# Tuesday, February 21 :::{.remark} Last time: $M$ a compact manifold, $\dim_\RR M = 2n$, there is a perfect pairing \[ H^k(M;\ZZ)/\tors \tensor_\ZZ H^k(M; \ZZ)/\tors &\to \ZZ \\ \alpha \tensor \beta &\mapsto \int_M \alpha\wedgeprod \beta .\] Interpret $\alpha . \beta$ as $[N_1] . [N_2] = \sum_{p\in N_1 \transverse N_2} \pm 1$ where the $N_i$ are Poincaré duals. Satisfies \( \alpha . \beta= (-1)^{n} \beta \alpha \) for \( \alpha, \beta\in H^{n}(X; \ZZ)/\tors \) where $n\da \dim_\CC M = {1\over 2}\dim_\RR M$. ::: :::{.definition title="Lattices"} An (orthogonal) lattice is a free abelian group \( \Lambda \cong \ZZ^k \) of finite rank, together with an integral symmetric bilinear form \[ \cdot: \Lambda\tensor \Lambda\to \ZZ .\] - $\Lambda$ is **symplectic** if $\cdot$ is alternating, so $\alpha.\beta = -\beta . \alpha$. - $\Lambda$ is **unimodular** if for all primitive nonzero vectors $x\in \Lambda$, $\exists y\in \Lambda$ such that $x.y = 1$, where $x$ is primitive if $x\neq \lambda z$ for any $z\in \Lambda$ - $\Lambda$ is nondegenerate if $\forall x\in \Lambda$, $\exists y \in \Lambda$ with $x.y \neq 0$. - The **Gram matrix** of a basis $\ts{e_i}$ for a lattice \( (\Lambda, \cdot) \) is $M_{ij} \da e_i . e_j$. $M$ is symmetric for orthogonal lattices and skew-symmetric for symplectic lattices. One can write $v.w = v^t M w$. - If \( \Lambda_i \) are lattices, so is \( \bigoplus_{i} \Lambda_i \). ::: :::{.example title="?"} The standard example: \( \Lambda \in \ZZ^2 \) with \( \tv{x_1, y_1}.\tv{x_2, y_2} \da x_1 x_2 + y_1 y_2 \) is nondegenerate and unimodular. Here $\tv{2,2} = 2\tv{1,1}$ is not primitive, but $\tv{2,1}$ is primitive. Proving unimodularity: if $\gcd(m, n) = 1$, one just needs to solve $mx + ny = 1$ for $\tv{x,y}\in \ZZ^2$. This has Gram matrix $\matt 1 0 0 1$. ::: :::{.example title="?"} A degenerate lattice: $(\ZZ^2, \vector x . \vector y \da x_1 x_2)$. This is symmetric, but $\vector x . \tv{0, 1} = 0$ for every $\vector x \in \Lambda$. The Gram matrix is $\matt 1 0 0 0$. ::: :::{.example title="?"} A symplectic lattice: $(\ZZ^2, \vector x . \vector y \da x_1 y_2 - x_2 y_1)$, which has Gram matrix $\matt 0 1 {-1} 0$. ::: :::{.example title="?"} There is a $2g\dash$dimensional symplectic lattice for every $g\geq 0$ given by $\ZZ^{2g}_\mathrm{symp} \da \bigoplus_{i=1}^{g} (\ZZ^2, \cdot_\mathrm{symp})$, which has Gram matrix comprised of $g$ diagonal blocks of $\matt 0 1 {-1} 0$. This is the only unimodular symplectic lattice up to isomorphism, and is the intersection form on $H^1(\Sigma_g; \ZZ)$. The vectors here can be represented by fundamental classes of 1-dimensional submanifolds, i.e. real curves: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2023/Spring/k3surfaces/sections/figures}{2023-02-21_10-03.pdf_tex} }; \end{tikzpicture} More generally, if $\dim_\RR M = 4k+2$, then $H^{2k+1}(M; \ZZ) \cong \ZZ^{2g}_\mathrm{symp}$ for some $g$. ::: :::{.definition title="Orthogonal complements"} For $M \subseteq \Lambda$, define $M^\perp \da \ts{x\in \Lambda\st x.m =0 \, \forall m\in M}$. ::: :::{.example title="?"} For $\ZZ^2_\mathrm{symp} = \ZZ \alpha \oplus \ZZ \beta$, we have $\ZZ\alpha^\perp = \ZZ\alpha$. For $\ZZ^2_\std = \ZZ \alpha \oplus \ZZ \beta$, one instead has $\ZZ\alpha^\perp = \ZZ\beta$. ::: :::{.remark} Over $\RR$, symmetric bilinear forms are classified by their signature: they can all be diagonalized to $\diag(1,\cdots, 1, -1,\cdots,-1,0,\cdots, 0)$ for some multiplicities $n_+, n_-, n_0$ where $n_+ + n_- + n_0 = \rank_\ZZ \Lambda$. Any lattice can be extended via $\Lambda_\RR \da \Lambda \tensor_\ZZ \RR$, so define $\sgn \Lambda \da (n_+, n_-, n_0)$. ::: :::{.example title="?"} Let \( \Lambda = \ZZ\adjoin{\sqrt{5}} \) and let $u.v = \Re(x\bar {y})$, so \[ \norm{u} = u.u = (a+b\sqrt{5})(a-b\sqrt{5}) = a^2 - 5b^2 .\] Note that \( \Lambda_\RR \cong \RR^{1,1} \), which in the standard basis has Gram matrix $\matt 1 0 0 {-1}$. This can be visualized as a 2-dimensional subspace of $\RR^2$ spanned by $1, \sqrt{5}$. Note that $\norm{\sqrt 5} = -5$. ::: :::{.remark} Define the *hyperbolic signature* as $(1, n)$ for any $n\geq 0$. One can visualize positive/negative norm vectors using the light cone: for $\RR^{1, n}$, solving $v.v=0$ to get $x_1^2 = x_2^2 + \cdots + x_{n_1}^2$. This is a cone over $S^1$ at height 1 in $\RR^3$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2023/Spring/k3surfaces/sections/figures}{2023-02-21_10-27.pdf_tex} }; \end{tikzpicture} Note that $\ts{v.v > 0}$ has two connected components. ::: :::{.definition title="Hyperbolic planes"} A *hyperbolic cell/plane* is the lattice $H$ defined as $\ZZ^2$ with pairing given by the Gram matrix $\matt 0 1 1 0$ and signature $(1, 1)$. This admits an orthonormal basis ${e_1 + e_2\over \sqrt 2}, {e_1 - e_2 \over \sqrt 2}$, and $H_\RR \cong \RR^{1, 1}$. ::: :::{.remark} Recall the ADE Dynkin diagrams: ![](figures/2023-02-21_10-32-44.png) One can build a root lattice out of each diagram: - Take one basis vector $e_i$ for each node, - $e_i^2 = -2$, - $e_i.e_j = 1 \iff$ nodes $i, j$ are connected, and zero otherwise. The lattices will be negative definite, i.e. of signature $(0, n)$ with $n$ the number of nodes. The only unimodular such lattice corresponds to $E_8$. ::: :::{.example title="?"} $A_1$ corresponds to the matrix $[-2]$, and thus $\ZZ$ with bilinear form $-2n^2$. $A_2$ yields $\matt{-2}{1}{1}{-2}$, and $A_3$ yields $\mattt {-2} 1 0 1 {-2} 1 0 1 {-2}$. ::: :::{.question} How does one check that a lattice is unimodular? ::: :::{.definition title="?"} Let \( (\Lambda, \cdot) \) be a nondegenerate lattice, so \( \Lambda\injects \Lambda_\RR \cong \RR^{a, b} \). Define \[ \Lambda\dual \da \ts{ y\in \Lambda_\RR \st x.y\in \ZZ \, \forall x\in \Lambda} .\] ::: :::{.example title="?"} Consider $\Lambda \da \sqrt{2}\ZZ \injects \RR^1$ with the standard pairing, then $1\over \sqrt{2}\in \Lambda\dual$. ::: :::{.remark} One can always find a basis of $\Lambda\dual$ given by $e_i\dual$ where $e_i\dual e_j = \delta_{ij}$. Since $e_i\dual M e_j = \delta_{ij}$ for $M$ the Gram matrix of a form, one finds that $e_i\dual$ is the $i$th row of $M\inv$. Why: letting $N$ be the matrix with rows $e_i\dual$, one has $NM = I$. ::: :::{.proposition title="?"} $\Lambda$ is unimodular iff \( \Lambda\dual = \Lambda \). ::: :::{.proof title="?"} Note $x^2\in \ZZ$ by definition, so $\Lambda \subseteq \Lambda\dual$. If $v\in \Lambda\dual\sm \Lambda$, then one can show that the minimal $n$ such that $nv\in \Lambda$ yields a primitive element of $\Lambda$. Since $Nv.w \in n\ZZ$ for all $w$, so can't pair to 1. ::: :::{.remark} So $\Lambda\dual \da \bigoplus \ZZ e_i\dual \subseteq \Lambda \implies e_i\dual \in \Lambda \implies M\inv \in \GL_n(\ZZ)$, and applying the same argument to duals yields $\det M = \pm 1$. In general, $\det M = \size( \Lambda\dual / \Lambda)^2$ is the covolume. So - $\vol(\RR^n / \Lambda) = \det M$ - $\vol(\RR^n / \Lambda\dual ) = \det M\inv$, which is the Gram matrix of \( \Lambda\dual \). - $\size(\Lambda\dual / \Lambda)^2 = \covol( \Lambda)^2/ \covol( \Lambda\dual)^2 = \det(M)^2$. :::