# 2024-07-22 ## Valuations Let $k=\CC$ and $X$ be a proper variety over $k$. Write $k(X)$ for its function field. Recall that a valuation is a group morphism $v: k(X)\units\to (\RR, +)$ where - $v(fg) = v(f) + v(g)$ - $v(f+g) \geq \max\ts{v(f), v(g)}$ - $v(k) = 0$ We generalize this slightly to *quasi-monomial valuations*. For $X$ of dimension $n$, let $(Y, E)$ be a (log smooth) minimal resolution. Write $E = \sum E_i$, and e.g. $p = \Intersect_i E_i$, and write $\widehat{\OO_{Y, p}} = k\fps{y_1, \cdots y_r}$. Then any $f\in \OO_{Y, p}$ can be written as $f= \sum_{\alpha} f_ \alpha y^{ \alpha}$. A quasi-monomial valuation $v_m$ is given by $v_m(f) = \min\ts{ m\cdot \alpha }$ ranging over \( \alpha \). Write $QM(Y, E)$ for the set of quasi-monomials depending on the choice of $(Y, E)$. For \( Y \mapsvia{\varphi} X \) a resolution with exceptional divisor $E$, write $A_X(E) = \ord_E(K_{Y/X}) + 1$ for the log discrepancy. For $v_ \beta \in QM_p(Y, E)$ with $p = \Intersect E_i$, define $A_X(v_ \beta) \da \sum \beta_i A_X(E_i)$.