AGGITATE

D. ZACK GARZA

Abstract. Some rough notes from the AGGITATE 2024 summer school on moduli theory.

Contents

1.	2024-	07-22	2
	1A.	Valuations	2
2. 2024-07-		07-23-14-30-14	2
	2A.	Review	2
	2B.	Quasicoherent sheaves	3

Date: July 23, 2024.

1. 2024-07-22

1A. Valuations. Let $k = \mathbf{C}$ and X be a proper variety over k. Write k(X) for its function field. Recall that a valuation is a group morphism $v: k(X)^{\times} \to (\mathbf{R}, +)$ where

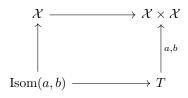
- v(fg) = v(f) + v(g)• $v(f+g) \ge \max\{v(f), v(g)\}$ • v(k) = 0

We generalize this slightly to quasi-monomial valuations. For X of dimension n, let (Y, E) be a (log smooth) minimal resolution. Write $E = \sum E_i$, and e.g. p = $\bigcap_i E_i$, and write $\widehat{\mathcal{O}_{Y,p}} = k[\![y_1, \cdots y_r]\!]$. Then any $f \in \mathcal{O}_{Y,p}$ can be written as $f = \sum_{\alpha} f_{\alpha} y^{\alpha}$. A quasi-monomial valuation v_m is given by $v_m(f) = \min\{m \cdot \alpha\}$ ranging over α . Write QM(Y, E) for the set of quasi-monomials depending on the choice of (Y, E).

For $Y \xrightarrow{\varphi} X$ a resolution with exceptional divisor E, write $A_X(E) = \operatorname{Ord}_E(K_{Y/X}) +$ 1 for the log discrepancy. For $v_{\beta} \in QM_p(Y, E)$ with $p = \bigcap E_i$, define $A_X(v_{\beta}) \coloneqq$ $\sum \beta_i A_X(E_i).$

2A. Review.

Remark 2.1. Recall from yesterday that an algebraic stack is a stack \mathcal{X} over the big et ale site $\mathsf{Sch}_{\mathrm{\acute{E}t}}$ such that there exists a scheme U and a representable, smooth, surjective map $U \to \mathcal{X}$, i.e. a smooth presentation. A DM stack replaces smooth with étale, and an algebraic space is an algebraic stack where all stabilizers are trivial. Fact: the diagonal is representable.



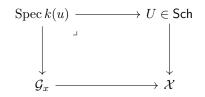
> Link to Diagram

The stabilizer of x: Spec $k \to \mathcal{X}$ is $G_x = \text{Isom}_k(x, x) \coloneqq \text{Aut}_k(x)$.

Proposition 2.2. If \mathcal{X} is a Noetherian algebraic stack and $x \in |\mathcal{X}|$ is finite type, then $\exists \mathcal{G}_x \hookrightarrow \mathcal{X}$ a locally closed substack with $|\mathcal{G}_x| = \{x\}$ and \mathcal{G}_x representable.

Remark 2.3. See residual gerbes \mathcal{G}_x . Letting $[C] \in \mathcal{M}_g$ be a curve class, the residual gerbe is the classifying stack $\mathcal{G}_{[C]} = \mathbf{B}\operatorname{Aut}(C) := [\operatorname{Spec} k/\operatorname{Aut}(C)].$

Proposition 2.4 (Minimal presentations). Let \mathcal{X} be a Noetherian algebraic stack and $x \in |\mathcal{X}|$ a finite type point with smooth stabilizer. Then there exists a diagram



AGGITATE

> Link to Diagram

Here $U \to \mathcal{X}$ is smooth of relative dimension dim G_x .

Corollary 2.5. \mathcal{X} is DM iff stabilizers are finite and reduced.

Proof. Set the top-left corner to an orbit $\mathcal{O}(u)$, show $\mathcal{O}(u) \to \mathcal{G}_x$ is smooth, and use the flat slicing criterion.

Theorem 2.6 (Local structure). Let \mathcal{X} be a separated Noetherian DM stack and $x \in |\mathcal{X}|$ a finite type point with geometric stabilizer G_x . Then there exists a nice etale presentation: ([Spec A/G_x], w) $\rightarrow (\mathcal{X}, x)$ which is etale and affine, a quotient of an affine by a finite group, inducing an isomorphism of stabilizer groups at w.

Definition 2.7. A morphism $\pi : \mathcal{X} \to X$ from an algebraic stack to an algebraic space is a coarse moduli space if

1. π is universal for maps to algebraic spaces, so $\mathcal{X} \to Y \implies \exists X \to Y$, and 2. $\forall k = \overline{k}, \mathcal{X}(k)_{/\sim} \to X(k)$ is bijective.

Remark 2.8. Idea: remove stabilizers from stack in exchange for giving up a universal family. Under mild conditions, (2) implies a bijection on topological spaces. Condition (1) is analogous to being a categorical quotient, while (2) is analogous to X being an orbit space.

Theorem 2.9. If $G \curvearrowright \operatorname{Spec} A$ is a finite group action on an affine scheme, then $[\operatorname{Spec} A/G] \to \operatorname{Spec} A^G$ is a coarse moduli space.

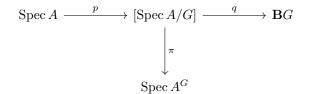
Theorem 2.10 (Keel-Mori). Let \mathcal{X} be a separated and finite type DM stack over a Noetherian ring. Then $\exists \pi : \mathcal{X} \to X$ a coarse moduli space such that

- 1. π is a proper universal homeomorphism,
- 2. $\mathcal{O}_X \cong \pi_* \mathcal{O}_{\mathcal{X}}$,
- 3. stable under flat base change.

Remark 2.11. An application: consider $\overline{\mathcal{M}_g}$. Because $\operatorname{Aut}(C)$ is finite and reduced, this is a DM stack. Semistable reduction implies it is proper. The Keel-Mori theorem implies existence of a coarse moduli space which is a proper algebraic space. Proving projectivity is substantially more difficult.

2B. Quasicoherent sheaves.

Remark 2.12. In particular for algebraic stacks, one can form $\mathsf{QCoh}(\mathcal{X})$ and the standard adjunctions f^* and f_* where the latter is proper pushforward. If $G \curvearrowright$ Spec A is an algebraic group action, then there is a diagram



> Link to Diagram

Then

• $q_*M = M$ forgets the A-module structure,

- $p^*M = M$ forgets the *G*-action,
- $\pi_*M = M^G$ recovers the invariants.

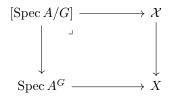
Definition 2.13. A good moduli space is a map $\pi : \mathcal{X} \to X$ from an algebraic stack to an algebraic space such that

- 1. π_* is exact on quasicoherent sheaves, and
- 2. $\pi_*\mathcal{O}_{\mathcal{X}}\cong\mathcal{O}_X.$

Remark 2.14. If $\mathcal{X} = [U/G]$ with G finite reductive, this is equivalent to $U \to X$ being a good quotient.

Example 2.15. If $G \curvearrowright \operatorname{Spec} A$ is linearly reductive, then $[\operatorname{Spec} A/G] \to \operatorname{Spec} A^G$ is a good moduli space.

Theorem 2.16. If \mathcal{X} is an algebraic space with mild hypotheses, then $\pi : \mathcal{X} \to X$ is a good moduli space iff etale locally it looks like taking invariants, i.e. there are diagrams



> Link to Diagram

Theorem 2.17. Let $\pi : \mathcal{X} \to X$ be a good moduli space. Then

- π is surjective.
- If Z_i are closed and disjoint substacks of \mathcal{X} , their images under π are closed and disjoint.
- Closed points of X correspond to closed points of X. Two orbits are identified iff their closures intersect.
- If \mathcal{X} is finite type over a Noetherian scheme then X is finite type.
- π is universal for maps to algebraic spaces.

4

AGGITATE

Department of Mathematics, University of Georgia, Athens GA 30602, USA $\mathit{Email}\ address: \texttt{zackQuga.edu}$