\documentclass{amsart} \usepackage{graphicx} \usepackage{dynkin-diagrams} \newif\ifshort %\shorttrue \shortfalse \ifshort %\usepackage[top=1.1in, bottom=1.1in, left=1.3in, right=1.3in]{geometry} \usepackage[top=3.7cm, bottom=3.7cm, left=3.7cm, right=3.7cm]{geometry} \pagestyle{plain} \fi % \usepackage{sty-en} \usepackage{tikz-cd, bm} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage{hyperref} \hypersetup{colorlinks,citecolor=blue,linktocpage,hyperindex=true,backref=true} \usepackage{amsfonts, amsmath, amssymb, amsthm, mathtools} \usepackage[nameinlink]{cleveref} \usepackage{mathrsfs, stmaryrd} \usepackage{color} \usepackage[english]{babel} \usepackage{fontenc} \usepackage{url} \usepackage{bookmark} \usepackage{caption} \usepackage{subcaption} \newdimen\figrasterwd \figrasterwd\textwidth \usepackage{epstopdf} \usepackage{hyphenat} \usepackage{float} \usepackage{indentfirst} \usepackage[export]{adjustbox} \usepackage{pgfplots} \usepackage{color} \usepackage[all]{xy}\usepackage{array} \newcolumntype{P}[1]{>{\centering\arraybackslash}p{#1}} \usepackage[textsize=tiny]{todonotes} \usepackage{booktabs} \usepackage{subfiles} \usepackage{etoolbox} \usepackage{dynkin-diagrams} \usepackage{quiver} \usepackage{tikz} \usetikzlibrary{arrows.meta, cd, fadings, patterns, calc, matrix, positioning, decorations, decorations.pathreplacing, decorations.markings, shapes, backgrounds, fit, shapes.geometric, intersections, hobby, matrix,arrows,decorations.pathmorphing} \tikzfading[name=fade out, inner color=transparent!0, outer color=transparent!100] \makeatletter \def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} \def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} \makeatother % Scale images if necessary, so that they will not overflow the page % margins by default, and it is still possible to overwrite the defaults % using explicit options in \includegraphics[width, height, ...]{} \setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} % \bibliographystyle{amsalpha} % \bibliography{references} % \usepackage[ % style=alphabetic, % sorting=ynt % ]{biblatex} % \addbibresource{references.bib} \renewcommand{\hat}{\widehat} % \renewcommand{\bar}{\overline} \renewcommand{\tilde}{\widetilde} \providecommand{\tightlist}{% \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} \usepackage{DZG_Style} \usepackage{cleveref} \usepackage{booktabs} \title{AGGITATE} \date{July 23, 2024} \author{D. Zack Garza} \address{Department of Mathematics, University of Georgia, Athens GA 30602, USA} \email{zack@uga.edu} \usepackage[style=alphabetic,sorting=ynt]{biblatex} %Imports biblatex package \addbibresource{/home/dzack/zotero.bib} %Import the bibliography file \begin{document} \begin{abstract} Some rough notes from the AGGITATE 2024 summer school on moduli theory. \end{abstract} \maketitle \tableofcontents \newpage \section{2024-07-22}\label{section} \subsection{Valuations}\label{valuations} Let \(k={\mathbf{C}}\) and \(X\) be a proper variety over \(k\). Write \(k(X)\) for its function field. Recall that a valuation is a group morphism \(v: k(X)^{\times}\to ({\mathbf{R}}, +)\) where \begin{itemize} \tightlist \item \(v(fg) = v(f) + v(g)\) \item \(v(f+g) \geq \max\left\{{v(f), v(g)}\right\}\) \item \(v(k) = 0\) \end{itemize} We generalize this slightly to \emph{quasi-monomial valuations}. For \(X\) of dimension \(n\), let \((Y, E)\) be a (log smooth) minimal resolution. Write \(E = \sum E_i\), and e.g.~\(p = \bigcap_i E_i\), and write \(\widehat{{\mathcal{O}}_{Y, p}} = k{\llbracket y_1, \cdots y_r \rrbracket }\). Then any \(f\in {\mathcal{O}}_{Y, p}\) can be written as \(f= \sum_{\alpha} f_ \alpha y^{ \alpha}\). A quasi-monomial valuation \(v_m\) is given by \(v_m(f) = \min\left\{{ m\cdot \alpha }\right\}\) ranging over \(\alpha\). Write \(QM(Y, E)\) for the set of quasi-monomials depending on the choice of \((Y, E)\). For \(Y \xrightarrow{\varphi} X\) a resolution with exceptional divisor \(E\), write \(A_X(E) = {\operatorname{Ord}}_E(K_{Y/X}) + 1\) for the log discrepancy. For \(v_ \beta \in QM_p(Y, E)\) with \(p = \bigcap E_i\), define \(A_X(v_ \beta) \coloneqq\sum \beta_i A_X(E_i)\). \section{2024-07-23-14-30-14}\label{section-1} \subsection{Review}\label{review} \begin{remark} Recall from yesterday that an algebraic stack is a stack \({\mathcal{X}}\) over the big etale site \({\mathsf{Sch}}_\text{Ét}\) such that there exists a scheme \(U\) and a representable, smooth, surjective map \(U\to {\mathcal{X}}\), i.e.~a smooth presentation. A DM stack replaces smooth with étale, and an algebraic space is an algebraic stack where all stabilizers are trivial. Fact: the diagonal is representable. \[\begin{tikzcd} {\mathcal{X}}&& {{\mathcal{X}}\times {\mathcal{X}}} \\ \\ {\mathop{\mathrm{Isom}}(a, b)} && T \arrow[from=1-1, to=1-3] \arrow[from=3-1, to=1-1] \arrow[from=3-1, to=3-3] \arrow["{a,b}"', from=3-3, to=1-3] \end{tikzcd}\] \textgreater{} \href{https://q.uiver.app/\#q=WzAsNCxbMCwwLCJcXGNYIl0sWzIsMCwiXFxjWCBcXHRpbWVzIFxcY1giXSxbMCwyLCJcXElzb20oYSwgYikiXSxbMiwyLCJUIl0sWzMsMSwiYSxiIiwyXSxbMiwzXSxbMiwwXSxbMCwxXV0=}{Link to Diagram} The stabilizer of \(x: \operatorname{Spec}k \to {\mathcal{X}}\) is \(G_x = \mathop{\mathrm{Isom}}_k(x, x) \coloneqq\mathop{\mathrm{Aut}}_k(x)\). \end{remark} \begin{proposition} If \({\mathcal{X}}\) is a Noetherian algebraic stack and \(x\in {\left\lvert {{\mathcal{X}}} \right\rvert}\) is finite type, then \(\exists {\mathcal{G}}_x \hookrightarrow{\mathcal{X}}\) a locally closed substack with \({\left\lvert {{\mathcal{G}}_x} \right\rvert} = \left\{{x}\right\}\) and \({\mathcal{G}}_x\) representable. \end{proposition} \begin{remark} See \emph{residual gerbes} \({\mathcal{G}}_x\). Letting \([C]\in {\mathcal{M}_g}\) be a curve class, the residual gerbe is the classifying stack \({\mathcal{G}}_{[C]} = {\mathbf{B}}\mathop{\mathrm{Aut}}(C) \coloneqq[\operatorname{Spec}k / \mathop{\mathrm{Aut}}(C)]\). \end{remark} \begin{proposition}[Minimal presentations] Let \({\mathcal{X}}\) be a Noetherian algebraic stack and \(x\in {\left\lvert {{\mathcal{X}}} \right\rvert}\) a finite type point with smooth stabilizer. Then there exists a diagram \[\begin{tikzcd} {\operatorname{Spec}k(u)} && {U\in{\mathsf{Sch}}} \\ \\ {{\mathcal{G}}_x} && {\mathcal{X}} \arrow[from=1-1, to=1-3] \arrow[from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \end{tikzcd}\] \textgreater{} \href{https://q.uiver.app/\#q=WzAsNCxbMCwwLCJcXHNwZWMgayh1KSJdLFsyLDAsIlVcXGluXFxTY2giXSxbMCwyLCJcXGNHX3giXSxbMiwyLCJcXGNYIl0sWzAsMV0sWzAsMl0sWzIsM10sWzEsM10sWzAsMywiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV1d}{Link to Diagram} Here \(U\to {\mathcal{X}}\) is smooth of relative dimension \(\dim G_x\). \end{proposition} \begin{corollary} \({\mathcal{X}}\) is DM iff stabilizers are finite and reduced. \end{corollary} \begin{proof} Set the top-left corner to an orbit \({\mathcal{O}}(u)\), show \({\mathcal{O}}(u) \to {\mathcal{G}}_x\) is smooth, and use the flat slicing criterion. \end{proof} \begin{theorem}[Local structure] Let \({\mathcal{X}}\) be a separated Noetherian DM stack and \(x\in {\left\lvert {{\mathcal{X}}} \right\rvert}\) a finite type point with geometric stabilizer \(G_x\). Then there exists a nice etale presentation: \(( [\operatorname{Spec}A/G_x], w) \to ({\mathcal{X}}, x)\) which is etale and affine, a quotient of an affine by a finite group, inducing an isomorphism of stabilizer groups at \(w\). \end{theorem} \begin{definition} A morphism \(\pi: {\mathcal{X}}\to X\) from an algebraic stack to an algebraic space is a coarse moduli space if \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(\pi\) is universal for maps to algebraic spaces, so \({\mathcal{X}}\to Y \implies \exists! X\to Y\), and \item \(\forall k = { \overline{k} }\), \({\mathcal{X}}(k){_{\scriptstyle / \sim} }\to X(k)\) is bijective. \end{enumerate} \end{definition} \begin{remark} Idea: remove stabilizers from stack in exchange for giving up a universal family. Under mild conditions, (2) implies a bijection on topological spaces. Condition (1) is analogous to being a categorical quotient, while (2) is analogous to \(X\) being an orbit space. \end{remark} \begin{theorem} If \(G\curvearrowright\operatorname{Spec}A\) is a finite group action on an affine scheme, then \([\operatorname{Spec}A/G] \to \operatorname{Spec}A^G\) is a coarse moduli space. \end{theorem} \begin{theorem}[Keel-Mori] Let \({\mathcal{X}}\) be a separated and finite type DM stack over a Noetherian ring. Then \(\exists \pi: {\mathcal{X}}\to X\) a coarse moduli space such that \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(\pi\) is a proper universal homeomorphism, \item \({\mathcal{O}}_X \cong \pi_* {\mathcal{O}}_{{\mathcal{X}}}\), \item stable under flat base change. \end{enumerate} \end{theorem} \begin{remark} An application: consider \(\overline{{\mathcal{M}_g}}\). Because \(\mathop{\mathrm{Aut}}(C)\) is finite and reduced, this is a DM stack. Semistable reduction implies it is proper. The Keel-Mori theorem implies existence of a coarse moduli space which is a proper algebraic space. Proving projectivity is substantially more difficult. \end{remark} \subsection{Quasicoherent sheaves}\label{quasicoherent-sheaves} \begin{remark} In particular for algebraic stacks, one can form \({\mathsf{QCoh}}({\mathcal{X}})\) and the standard adjunctions \(f^*\) and \(f_*\) where the latter is proper pushforward. If \(G\curvearrowright\operatorname{Spec}A\) is an algebraic group action, then there is a diagram \[\begin{tikzcd} {\operatorname{Spec}A} && {[\operatorname{Spec}A/G]} && {{\mathbf{B}}G} \\ \\ && {\operatorname{Spec}A^G} \arrow["p", from=1-1, to=1-3] \arrow["q", from=1-3, to=1-5] \arrow["\pi", from=1-3, to=3-3] \end{tikzcd}\] \textgreater{} \href{https://q.uiver.app/\#q=WzAsNCxbMCwwLCJcXHNwZWMgQSJdLFsyLDAsIltcXHNwZWMgQS9HXSJdLFs0LDAsIlxcQiBHIl0sWzIsMiwiXFxzcGVjIEFeRyJdLFswLDEsInAiXSxbMSwzLCJcXHBpIl0sWzEsMiwicSJdXQ==}{Link to Diagram} Then \begin{itemize} \tightlist \item \(q_* M = M\) forgets the \(A{\hbox{-}}\)module structure, \item \(p^* M = M\) forgets the \(G{\hbox{-}}\)action, \item \(\pi_* M = M^G\) recovers the invariants. \end{itemize} \end{remark} \begin{definition} A good moduli space is a map \(\pi: {\mathcal{X}}\to X\) from an algebraic stack to an algebraic space such that \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(\pi_*\) is exact on quasicoherent sheaves, and \item \(\pi_* {\mathcal{O}}_{{\mathcal{X}}} \cong {\mathcal{O}}_X\). \end{enumerate} \end{definition} \begin{remark} If \({\mathcal{X}}= [U/G]\) with \(G\) finite reductive, this is equivalent to \(U\to X\) being a good quotient. \end{remark} \begin{example} If \(G\curvearrowright\operatorname{Spec}A\) is linearly reductive, then \([\operatorname{Spec}A/G]\to \operatorname{Spec}A^G\) is a good moduli space. \end{example} \begin{theorem} If \({\mathcal{X}}\) is an algebraic space with mild hypotheses, then \(\pi: {\mathcal{X}}\to X\) is a good moduli space iff etale locally it looks like taking invariants, i.e.~there are diagrams \[\begin{tikzcd} {[\operatorname{Spec}A/G]} && {\mathcal{X}}\\ \\ {\operatorname{Spec}A^G} && X \arrow[from=1-1, to=1-3] \arrow[from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \end{tikzcd}\] \textgreater{} \href{https://q.uiver.app/\#q=WzAsNCxbMCwwLCJbXFxzcGVjIEEvR10iXSxbMiwwLCJcXGNYIl0sWzIsMiwiWCJdLFswLDIsIlxcc3BlYyBBXkciXSxbMCwxXSxbMywyXSxbMSwyXSxbMCwzXSxbMCwyLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=}{Link to Diagram} \end{theorem} \begin{theorem} Let \(\pi: {\mathcal{X}}\to X\) be a good moduli space. Then \begin{itemize} \tightlist \item \(\pi\) is surjective. \item If \(Z_i\) are closed and disjoint substacks of \({\mathcal{X}}\), their images under \(\pi\) are closed and disjoint. \item Closed points of \(X\) correspond to closed points of \({\mathcal{X}}\). Two orbits are identified iff their closures intersect. \item If \({\mathcal{X}}\) is finite type over a Noetherian scheme then \(X\) is finite type. \item \(\pi\) is universal for maps to algebraic spaces. \end{itemize} \end{theorem} \newpage \printbibliography %Prints bibliography \end{document}