right)=\operatorname{deg} L+1-g
$$

Remark 9.0.2: Recall:

- $h^{i}(X, F):=\operatorname{dim}_{k} H^{i}(X ; F)$.
- $\chi(X, F):=\sum_{i \geq 0} h^{i}(X, F)$ for $F \in \operatorname{Sh}\left(X,{ }_{k} \operatorname{Mod}\right)$, provided these numbers are finite.
- $H^{0}\left(\mathbf{A}_{/ k}^{1} ; \mathcal{O}\right)=\bar{k}[x] t^{0}$, and note $\operatorname{dim}_{k} k[x]=\infty$.
- For X an irreducible Noetherian topological space with $\operatorname{dim} X=d, H^{i}(X, F)=0$ for $i>d$.
- For $X \in \operatorname{Proj} \operatorname{Var}_{/ k}$ and F a finitely presented \mathcal{O}_{X}-module, i.e. there is an exact sequence $\mathcal{O}_{X} \oplus^{\oplus^{m}} \rightarrow \mathcal{O}_{X} \oplus^{n} \rightarrow F$, we have $h^{i}(X, F)<\infty$.
- Finitely presented sheaves are coherent. An analytic coherent sheaf is defined in the same way with respect to $\mathcal{O}_{X}^{\text {an }}$ (the sheaf of holomorphic functions).
- $h^{0}\left(X, K_{C} \otimes L^{-1}\right)=h^{1}(C, L)$.

Theorem 9.0.3(Serre duality).

Let X be a compact complex manifold and let $E \rightarrow X$ be a holomorphic vector bundle. Then $H^{i}(X, E) \xrightarrow{\sim} H^{\operatorname{dim}_{\mathbf{C}} X-i}\left(X, E^{\vee} \otimes K_{X}\right)^{\vee}$ where $K_{X}=\operatorname{det} \Omega_{X}:=\Omega_{X}^{\operatorname{dim} X}$.

Proof (?).

Regard $s \in H^{i}(X, E)$ as an element in Dolbeault cohomology,

$$
H^{i}(X, E) \cong \frac{\operatorname{ker}\left(E \otimes A^{0, i}(X) \xrightarrow{\bar{\partial}} A^{0, i+1}(X)\right)}{\operatorname{im}\left(E \otimes A^{0, i-1}(X) \xrightarrow{\bar{\partial}} E \otimes A^{0, i}(X)\right)}
$$

Note that $K \otimes_{\mathcal{O}} C^{\infty}=A^{n, 0}$. Let

- $t \in H^{n-i}\left(X, E^{\vee} \otimes K\right)$
- $\tilde{s} \in E \otimes A^{0, i}(X)$
- $\tilde{t} \in E^{\vee} \otimes K \otimes A^{0, n-i}(X) \cong E^{\vee} \otimes A^{n, n-i}(X)$.

One can then pair $\langle\tilde{s}, \tilde{t}\rangle \in A^{n, n}(X)$, and $\int_{X}\langle\tilde{s}, \tilde{t}\rangle \in \mathbf{C}$ is a perfect pairing.

Remark 9.0.4: Upshot: the LHS in RR is $\chi(C, L)$.

Proposition 9.0.5(?).

The following is an important exact sequence of sheaves: for any $D \in \operatorname{CDiv}(X)^{\text {eff }}$, one has

$$
\mathcal{O}_{X}(-D) \hookrightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \quad \in \operatorname{Sh}(X)
$$

where $\mathcal{O}_{D}:=\iota_{*} \mathcal{O}_{X}$ for $\iota: D \hookrightarrow X$ the inclusion.

Proof (?).

Note $\left.\mathcal{O}_{X}(D)(U)=\left\{f \in \mathcal{O}_{(} U\right) \mid \operatorname{div} f \geq D\right\}$, so $\mathcal{O}_{X}(D)=I_{D}$ is the ideal sheaf of D. If D is cut out by a single function on U, we have $I_{D}(U)=(f) \subset \mathcal{O}_{X}(U)$. This yields an inclusion $\mathcal{O}_{X}(-D)=I_{D} \hookrightarrow \mathcal{O}_{X}$. By definition, the quotient \mathcal{O}_{X} / I_{D} are functions defined on D, at least on affine opens U. Since exactness of sheaves is local, this check suffices.

Remark 9.0.6: In particular, on a curve one has

$$
\mathcal{O}_{C}(-p) \hookrightarrow \mathcal{O}_{C} \rightarrow \mathcal{O}_{p}
$$

where $p \in C$ is a point. This can be tensored with any vector bundle L to get

$$
L(-p):=\left.L \otimes \mathcal{O}_{C}(-p) \hookrightarrow L \rightarrow L\right|_{p}
$$

which is exact since L is locally free. For $s_{p} \in H^{0}\left(\mathcal{O}_{C}(p)\right)$, we have $V\left(s_{p}\right)=[p]$ as a divisor:

Proposition 9.0.7(?).
For $F_{1} \hookrightarrow F_{2} \rightarrow F_{3}$,

$$
\chi\left(F_{2}\right)=\chi\left(F_{1}\right)+\chi\left(F_{3}\right) .
$$

Proof (?).

Take the LES in cohomology, where $H^{n}\left(F_{i}\right)=0$ for large enough n. Now for a LES of vector spaces $V_{1} \hookrightarrow V_{2} \rightarrow \cdots \rightarrow V_{n}$, one has $\sum(-1)^{i} \operatorname{dim}_{k} V_{i}=0$.

Claim: $\left.L\right|_{p} \cong \mathcal{O}_{p}$ satisfies $H^{i}\left(C, \mathcal{O}_{p}\right)=\mathbf{C} t^{0}$, which is more generally true for a skyscraper sheaf at a point.

Remark 9.0.8: Take a fine enough open cover (e.g. an affine cover) so that p appears in only one set, and use Čech cohomology. That $\left.L\right|_{p} \cong \mathcal{O}_{p}$ follows from the fact that this holds on a small enough open U and both are identically zero away from p.

Remark 9.0.9: Now use that $\chi\left(C, \mathcal{O}_{p}\right)=1$, we then claim that $\chi(L)=\chi(L(-p))+1$ and thus $L \cong \mathcal{O}_{C}\left(\sum n_{p}[p]\right)$ and $\chi(L)=\sum n_{p}+\chi\left(\mathcal{O}_{C}\right)$ by repeatedly applying this fact. Note $\sum n_{p}=\operatorname{deg} L$, so

$$
\chi(L)=\operatorname{deg} L+\chi\left(\mathcal{O}_{C}\right)
$$

We have $\chi\left(\mathcal{O}_{C}\right)=h^{0}\left(\mathcal{O}_{C}\right)-h^{1}\left(\mathcal{O}_{C}\right)=1-h^{0}(K)$ by Serre duality. Applying the above version of RR to K yields $\chi(K)=\operatorname{deg} K+\chi(\mathcal{O})=2 g-2+\chi(\mathcal{O})$. On the other hand, this equals $h^{0}(K)-h^{0}\left(K^{\vee} \otimes K\right)=h^{0}(K)-1$. Combining these yields

$$
\chi(\mathcal{O})=-(2 g-2+\chi(\mathcal{O})) \Longrightarrow 2 \chi(\mathcal{O})=2-2 g \Longrightarrow \chi(\mathcal{O})=1-g
$$

Plugging this back into the first equation yields

$$
\chi(L)=\operatorname{deg} L+1-g
$$

Remark 9.0.10: Note that $\chi^{\text {Top }}(C)=g$ was defined as the index of a vector field, and this shows that also $g=h^{1}\left(\mathcal{O}_{X}\right)$.

Remark 9.0.11: An application of Serre duality: the Hodge diamond. Let $n:=\operatorname{dim}_{\mathbf{C}} X$ and recall $h^{p, q}:=\operatorname{dim}_{\mathbf{C}} H^{q}\left(X, \Omega_{X}^{p}\right)$. By duality, $h^{p, q}=\operatorname{dim}_{\mathbf{C}} H^{n-q}\left(X,\left(\Omega_{X}^{p}\right)^{\vee} \otimes \Omega^{n}\right)$. We first claim

$$
\left(\Omega_{X}^{p}\right)^{\vee} \otimes \Omega^{n} \cong \Omega^{n-p}
$$

Note that sections of Ω^{p} are of the form $\sum a_{I} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}}$ with a_{I} holomorphic functions on U, and sections of $\left(\Omega^{p}\right)^{\vee}$ look like $\sum a_{I} \frac{\partial}{\partial z_{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial z_{i_{p}}}$ whose transition functions are the inverse of those for Ω^{p}. Noting that Ω^{n} is a line bundle with local sections of the form $f d z_{1} \wedge \cdots d z_{n}$, one can contract forms (interior multiplication) to obtain

$$
\left(\sum a_{I} \frac{\partial}{\partial z_{I}}\right) \otimes\left(f d z_{I}\right)=f \sum_{j \in I^{c}} d z_{j_{1}} \wedge \cdots \wedge d z_{j_{n-p}}
$$

Thus $h^{p, q}=\operatorname{dim} H^{n-q}\left(X, \Omega^{n-p}\right)=h^{n-p, n-q}$.

Link to Diagram

This yields K_{4} symmetry, and we'll see that for a Calabi Yau there is a D_{4} symmetry.

10 Tuesday, February 21

Remark 10.0.1: Last time: M a compact manifold, $\operatorname{dim}_{\mathbf{R}} M=2 n$, there is a perfect pairing

$$
\begin{aligned}
H^{k}(M ; \mathbf{Z}) / \text { tors } \otimes_{\mathbf{Z}} H^{k}(M ; \mathbf{Z}) / \text { tors } & \rightarrow \mathbf{Z} \\
\alpha \otimes \beta & \mapsto \int_{M} \alpha \vee \beta .
\end{aligned}
$$

Interpret $\alpha . \beta$ as $\left[N_{1}\right] .\left[N_{2}\right]=\sum_{p \in N_{1} \pitchfork N_{2}} \pm 1$ where the N_{i} are Poincaré duals. Satisfies $\alpha . \beta=(-1)^{n} \beta \alpha$ for $\alpha, \beta \in H^{n}(X ; \mathbf{Z}) /$ tors where $n:=\operatorname{dim}_{\mathbf{C}} M=\frac{1}{2} \operatorname{dim}_{\mathbf{R}} M$.

Definition 10.0.2 (Lattices)

An (orthogonal) lattice is a free abelian group $\Lambda \cong \mathbf{Z}^{k}$ of finite rank, together with an integral symmetric bilinear form

$$
\cdot \Lambda \otimes \Lambda \rightarrow \mathbf{Z}
$$

- Λ is symplectic if \cdot is alternating, so $\alpha . \beta=-\beta . \alpha$.
- Λ is unimodular if for all primitive nonzero vectors $x \in \Lambda, \exists y \in \Lambda$ such that $x . y=1$, where x is primitive if $x \neq \lambda z$ for any $z \in \Lambda$
- Λ is nondegenerate if $\forall x \in \Lambda, \exists y \in \Lambda$ with $x . y \neq 0$.
- The Gram matrix of a basis $\left\{e_{i}\right\}$ for a lattice (Λ, \cdot) is $M_{i j}:=e_{i} . e_{j}$. M is symmetric for orthogonal lattices and skew-symmetric for symplectic lattices. One can write $v . w=$ $v^{t} M w$.
- If Λ_{i} are lattices, so is $\bigoplus_{i} \Lambda_{i}$.

Example 10.0.3(?): The standard example: $\Lambda \in \mathbf{Z}^{2}$ with $\left[x_{1}, y_{1}\right] \cdot\left[x_{2}, y_{2}\right]:=x_{1} x_{2}+y_{1} y_{2}$ is nondegenerate and unimodular. Here $[2,2]=2[1,1]$ is not primitive, but $[2,1]$ is primitive. Proving unimodularity: if $\operatorname{gcd}(m, n)=1$, one just needs to solve $m x+n y=1$ for $[x, y] \in \mathbf{Z}^{2}$. This has Gram matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Example 10.0.4(?): A degenerate lattice: $\left(\mathbf{Z}^{2}, \mathbf{x} . \mathbf{y}:=x_{1} x_{2}\right)$. This is symmetric, but $\mathbf{x} \cdot[0,1]=0$ for every $\mathbf{x} \in \Lambda$. The Gram matrix is $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

Example 10.0.5(?): A symplectic lattice: $\left(\mathbf{Z}^{2}, \mathbf{x} . \mathbf{y}:=x_{1} y_{2}-x_{2} y_{1}\right)$, which has Gram matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

Example 10.0.6(?): There is a $2 g$-dimensional symplectic lattice for every $g \geq 0$ given by $\mathbf{Z}_{\text {symp }}^{2 g}:=$ $\bigoplus_{i=1}^{g}\left(\mathbf{Z}^{2}\right.$, symp $)$, which has Gram matrix comprised of g diagonal blocks of $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. This is the only unimodular symplectic lattice up to isomorphism, and is the intersection form on $H^{1}\left(\Sigma_{g} ; \mathbf{Z}\right)$. The vectors here can be represented by fundamental classes of 1-dimensional submanifolds, i.e. real curves:

More generally, if $\operatorname{dim}_{\mathbf{R}} M=4 k+2$, then $H^{2 k+1}(M ; \mathbf{Z}) \cong \mathbf{Z}_{\mathrm{symp}}^{2 g}$ for some g.
Definition 10.0.7 (Orthogonal complements)
For $M \subseteq \Lambda$, define $M^{\perp}:=\{x \in \Lambda \mid x \cdot m=0 \forall m \in M\}$.

Example 10.0.8(?): For $\mathbf{Z}_{\text {symp }}^{2}=\mathbf{Z} \alpha \oplus \mathbf{Z} \beta$, we have $\mathbf{Z} \alpha^{\perp}=\mathbf{Z} \alpha$. For $\mathbf{Z}_{\text {std }}^{2}=\mathbf{Z} \alpha \oplus \mathbf{Z} \beta$, one instead has $\mathbf{Z} \alpha^{\perp}=\mathbf{Z} \beta$.

Remark 10.0.9: Over \mathbf{R}, symmetric bilinear forms are classified by their signature: they can all be diagonalized to $\operatorname{diag}(1, \cdots, 1,-1, \cdots,-1,0, \cdots, 0)$ for some multiplicities n_{+}, n_{-}, n_{0} where
$n_{+}+n_{-}+n_{0}=\operatorname{rank}_{\mathbf{Z}} \Lambda$. Any lattice can be extended via $\Lambda_{\mathbf{R}}:=\Lambda \otimes_{\mathbf{Z}} \mathbf{R}$, so define sgn $\Lambda:=$ $\left(n_{+}, n_{-}, n_{0}\right)$.

Example 10.0.10(?): Let $\Lambda=\mathbf{Z}[\sqrt{5}]$ and let $u . v=\Re(x \bar{y})$, so

$$
\|u\|=u . u=(a+b \sqrt{5})(a-b \sqrt{5})=a^{2}-5 b^{2}
$$

Note that $\Lambda_{\mathbf{R}} \cong \mathbf{R}^{1,1}$, which in the standard basis has Gram matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. This can be visualized as a 2-dimensional subspace of \mathbf{R}^{2} spanned by $1, \sqrt{5}$. Note that $\|\sqrt{5}\|=-5$.

Remark 10.0.11: Define the hyperbolic signature as $(1, n)$ for any $n \geq 0$. One can visualize positive/negative norm vectors using the light cone: for $\mathbf{R}^{1, n}$, solving $v . v=0$ to get $x_{1}^{2}=x_{2}^{2}+\cdots+$ $x_{n_{1}}^{2}$. This is a cone over S^{1} at height 1 in \mathbf{R}^{3} :

Note that $\{v . v>0\}$ has two connected components.
Definition 10.0.12 (Hyperbolic planes)
A hyperbolic cell/plane is the lattice H defined as \mathbf{Z}^{2} with pairing given by the Gram matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and signature }(1,1) . \text { This admits an orthonormal basis } \frac{e_{1}+e_{2}}{\sqrt{2}}, \frac{e_{1}-e_{2}}{\sqrt{2}}, \text { and } H_{\mathbf{R}} \cong \mathbf{R}^{1,1}
$$

Remark 10.0.13: Recall the ADE Dynkin diagrams:

One can build a root lattice out of each diagram:

- Take one basis vector e_{i} for each node,
- $e_{i}^{2}=-2$,
- $e_{i} \cdot e_{j}=1 \Longleftrightarrow$ nodes i, j are connected, and zero otherwise.

The lattices will be negative definite, i.e. of signature $(0, n)$ with n the number of nodes. The only unimodular such lattice corresponds to E_{8}.

Example 10.0.14(?): A_{1} corresponds to the matrix $[-2]$, and thus \mathbf{Z} with bilinear form $-2 n^{2}$. A_{2} yields $\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right]$, and A_{3} yields $\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$.

Question 10.0.15

How does one check that a lattice is unimodular?

Definition 10.0.16 (?)

Let (Λ, \cdot) be a nondegenerate lattice, so $\Lambda \hookrightarrow \Lambda_{\mathbf{R}} \cong \mathbf{R}^{a, b}$. Define

$$
\Lambda^{\vee}:=\left\{y \in \Lambda_{\mathbf{R}} \mid x . y \in \mathbf{Z} \forall x \in \Lambda\right\} .
$$

Example 10.0.17(?): Consider $\Lambda:=\sqrt{2} \mathbf{Z} \hookrightarrow \mathbf{R}^{1}$ with the standard pairing, then $\frac{1}{\sqrt{2} \in \Lambda^{v}}$.

Remark 10.0.18: One can always find a basis of Λ^{\vee} given by $e_{i}{ }^{\vee}$ where $e_{i}{ }^{\vee} e_{j}=\delta_{i j}$. Since $e_{i}{ }^{\vee} M e_{j}=\delta_{i j}$ for M the Gram matrix of a form, one finds that $e_{i}{ }^{\vee}$ is the i th row of M^{-1}. Why: letting N be the matrix with rows $e_{i}{ }^{\vee}$, one has $N M=I$.

Proposition 10.0.19(?).

Λ is unimodular iff $\Lambda^{\vee}=\Lambda$.

Proof (?).

Note $x^{2} \in \mathbf{Z}$ by definition, so $\Lambda \subseteq \Lambda^{\vee}$. If $v \in \Lambda^{\vee} \backslash \Lambda$, then one can show that the minimal n such that $n v \in \Lambda$ yields a primitive element of Λ. Since $N v . w \in n \mathbf{Z}$ for all w, so can't pair to 1.

Remark 10.0.20: So $\Lambda^{\vee}:=\bigoplus \mathbf{Z} e_{i}{ }^{\vee} \subseteq \Lambda \Longrightarrow e_{i}{ }^{\vee} \in \Lambda \Longrightarrow M^{-1} \in \mathrm{GL}_{n}(\mathbf{Z})$, and applying the same argument to duals yields $\operatorname{det} M= \pm 1$. In general, $\operatorname{det} M=\sharp\left(\Lambda^{\vee} / \Lambda\right)^{2}$ is the covolume. So

- $\operatorname{vol}\left(\mathbf{R}^{n} / \Lambda\right)=\operatorname{det} M$
- $\operatorname{vol}\left(\mathbf{R}^{n} / \Lambda^{\vee}\right)=\operatorname{det} M^{-1}$, which is the Gram matrix of Λ^{\vee}.
- $\sharp\left(\Lambda^{\vee} / \Lambda\right)^{2}=\operatorname{covol}(\Lambda)^{2} / \operatorname{covol}\left(\Lambda^{\vee}\right)^{2}=\operatorname{det}(M)^{2}$.

11 Tuesday, March 14

Remark 11.0.1: Today: Hirzebruch-Riemann-Roch and Chern classes. Let $E \rightarrow X$ be a smooth C-vector bundle, then $\exists f: Y \rightarrow X$ such that $f^{*} E$ splits (as a smooth C-vector bundle) into a direct sum of line bundles, i.e. $f^{*} E \xrightarrow{\sim} \bigoplus_{i \leq r} L_{i}$ where $r:=\operatorname{rank} E$. One can ensure that $f^{*}: H^{*}(X ; \mathbf{Z}) \hookrightarrow$ $H^{*}(Y ; \mathbf{Z})$ is injective.

This allows us to build $c_{k}(E)$ and thus $c_{k}(E)$ from the Chern roots $x_{i}:=c_{1}\left(L_{i}\right)$ of E. Set $c_{k}\left(f^{*} E\right):=\sigma_{k}\left(x_{1}, \cdots, x_{r}\right)$, the k th elementary symmetric polynomial in the x_{i}. Note that $\prod_{i \leq r}(t+$ $\left.x_{i}\right)=\sum_{i \leq r} s_{r-i} x^{i}$ where e.g.

- $s_{1}\left(x_{1}, \cdots, x_{r}\right)=\sum x_{i}$
- $s_{2}\left(x_{1}, \cdots, x_{r}\right)=\sum_{i<j} x_{i} x_{j}$
- $s_{r}\left(x_{1}, \cdots, x_{r}\right)=\prod x_{i}$

Define

$$
c(E, t):=\prod_{i \leq r}\left(t+x_{i}\right), \quad c(E):=c(E, 1)=\sum c_{i}
$$

where $c_{i}=H^{2 i}(Y ; \mathbf{Z})$, and set $f^{*}\left(c_{k} E\right):=c_{k}\left(f^{*} E\right)$; this uniquely defines $c_{k}(E)$.
Remark 11.0.2: Note on proving the splitting principle: for $A \hookrightarrow B \rightarrow C$ smooth vector bundles, putting a Hermitian metric on B yields A^{\perp} in B and thus a (smooth) splitting. Set $Y:=\left\{x \in X \mid V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{r}=E_{x}, \operatorname{dim}_{\mathbf{C}} V_{i}=i\right\}$, where $f: Y \rightarrow X$ by forgetting the flag. Then $\operatorname{dim} Y=\operatorname{dim} X+\operatorname{dim} \operatorname{Fl}\left(\mathbf{C}^{r}\right)$, then $f^{*} E$ admits a filtration F^{i} where F^{1} is a line bundle. This yields SESs $F^{i-1} \hookrightarrow F_{i} \rightarrow L_{r}$ which split.

Remark 11.0.3: Define the total Chern character as $c(E):=\sum_{i \leq r} e^{x_{i}}$. Note that $\mathbf{C}\left[t_{1}, \cdots, t_{r}\right]^{S_{r}}=$ $\mathbf{C}\left[s_{1}, \cdots, s_{r}\right]$, and

$$
\begin{aligned}
\sum_{i \leq r}\left(\sum_{k \geq 0} \frac{x_{i}^{k}}{k!}\right) & =r+\left(x_{1}+\cdots+x_{r}\right)+\left(\frac{x_{1}^{2}}{2}+\cdots+\frac{x_{r}^{2}}{2}\right)+\cdots \\
& =r+c_{1}+\left(\frac{c_{1}^{2}}{2}-c_{2}\right)+\cdots
\end{aligned}
$$

noting that e.g. $c_{1}^{2}=\sum_{i} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j}$. Define the total Todd class as

$$
\operatorname{Td}(E):=\prod_{i} \frac{1}{1-e^{-x_{i}}}=1+\frac{c_{1}}{2}+\frac{c_{1}^{2}+c_{2}}{12}+\frac{c_{1} c_{2}}{24} .
$$

Note this is holomorphic at each x_{i} by L'Hopital, and moreover symmetric, and each term is a generating function for Bernoulli numbers.

Remark 11.0.4: Recall that RR says that for a holomorphic line bundle of L, one can compute $\chi(L)$ in terms of $\operatorname{deg} L=\int c_{1}(L)$, a purely topological invariant. The following theorem generalizes this:

Theorem 11.0.5(Hirzebruch-Riemann-Roch).

Let $E \rightarrow X$ be a holomorphic vector bundle over a compact complex manifold. Defining $\chi(E):=\sum(-1)^{i} h^{0}(X ; E)$,

$$
\chi(E)=\int_{X} \operatorname{Chern}(E) \operatorname{Td}\left(\mathbf{T}_{X}\right)
$$

where the multiplication is in $H^{*}(X ; \mathbf{Z})$, noting that both classes are supported in $H^{\text {even }}(X ; \mathbf{Z})$ and the integration means taking the top degree part in $H^{2 \operatorname{dim}_{\mathbf{C}}} X(X ; \mathbf{Z}) \cong \mathbf{Z}$.

Remark 11.0.6: Recovering RR: for $L \rightarrow X$ a line bundle on a curve, one has Chern $(L)=e^{c_{1}(L)}=$ $1+c_{1}(L)$ and $\operatorname{Td}(T)=\frac{c_{1}(T)}{1-e^{-c_{1}(T)}}=1+\frac{c_{1}(T)}{2}$. Thus

$$
\chi(L)=\int_{X}\left(1+c_{1}(L)\right)\left(1+\frac{c_{1}(T)}{2}\right)=\int_{X} c_{1}(L)+\frac{c_{1}(T)}{2}=\operatorname{deg} L+\frac{1}{2} \int_{X} c_{1}(T)
$$

Note that $c_{1}(T)$ is the fundamental class of the zeros of some section of T, i.e. the number of zeros of a vector field, which by Chern-Gauss-Bonnet yields $\int_{X} c_{1}(T)=\chi_{\text {Top }}(X)$. Thus

$$
\chi(L)=\operatorname{deg} L+\frac{1}{2} \chi_{\text {Top }}(X) .
$$

For a curve, $\chi_{\text {Top }}(X)=2-2 g$, so $\chi(L)=\operatorname{deg} L+(1-g)$.

Remark 11.0.7: Let $E \rightarrow S$ now be a line bundle over a surface, then $\chi(L)=h^{0}(L)-h^{1}(L)+h^{2}(L)$ since L is a coherent sheaf and $\operatorname{dim} X=2$. HRR yields

$$
\chi(L)=\int_{S}\left(1+c_{1}(L)+\frac{c_{2}(L)}{2!}\right)\left(1+\frac{c_{1}(T)}{2}+\frac{c_{1}(T)^{2}+c_{2}(T)}{12}\right)
$$

First consider the special case $L=\mathcal{O}_{S}$ so $c_{1}(L)=0$ and $\chi\left(\mathcal{O}_{S}\right)=\int c_{1}\left(\mathbf{T}_{S}\right)^{2}+c_{2}\left(\mathbf{T}_{S}\right)$. By the splitting principle, if $\mathbf{T}_{S}=L_{1} \oplus L_{2}$ then $\operatorname{det} \mathbf{T}_{S}=L_{1} \otimes L_{2}$, so

$$
c_{1}\left(\mathbf{T}_{S}\right)=c_{1}\left(\operatorname{det} \mathbf{T}_{S}\right)=c_{1}\left(L_{1} \otimes L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)=x_{1}+x_{2}
$$

Note also that $c_{1}\left(\operatorname{det} \mathbf{T}_{S}\right)=c_{1}\left(-K_{S}{ }^{\vee}\right)=-c_{1}\left(K_{S}\right)$ and so $c_{1}\left(\mathbf{T}_{S}\right)=K_{S}^{2}$.
For the second term, note that the top Chern class of E is always the fundamental class of $V(s)$ for s a generic smooth section of E. In particular, $\int_{S} c_{2}\left(\mathbf{T}_{S}\right)=\chi_{\text {Top }}(S)$ is the number of zeros of a smooth vector field. This yields Noether's formula

$$
\chi\left(\mathcal{O}_{S}\right)=\frac{1}{12}\left(K_{S}^{2}+\chi_{\operatorname{Top}}(S)\right)
$$

Remark 11.0.8: Let $X=\mathbf{P}^{2}$, so $K=\mathcal{O}(-3)$ and $\chi_{\text {Top }}(X)=3$, so $K^{2}=(-3 H)^{2}=9 H^{2}=9$ so

$$
\chi\left(\mathcal{O}_{\mathbf{P}^{2}}\right)=\frac{1}{12}(9+3)=1
$$

Since $h^{0}(\mathcal{O})=1$ and $h^{1}(\mathcal{O})=\frac{1}{2} \beta_{1}=0$, this yields $h^{2}(\mathcal{O})=0$.

Remark 11.0.9: $R R$ for surfaces:

$$
\left.\chi(S, L)=\chi\left(\mathcal{O}_{S}\right)+\frac{1}{2}\left(c_{1}\left(\mathbf{T}_{S}\right) c_{1}(L)\right)+\frac{1}{2} c_{1}(L)\right)^{2}
$$

Reworking this, note $c_{1}\left(\mathbf{T}_{S}\right)=-c_{1}\left(K_{S}\right)$ and thus

$$
\chi(S, L)=\chi\left(\mathcal{O}_{S}\right)+\frac{1}{2}\left(L^{2}-L \cdot K_{S}\right)
$$

Remark 11.0.10: Computing the Hodge diamond of a K3: recall $h^{1}(X)=0$ and $K_{X}=\mathcal{O}_{X}$.

- $H^{0}: 1$.
- $H^{1}:(0,0)$.
- $H^{2}:(1, N, 1)$ by Serre duality for some N.
- $H^{3}:(0,0)$ by Poincare duality.
- $H^{4}: 1$ by Poincare duality.

Computing $N: \chi(\mathcal{O})=\frac{1}{12}\left(K^{2}+\chi(X)\right)$ where $\chi(\mathcal{O})=1-0+1=2$ and $K^{2}=0$, this yields $\chi(X)=24$ and $N=22$.

12 Thursday, March 16

Definition 12.0.1 (Linear systems)
For X smooth projective, $L \in \operatorname{Pic}(X), V \subseteq H^{0}(L)$, define $\mathbf{P} V$ to be a linear system (a collection of linearly equivalent divisors) and $|L|:=\mathbf{P} H^{0}(L)$ to be a complete linear system. If $s \in H^{0}(L) \backslash\{0\}$, then $V(s) \in \operatorname{Div}(X)$ and $\mathcal{O}(V(s))=L$ (noting that all sections are linearly equivalent). Here we projectivize since $V(\lambda s)=V(s)$.

Example 12.0.2(?): Let $X=\mathbf{P}^{1}$ and $L=\mathcal{O}(1)$, then

$$
H^{0}(L)=\{f \in k[x, y] \mid f \text { homogenous }, \operatorname{deg} f=n\}
$$

As divisors,

$$
\mathbf{P} H^{0}(\mathcal{O}(1))=\left\{\sum a_{i} p_{i} \mid a_{i}>0, \sum a_{i}=n\right\}
$$

corresponding to the zeros and multiplicities of f.

Example 12.0.3(?): Let $E=\mathbf{C} / \Lambda$ be elliptic and $L=\mathcal{O}(D)$ for $D=3[0]$. Then $|L|=$ $\{[p]+[q]+[r] \mid p+q+r=0 \bmod \Lambda\}$. Note that $|L| \cong \mathbf{P}^{2}$ since r is determined by p, q.

Example 12.0.4(?): Let C be a curve with $g \geq 2$ and $L=K_{C}=\Omega_{C}^{1}$. Then by $\operatorname{RR} h^{0}\left(K_{C}\right)=g$ and $\left|K_{C}\right| \cong \mathbf{P}^{g-1}$ is called the canonical linear system.

Definition 12.0.5 (?)

Let $V \leq H^{0}(L)$ be a subspace and $\left\{s_{0}, \cdots, s_{k}\right\}$ be a basis. Then there is a map

$$
\begin{aligned}
\varphi_{V}: X \xrightarrow{ }: & \xrightarrow{k} \\
& x \mapsto\left[s_{0}(x): \cdots: s_{k}(x)\right] .
\end{aligned}
$$

Defining the base locus as $\operatorname{Bs}(L):=\left\{x \in X \mid s_{i}(x)=0 \forall i\right\}$, note $\varphi_{\mathbf{P} V}$ is not well-defined for any $x \in \operatorname{Bs}(L)$.

Proposition 12.0.6(?).

For C a curve of $g \geq 2, \operatorname{Bs}\left(K_{X}\right)=\emptyset$.

Proof (?).

STS $\forall p \in C$ there is some $s \in H^{0}\left(K_{C}\right)$ with $s(p) \neq 0$. Letting s_{p} be a section vanishing only at p, multiplication by s_{p} induces $H^{0}\left(K_{C}(-p)\right) \hookrightarrow H^{0}\left(K_{C}\right)$ with image the sections of K_{C} vanishing at p. Thus STS this is not surjective by showing $h^{0}\left(K_{C}\right)>h^{0}\left(K_{C}(-p)\right)$. Apply RR and Serre duality:

$$
\begin{aligned}
h^{0}\left(K_{C}(-p)\right)-h^{1}\left(K_{C}(-p)\right) & =h^{0}\left(K_{C}(-p)\right)-h^{0}(\mathcal{O}(p)) \\
& =\operatorname{deg} K_{C}(-p)+(1-g) \\
& =(2 g-3)+(1-g) \\
& =g-2 .
\end{aligned}
$$

Note that if $s \in H^{0}(\mathcal{O}(p))$ then $V(s)=[q]$ must be a single point, but if $p \neq q$ then $[p]-[q]=0$ and $\exists f: C \rightarrow \mathbf{P}^{1}$ with $f^{-1}(0)=p$ and $f^{-1}(\infty)=q$ with $\operatorname{deg} f=1$, forcing $C \cong \mathbf{P}^{1}$ and contradicting $g \geq 2$. So $p=q$, and $h^{0}(\mathcal{O}(p))=1$, and thus

$$
h^{0}\left(K_{C}(-p)\right)-1=g-2 \Longrightarrow h^{0}\left(K_{C}(-p)\right)=g-1<g=h^{0}\left(K_{C}\right) .
$$

Exercise 12.0.7 (?)

Show that if C is not hyperelliptic ($\exists f: C \rightarrow \mathbf{P}^{1} 2$-to-1) then $\forall p, q \in C$ one can find $s \in H^{0}\left(K_{C}\right)$ with $s(p)=0, s(q) \neq 0$, so they are separated by linear forms on \mathbf{P}^{g-1}. This yields an actual morphism $\varphi_{\left|K_{C}\right|}: C \rightarrow \mathbf{P}^{g-1}$ where p, q are not mapped to the same point. This is the canonical embedding of a curve, which only works when $g \geq 3$ and C is non-hyperelliptic. If $g=2$ or C is hyperelliptic, $3 K_{C}$ yields an (tricanonical) embedding.

Example 12.0.8(?): If C is not hyperelliptic and $g=3$, then $C \hookrightarrow \mathbf{P}^{2}$ by the canonical embedding. This yields an element in $\operatorname{Div}\left(\mathbf{P}^{2}\right)$, which is a smooth quartic.

Proposition 12.0.9(Canonical of \mathbf{P}^{n}.).

$$
K_{\mathbf{P}^{n}}=\mathcal{O}(-n-1)
$$

Proof (?).

Take coordinates $\left[x_{0}: \cdots: x_{n}\right]$ and take $\omega:=\frac{d x_{1}}{x_{1}} \wedge \cdots \wedge \frac{d x_{n}}{x_{n}}$, noting that this omits x_{0}. This has poles along each $V\left(x_{i}\right)$ for $i \neq 0$ and in fact a pole at x_{0}, since these are $n+1$ distinct spaces. E.g. for $n=1$, since $x_{1}=x_{0}^{-1}$ we have $\frac{d\left(x^{-1}\right)}{x^{-1}}=-\frac{d x_{1}}{x_{1}}$.

Proposition 12.0.10(Adjunction).

If X is smooth and $D \in \operatorname{Div}(X)$ then

$$
K_{D}=\left.\left(K_{X} \otimes \mathcal{O}(D)\right)\right|_{D}
$$

Proof (?).

Omitted, take residues.

Remark 12.0.11: Applying this to the previous curve situation: note deg $K_{C}=2 g-2=4$, which counts $\varphi_{\left|K_{C}\right|}(C) \cap V\left(x_{0}\right)$ and yields a quartic.

Proposition 12.0.12(?).
For C a degree d curve in \mathbf{P}^{2},

$$
g=\binom{d-1}{2}
$$

Proof (?).

Take degrees in the adjunction formula and apply Bezout's theorem:

$$
K_{C}=K_{\mathbf{P}^{2}}+\left.C\right|_{C} \Longrightarrow 2 g(C)-2==\left.\operatorname{deg}(-3 H+d H)\right|_{C}=d(d-3)
$$

More generally if $C \subseteq S$ a curve in a surface, $\left.\operatorname{deg} L\right|_{C}=c_{1}(L) .[C]$ is an intersection number.
Expanding this yields $g=\frac{d^{2}-3 d+2}{2}=\binom{d-1}{2}$.

Definition 12.0.13 (Kodaira dimension)

$$
\kappa(X):=\max _{n>0}\left\{\operatorname{dim} \operatorname{im} \varphi_{n K_{X}}\right\}
$$

where $\operatorname{dim} \emptyset:=-\infty$ and $\kappa(X) \in\{-\infty, 0, \cdots, \operatorname{dim} X\}$.

Remark 12.0.14: Note that since $3 K_{C}$ yields an embedding for a curve with $g \geq 2, \kappa(C)=1$. Also note that $\kappa(X)=-\infty \Longleftrightarrow h^{0}\left(n K_{X}\right)=0$ for all n. For curves:

$g(C)$	$\kappa(C)$
0	$-\infty$
1	0
2	1
3	1
4	\vdots

Here we've used that $K_{\mathbf{P}^{1}}=\mathcal{O}(-2)$ has no sections and $K_{E}=\mathcal{O}_{E}$ is trivial. Fanos are $\kappa=-\infty$ and general type $(\kappa(X)=\operatorname{dim} X)$ are $g \geq 2$.

Remark 12.0.15: For smooth projective surfaces: $\kappa(S) \in\{-\infty, 0,1,2\}$. See Beauville for the Enriques-Kodaira classification due to the Italian school:

- $\kappa(S)=-\infty$: ruled and rational.
- $\kappa(S)=0$: K3, Abelian, Enriques, Bi-elliptic.
- $\kappa(S)=1$: Elliptic.
- $\kappa(S)=2$: General type.

Definition 12.0.16 (?)
S is ruled if $\exists \pi: S \rightarrow C$ with generic fiber $\cong \mathbf{P}^{1}$:

S is rational if $S \xrightarrow{\sim} \mathbf{P}^{2}$.

ToDos

List of Todos

Definitions

3.0.3 Definition - Kähler differentials 7
3.0.5 Definition - Smoothness 8
3.0.7 Definition $-\mathcal{O}_{X}$ Mod 8
3.0.10 Definition - Morphisms in \mathcal{O}_{X} Mod 10
3.0.12 Definition - Ideal sheaf 10
3.0.17 Definition - Vector bundle 12
3.0.19 Definition - Divisors 12
3.0.21 Definition - Divisors of functions 12
4.0.2 Definition - Divisor class group 12
4.0.8 Definition - Cartier divisors 13
5.0.6 Definition - ? 15
5.0.8 Definition - Rational sections 15
7.0.5 Definition - ? 21
8.0.2 Definition - (p, q)-forms 22
8.0.6 Definition - Dolbeault complex 23
10.0.2 Definition - Lattices 27
10.0.7 Definition - Orthogonal complements 28
10.0.12 Definition - Hyperbolic planes 29
10.0.16 Definition - ? 31
12.0.1 Definition - Linear systems 34
12.0.5 Definition - ? 35
12.0.13 Definition - Kodaira dimension 36
12.0.16 Definition - ? 37

Theorems

2.0.3 Proposition - ? 6
5.0.3 Proposition - ? 14
5.0.7 Proposition - ? 15
5.0.12 Proposition - ? 16
6.0.1 Theorem - Riemann-Hurwitz 17
8.0.9 Theorem - Hodge decomposition and symmetry theorems 23
9.0.1 Proposition - Riemann-Roch for curves 24
9.0.3 Theorem - Serre duality 24
9.0.5 Proposition - ? 24
9.0.7 Proposition - ? 26
10.0.19 Proposition - ? 31
11.0.5 Theorem - Hirzebruch-Riemann-Roch 33
12.0.6 Proposition - ? 35
12.0.9 Proposition - Canonical of \mathbf{P}^{n} 35
12.0.10 Proposition - Adjunction 36
12.0.12 Proposition - ? 36

Exercises

1.0.6 Exercise - ? 4
4.0.13 Exercise - ? 14
6.0.4 Exercise - ? 18
6.0.5 Exercise - ? 18
6.0.8 Exercise - ? 20
12.0.7 Exercise - ? 35

Figures
List of Figures

