# 2024-07-24-12-02-54 :::{.remark} The trichotomy of automorphisms: - Automorphisms: - None - Finite - Reductive (at closed points) - Type of space: - Schemes/algebraic spaces - DM stacks - Algebraic stacks - Definition: - Zariski/etale locally affine - etale locally affine - smooth locally affine - Examples: - $\PP^n, \Hilb, \Quot$ - $\Mg, M_{n, V}^{\KSBA}$ - $\Bun^\ss(C)$, or $X_{n, V}^{k-\ss}$ - Properties of $[X/G]$: - Free action - Finite stabilizers - Reductive stabilizers at closed orbits - Local structure - Zariski/etale locally $\spec A$ - etale locally $[\spec A/G_x]$ - etale locally $[\spec A/G_x]$ - Existence of moduli spaces: - Already a scheme, a fine space - Keel-Mori: for $X$ separated, there exists a coarse space - Today: existence of good moduli spaces ::: :::{.definition} A qcqs map $\pi: \cX\to X$ is a good moduli space (gms) if 1. $\pi_*: \QCoh(\cX)\to \QCoh(X)$ is exact, 2. $\OO_X \isomorphic \pi_*\OO_X$ ::: :::{.example} $[\spec A/G]\to \spec A^G$ is a gms. ::: :::{.theorem} If $\pi: \cX\to X$ is a gms over a base $S$, then - $\pi$ is surjective and universally closed, - For $Z_i \subseteq \cX$ closed, $\pi(Z_1 \intersect Z_2) = \pi(Z_1) \intersect \pi(Z_2)$. Thus for all $x,y\in \cX(k)$ where $k=\kbar$, then $\pi(x) = \pi(y) \iff$ their closures don't intersect in $\abs{\cX \fp{S} k}$. - $\pi$ is universal for maps to algebraic spaces. - If $\cX$ is finite type over $S$ and $S$ is Noetherian, then $X\to S$ is finite type and $\pi_*$ preserves coherence. ::: :::{.corollary} $X = \spec A\to X\modmod G =\spec A^G$ is a good quotient in the sense of GIT. ::: :::{.lemma} If $\pi:\cX\to X$ is a gms and $F\in \QCoh(X)$, then $F\isomorphic \pi_* \pi^* F$. ::: :::{.proof} Apply $\pi_* \pi^*$ to the SES $\OO_X^{\oplus J} \to \OO_X^{\oplus I} \surjects F$ and use that pushforward is exact. ::: :::{.remark} Being a gms is stable under base change. ::: :::{.theorem title="Local structure theorem"} Let $\cX$ be an algebraic stack, locally of finite type over $k=\kbar$, with affine stabilizers. If $x\in \cX(k)$ with linearly reductive stabilizer $G_x$, then $\exists \spec[A/G_x]\to \cX$ an etale morphism sending $w\mapsto x$ inducing isomorphisms of stabilizer groups at $w$. ::: :::{.theorem title="Existence theorem"} If $\cX$ is an algebraic stack of finite type over $k=\kbar$ where $\characteristic(k) = 0$ with affine diagonal, then $\exists \pi: \cX\to X$ a gms with $X$ separated $\iff$ $\cX$ is $\theta$-complete and $S$-complete. ::: :::{.example} Let $C_2\actson X$ the affine line with a doubled origin by swapping the origins and fixing everything else. Then $[X/C_2]$ has generic stabilizer $C_2$, except at $x=0$, and admits $\AA^1$ as a gms, but the morphism is not separated. Thus $X\to [X/C_2]$ is not a gms -- use Serre's affineness criterion and that pushforward is exact to conclude $X$ must be affine, a contradiction. ::: :::{.remark} An important construction: $\Theta \da [\AA^1/\GG_m]$. Maps $\Theta\to [X/G]$ can recover the Hilbert-Mumford criterion, filtrations on vector bundles, and test configurations, yielding a generalized notion of $\Theta$-stability. ::: :::{.definition title="Theta completeness"} An algebraic stack is $\Theta$-complete iff for all DVRs $R$, \[\begin{tikzcd} {\Theta_R\setminus U} && \cX \\ \\ {\Theta_R} \arrow[from=1-1, to=1-3] \arrow[hook', from=1-1, to=3-1] \arrow["{\exists !}"', dashed, from=3-1, to=1-3] \end{tikzcd}\] > [Link to Diagram](https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXFRoZXRhX1JcXHNldG1pbnVzIFUiXSxbMCwyLCJcXFRoZXRhX1IiXSxbMiwwLCJcXGNYIl0sWzAsMl0sWzAsMSwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJib3R0b20ifX19XSxbMSwyLCJcXGV4aXN0cyAhIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) ::: :::{.definition} Let $\Phi_R \da [ \spec R[x,y]/(xy-\pi)/\GG_m]$ where $\pi$ is a uniformizer of $R$ a DVR. An algebraic stack is $S$-complete iff for all DVRs $R$, \[\begin{tikzcd} {\Phi_R\setminus 0} && \cX \\ \\ {\Phi_R} \arrow[from=1-1, to=1-3] \arrow[hook', from=1-1, to=3-1] \arrow["{\exists !}"', dashed, from=3-1, to=1-3] \end{tikzcd}\] > [Link to Diagram](https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXFBoaV9SXFxzZXRtaW51cyAwIl0sWzAsMiwiXFxQaGlfUiJdLFsyLDAsIlxcY1giXSxbMCwyXSxbMCwxLCIiLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6ImJvdHRvbSJ9fX1dLFsxLDIsIlxcZXhpc3RzICEiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) :::