# Thursday, February 02 :::{.theorem title="Riemann-Hurwitz"} If $f:C\to D$ is a map of smooth complete curves then \[ 2g(C) - 2 = \deg(f)\cdot\qty{ 2g(D) - 2 } + \deg R(f) \] where $R(f) = \sum_{p \in C} (e_p - 1)[p]$ is the ramification divisor. ::: :::{.example title="?"} Take \[ \CC &\to \CC \\ z &\mapsto z^{4} \] which is a 4-fold cover \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2023/Spring/k3surfaces/sections/figures}{2023-02-02_09-43.pdf_tex} }; \end{tikzpicture} ::: :::{.example title="?"} If $f: C\to \PP^1$ is degree 2 then $f=a/b$ where $a,b\in H^0(C; K_C)$, and Riemann-Hurwitz gives $\deg R(f) = 6$. If $\tv{s: t}$ are homogeneous coordinates on $\PP^1$, then one can take an equation of the form $z^2 = f_6(s, t)$ for $f_6(s,t) = \prod_{i=1}^6 (a_i s - b_i t)$ is a homogeneous degree 6 polynomial, so $f\in H^0(\PP^1;\OO_{\PP^1}(6))$ and $z\in \Tot \OO_{\PP^1}(-3)$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2023/Spring/k3surfaces/sections/figures}{2023-02-02_09-59.pdf_tex} }; \end{tikzpicture} ::: :::{.exercise title="?"} Describe why $z\not\in \Tot \OO_{\PP^1}(3)$ instead. ::: :::{.exercise title="?"} Recall that the normalization of a ring $R$ is the integral closure of $R$ in $\ff(R)$. Compute the normalization of $y^2=x^3$ using the algebraic definition. ::: :::{.example title="?"} An example of normalization: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2023/Spring/k3surfaces/sections/figures}{2023-02-02_10-22.pdf_tex} }; \end{tikzpicture} ::: :::{.fact} Integrally closed and 1-dimensional implies smooth. ::: :::{.exercise title="?"} Recall the definition of the Čech cochain complex and compute $\Hc(S^1; \mcf)$ using an open cover of two sets. :::