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1. 2024-08-15-12-47-25 Introduction

Main topic: algebraic surfaces, always assumed projective. Can we classify all
such surfaces? Either

• Up to isomorphism (biregular classification)
• Up to birational isomorphism (birational classification, weaker)

Recall that X1
∼
99K X2 iff they share a Zariski open subset, noting that open sets

are dense. Equivalently, there is an isomorphism of function fields k(X1) ∼= k(X2),
so varieties up to birational isomorphism are equivalent to finitely generated field
extensions. We will take k = k characteristic zero, and assume k = C and apply
the Lefschetz principle – any such field admits an embedding k ↪→ C. Fields of
other characteristics will appear. Note that dimX = d corresponds to fields of
transcendence degree d over k.

For d = 1, we are considering smooth projective curves. However, C1
∼= C2 ⇐⇒

C1
∼
99K C2, so there is no birational geometry to speak of in this dimension. The

basic invariant is the genus g(C) ≥ 0.

• If g = 0 then C ∼= P1,
• if g = 1 then C is an elliptic curve.
• If g ≥ 2 (which includes most curves), there exists a moduli space Mg of

such curves.

Points of Mg correspond to isomorphism classes of such curve – there are infin-
itely many such classes, but they are organized into a variety. This space is almost
smooth but is not complete. There exists a Deligne-Mumford compactification Mg,
the boundary curves are so-called stable curves.

1A. Basic tools. We will introduce tools which will be black-boxed in order to
apply them to the classification problem. For S a surface, divisors D are formal
linear combinations of curves. For any divisor D, there is an invertible (rank 1) lo-
cally free sheaf OS(D). The sections are locally regular functions. Divisors modulo
linear equivalence correspond to invertible sheaves up to isomorphism, we call this
group Pic(S).

We introduce numerical invariants to generalize the genus. The first is the irreg-
ularity q = h0(Ω1

S). For curves, one recovers q = g. Another is the geometric genus
pg = h0(det ΩS) = h0(ωS), the dimension of the space of sections of the top-degree
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differentials. Note that ωS
∼= OS(KS) for a canonical divisor KS on S. For curves,

degKS = 2g − 2. This splits the classification into three cases:

• g = 0 ⇐⇒ KS < 0 ⇐⇒ κ = −∞,
• g = 1 ⇐⇒ KS = 0 ⇐⇒ κ = 0,
• g ≥ 2 ⇐⇒ KS > 0 ⇐⇒ κ = 1. This is the general type case.

The plurigenus is defined as pm = h0(mKS). As m → ∞, it is a fact that
pm ∼ mk for some k, we define κ := k. One generally has κ ∈ {−∞, 1, 2} for
surfaces, where κ = −∞ iff pm = 0 for all m ≫ 0. The classification of surfaces
similarly is by Kodaira dimension.

1B. Birational geometry of surfaces. Let p ∈ S be a point of a smooth surface.
Consider Blp S, which replaces p with E ∼= P1 and E2 = −1. To define the
intersection pairing – look at the normal bundle NE/S = OS(−1). There is a map
Blp(S) → S which is an isomorphism away from p and E. Castelnuovo’s criterion
gives a converse: any such curve can be blown down. Note that E is referred to
as an exceptional curve of the first kind, i.e. a (−1)-curve. Exceptional curves of
higher kinds are rarely used. Fact: any birational isomorphism of surfaces factors
as a composition of blowups and blowdowns.

We say S is minimal if there are no (−1)-curves. Otherwise just blow them down,
i.e. contract those curves. We will introduce a numerical invariant that decreases
under blowdowns, so this process terminates.

Recall that there is an intersection product C1C2 which, if they intersect transver-
sally, counts intersection points. In more singular situations, it takes into account
intersection multiplicity. Note that everything is oriented when over C, so C1C2 ≥ 0
for any curves.

How does one compute E2? Replace one copy of E by D1 − D2 and compute
E(D1 −D2) instead.

New goal: classify minimal surfaces.

• κ = −∞: S = P2 or geometrically ruled surfaces (fibrations over a curve
C with P1 fibres). If C = P1 in this fibration, one obtains a Hirzebruch
surface Fn for n ≥ 0 and n ̸= 1 (which is not minimal). These are rational
surfaces. Note that “minimal” is classical terminology and is no longer used
for κ = −∞: these are instead called Mori Fano fibrations.

• κ = 0: abelian surfaces and K3 surfaces (KS = 0), Enriques surfaces (KS ̸=
0, 2KS = 0) and pg = q = 0, or bielliptic surfaces (products E1 × E2/Zn

where n = 2, 3, 4, 6 and Ei are elliptic curves).
• κ = 1: elliptic surfaces (admit fibrations over curves whose general fiber is

an elliptic curve).
• κ = 2: general type (most surfaces).

Note that if κ ≥ 0 and S is minimal then KS is nef, i.e. KS ·C ≥ 0 for any curve
C. One can take this as the definition of minimal.

Note that one has KS = mF . If m < 0 then C ∼= P1, if m = 0 then S is K3 or
Enriques, and if m > 0 then κ = 1.

The general type surfaces are hard to classify, except for special cases. E.g.
pg = q = 0 which give counterexamples to these invariants determining rationality.
Examples include Godeaux, Campadelli, Balrov, Inuoe, Burniat surfaces. These
are sometimes referred to as fake projective planes, famously there are 100 of these.

Note Castelnuovo’s criterion: S is rational iff p2 = q = 0.
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One can consider the moduli of surfaces of general type Mc21,c2
where c21 = K2

S

and c2 is another numerical invariant. These are sometimes called Gieseker moduli
space. There are KSBA compactifications, since GIT does not work well in the
setting of surfaces.

1C. Other subjects. We can discuss:

• K3s
• Characteristic p, mainly p = 2, 3
• Complex-analytic surfaces (non-algebraic), algebraic dimension a ∈ {0, 1, 2}.

Here a = 2 is the algebraic case, and the other cases are non-algebraic.
• Non-closed fields k ̸= k
• Singular surfaces

Why studying smooth surfaces suffices: any variety admits a normalization, and
any normal surface has a unique minimal resolution in any characteristic. In higher
dimensions, existence of resolutions is generally an open problem, and are almost
never unique. Thus birational geometry for threefolds is significantly harder.

2. 2024-08-20-12-47-17: Algebraic Tools

2A. Divisors and Pic.

Remark 2.1. The tools we’ll use: divisors, line bundles, sheaves, cohomology,
intersection theory, and Riemann-Roch. Almost all surfaces we consider in this
class will be smooth. Let X be a smooth algebraic variety. A divisor D =

∑
niZi

with ni ∈ Z and Zi codimension 1 subvarieties. On a curve, divisors are weighted
sums of points, and on a surface they are weighted sums of curves. We say D1 ∼ D2

if D1 −D2 = (ϕ) with ϕ ∈ C(X) a rational function. These are principal divisors.
We define Pic(X) := Div(X)/ ∼.

Example 2.2. Fact: Pic(Pn) = Z. Write Pn = {[x0 : · · · : xn]} /x ∼ λx and
Hi := {xi ̸= 0}. We have Pn \ H0 = {[1 : x1 : · · · : xn]}. The claim is that for
any D, D ∼ dH0 for some d. For Z ⊆ Pn a codimension 1 subvariety, we have

Z|H0
= V (f) since C[x1, · · · , xn] is a PID. Write ϕ = fd

(
x1

x0
, · · · , xn

x0

)
= g(x)

xd
0

,

which has a pole of order d at x0. Thus (ϕ) = Z − dH0, so Z ∼ dH0. Moreover,
dH0 ∼ 0 ⇐⇒ d = 0.

Remark 2.3. Over C, one has the GAGA principle: if X ⊆ CPn is a closed ana-
lytic subset, by the Chow lemma it is algebraic. One can then compute cohomology
using analytic tools or algebraic tools.

Remark 2.4. For example, one can identify Pic(X) as line bundles modulo iso-
morphism, i.e. H1(O×

X). Note that OX(U) are regular functions, and O×
X(U) are

nowhere vanishing regular functions – these are the first examples of sheaves.

2B. Sheaves.

Remark 2.5. Recall that a sheaf F of abelian groups is an assignment of open
sets U to sections F (U) with appropriate restriction maps.
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X

Recall that OX(D) is locally isomorphic to OX , and sections of OX(D) are
rational functions ψ such that (ψ) +D ≥ 0. Recall that D1 ∼ D2 =⇒ OX(D1) ∼=
OX(D2) by writing D1 −D2 = (ζ) and mapping s 7→ sζ. Checking (ζ) + D1 ≥ 0,
one has

(ζψ)+D2 ≥ 0 ⇐⇒ (ζ)+(ψ)+D2 ≥ 0 ⇐⇒ D1−D2+(ψ)+D2 ≥ 0 ⇐⇒ D1+(ψ)+D1 ≥ 0.

We say OX(D) is locally free of rank 1, or invertible, or a line bundle.

Note that Aut(OX) = O×
X .



6 D. ZACK GARZA

Remark 2.6. There is a SES

0 → I → OX → OC → 0

where I ∼= OX(−C). These are examples of coherent sheaves, those which can
locally be written O⊕J → O⊕I → F → 0. An example of a non-coherent sheaf is
O×

X , since one can not multiply a section by a function with a zero. Other examples
include locally constant sheaves Z,C.

Remark 2.7. Given A ↪→ B ↠ C there is a LES Hi(A) → Hi(B) → Hi(C) →
Hi+1(A) → · · ·. By Grothendieck, Hi(F ) = 0 for i > d = dimX if F is coherent
and X is a Noetherian topological space. If X is projective and F is coherent,
Hi(F ) all form finite-dimensional vector spaces. We write these dimensions as
hi(F ), which are numerical invariants. Define χ(F ) =

∑
i(−1)ihi(F ). One has

χ(B) = χ(A) + χ(C), since χ of a LES is zero.

Remark 2.8. Recall that the Betti numbers are defined as βi := dimQH
i(X;Q)

and χ(X) :=
∑

(−1)iβi. Note that χ(X) ̸= χ(OX) in general: let C be a smooth
projective curve of genus g over C. Check that χ(X) = 1 − 2g + 1 = 2 − 2g, since
there are 2g generators for homology:

However, recall h1 = h1,0 + h0,1 = g + g, and χ(OX) = h0(OX) − h1(OX) =
1 − g = 1

2 (2 − 2g) instead.

2C. Cohomology.

Remark 2.9. Recall the exponential exact sequence 0 → Z
·2πi−−→ OX

exp−−→ O×
X → 1.

Taking the LES yields:
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H0(Z) = Z H0(OX) = C H0(O×
X) = C×

H1(Z) = Z2g ⊕ tors H1(OX) = Cg H1(O×
X) = Pic(X)

H2(Z) = Zn ⊕ tors H2(OX) · · ·

> Link to Diagram
We thus get a SES 0 → Cg/Z2g → Pic(X) → F → 0 where F is some finitely

generated abelian group. We define Pic0(X) = Jac(X) = Cg/Z2g, which is an
algebraic torus over C of dimension g, and is the continuous part. We identify F :=
NS(X) as the Néron-Severi group. Note that divisors in Pic0(X) are numerically
zero, since intersection numbers are integers that vary continuously.

Example 2.10. NS(Pn) = Z, and NS(C) = Z for a genus g curve since the only
numerical invariant of continuously varying divisors is

∑
ni.

Remark 2.11. Note thatD1, D2 ∈ Pic0(X) meansD1 is algebraically equivalent to
D2, i.e. can be varied continuously. For linear equivalence, one uses P1 as the base,
since rational functions on X are equivalent to maps to P1. Algebraic equivalence
allows for the base to be an arbitrary curve.

3. 2024-08-22-12-46-47: Divisors and Intersection Theory

3A. Divisors.

Remark 3.1. LetX be a smooth projective variety, and recall Pic(X) = Div(X)/ ∼
or the group of rank 1 locally free sheaves F where F |U = OX |U . Both are

isomorphic to H1(O×
X) ∼= Ȟ1(O×

X), the Čech cohomology. Let U be an open
cover of X, so X = ∪iUi. Then a divisor D on Ui locally has an equation fi
for some rational function, i.e. (fi) = D. Consider {fi ∈ K×(Ui)}. Then on

Uij , write gij = fi
fj

. This has no zeros and no poles, so (gij) = 0. Thus gij

and 1/gij are both regular and give sections gij ∈ O×(Uij). We get a collection{
gij ∈ O×(Uij)

∣∣∣ gij · gjk · gki = 1 on Uijk

}
modulo f ′i = figi for gi ∈ O×(Ui).

This is precisely Č1/B̌1 = Ȟ1(U ,O×
X). One defines Ȟ1(X,F ) = colimU Ȟ

1(U , F )
for a sheaf F .

Example 3.2. Let F = OP1(H) where H := p∞ := {x0 = 0} in coordinates
[x0 : x1]. Write P1 = A1

x1
x0

∪A1
x0
x1

. The equations of D are 1 and x0

x1
respectively,

and the transition function is f12 = x0

x1
. Thus F = O(1).

Letting D = dH yields O(D) = O(d). Note that Pn \ H ∼= An where H =
{x0 = 0}.

Remark 3.3. For any projective variety, there are three important sheaves:

• OX ,

https://q.uiver.app/#q=WzAsOSxbMCwwLCJIXjAoXFxaWikgPSBcXFpaIl0sWzIsMCwiSF4wKFxcT09fWCkgPSBcXENDIl0sWzQsMCwiSF4wKFxcT09fWFxcdW5pdHMpID0gXFxDQ1xcdW5pdHMiXSxbMCwyLCJIXjEoXFxaWikgPSBcXFpaXnsyZ30gXFxvcGx1cyBcXG1hdGhybXt0b3JzfSJdLFsyLDIsIkheMShcXE9PX1gpID0gXFxDQ15nIl0sWzQsMiwiSF4xKFxcT09fWFxcdW5pdHMpID0gXFxQaWMoWCkiXSxbMCw0LCJIXjIoXFxaWikgPSBcXFpaXm5cXG9wbHVzXFxtYXRocm17dG9yc30iXSxbMiw0LCJIXjIoXFxPT19YKSJdLFs0LDQsIlxcY2RvdHMiXSxbMCwxXSxbMSwyXSxbMiwzXSxbMyw0XSxbNCw1XSxbNSw2XSxbNiw3XSxbNyw4XV0=
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• OPn(1)|X = OX(1) for X ↪→ PN a projective embedding,
• ωX = OX(KX).

On a normal variety, CDiv(X) ↪→ Div(X) is a subgroup. There is always such a
map, even for non-normal varieties, but generally CDiv(X) is bigger.

Remark 3.4. Letting U be an open cover, consider Uij . We have F |Ui

∼= OUi ,
and similarly we get a diagram

F |Uij
OUij gij ∈ O×(Uij)

F |Uij
OUij

1

αi

αj

> Link to Diagram

Remark 3.5. If dimX = n, then ωX := Ωn
X which has sections ΩX(U) =

{fdx1 ∧ · · · ∧ dxn} where f is regular. This is an invertible rank 1 locally sheaf.
We have Ω1

X = {f1dx1 + · · · + fndxn} which is rank n, locally isomorphic to O⊕n
X

since the dxi form a basis. Similarly we have rank Ωk
X =

(
n
k

)
.

Example 3.6. Consider again P1 = A1
u ∪ A1

v, where u = x0

x1
and v = x1

x0
, so

v = 1/u. On the intersection, dv = d(1/u) = −du
u2 and thus ωP1 = OP1(−2)

and KP1 = −2H where H is a point. More generally, KPn = −(n + 1)H and
ωPn = O(−n− 1).

Similarly, KP1×P1 = p∗1(−2H) + p∗2(−2H) where pi are the two projections.
More generally, KX×Y = p∗1KX + p∗2KY . Note that Pic(P1 × P1) = Z ⊕ Z, but
Pic(X×Y ) ̸= Pic(X)⊕Pic(Y ) in general. For a counterexample, take E an elliptic
curve, then Pic(E × E) ⊇ Z3. We write O(a, b) ∈ Pic(P1,P1) to denote bidegree
a, b curves.

Remark 3.7. To compute for other varieties, we do this indirectly using the

adjunction and Hurwitz formula. For Y ⊆ X, we have KY = (KX + Y )
∣∣∣
Y

,

or ωY = (ωX ⊗ OX(Y ))
∣∣∣
Y

. For C ↪→ P2 a curve of degree d, this yields

KC = (d − 3)H
∣∣∣
C

. One checks 2g − 2 = degKC = d(d − 3), which implies

g = 1
2 (d− 1)(d− 2).

Exercise 3.8. For C × C, show that ∆2 = 2 − 2g. On the other hand, show
(f1 + f2)2 = 2, so ∆ ̸∼ af1 + bf2 for any fibers fi.

Remark 3.9. Consider Sd ↪→ P3 a hypersurface of degree d cut out by some fd.

Then KS = (d − 4)H
∣∣∣
S

, and d = 4 =⇒ KS = 0 and this gives a K3 surface.

Similarly d < 4 =⇒ KS > 0 and d < 4 =⇒ KS < 0.

Remark 3.10. The Hurwitz formula: let π : X → Y be a map of curves, then
KX = π∗KY + R where R =

∑
(ni − 1)pi where ni is the ramification number –

given in local equations as y = xni . Note that if y = xn then dy = nxn−1dx. This
equation generalizes to ramified maps of surfaces with the same formula.

https://q.uiver.app/#q=
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Generally for a 2-to-1 cover π : S → P2, one has R = 1
2π

∗B and

KS = π∗KP2 +R = π∗(KP2 +
1

2
B) = π∗(−3 + d/2)H.

Remark 3.11. Recall that hi(D) = hn−i(K −D) by Serre duality. Define

• q := h1(O) the irregularity,
• pg := h2(O) the geometric genus,
• h1(ω) = h1(O) = q,
• h2(ω) = h0(O) = 1,
• h0(ω) = h2(O) = pg,
• h0(mK) = pm the plurigenera,
• Consider limm→∞ pm ∼ mκ, then κ is the Kodaira dimension.

3B. Intersection Theory.

Remark 3.12. There is a symmetric pairing NS(X)×NS(X) → Z given by inter-
secting curves and counting points. Recall there was a SES

0 → H1(OX)

H1(X;Z)
→ Pic(X) → NS(X) := ker

(
H2(X;Z) → H2(OX)

)
→ 0.

We have NS(X)/tors ∼= Zρ where ρ is the Picard rank. Note that this is compatible
with the cup product pairing when working with varieties over C. A definition
that works over any field: C1 · C2 =

∑
p∈C1∩C2

µp(C1, C2) where µp(C1, C2) =

dimC OS,p/ ⟨f, g⟩ where f, g are local equations for the Ci near p. This works when
♯(C1 ∩ C2) <∞.

Remark 3.13. The moving lemma: ∀C2 = A − B where A,B are general hyper-
planes for some S ↪→ Pni . Note that if C ↪→ S is smooth, then C2 = degNC/S ,
the degree of the normal bundle.

Upcoming: Hirzebruch-Riemann-Roch.

4. 2024-08-27-12-46-20: Intersection theory on surfaces

Remark 4.1. Recall that NS(X) carries an integral intersection form. For curves
without common components, it counts the intersection points with multiplicities.
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For all f : X → Y maps of varieties, define f∗ : Pic(Y ) → Pic(X) and NS(Y ) →
NS(X), defined by pulling back equations. Define f∗ : Pic(X) → Pic(Y ) by

f∗C =

{
0 f(C) = pt

dC ′ f(C) = C ′, d = deg(C → C ′)
.

Some properties:

1. If f : S′ → S is generically degree d then

(f∗D1) · (f∗D2) = dD1 ·D2.

2. Projection formula:

f∗D1 ·D2 = D1 · f∗D2.

3. Hirzebruch-Riemann-Roch: let X be a smooth projective of dimension n
and L = OX(D) a line bundle on X. Then

χ(L) =

∫
X

eDTdX .

Here eD =
∑

kD
k/k! and TdX = 1 + 1

2c1 + 1
12 (c21 + c2) + · · · and ci are the

Chern numbers of TX .

Recall that c1 : Pic(X) → H2(X;Z). Note that c1 = −KX and cn = χTop(X).
Here

∫
X

(−) is the degree of a cycle of codimension n, hence dimension 0, and counts
its number of points.

Example 4.2. Let n = 1, so C is a curve of genus g. Then c1 = −KC has degree
2 − 2g, and cn = c1 = χTop(C)1 − 2g + 1 = 2 − 2g. Thus HRR yields

χ(D) =

∫
X

(1 +D)(1 +
1

2
c1) = deg

(
D +

c1
2

)
= degD + 1 − g.

Setting D = 0 yields χ(OC) = deg
(
c1
2

)
= 1 − g.

Example 4.3.

χ(OS(D)) =

∫
S

(
1 +D +

1

2
D2

)(
1 +

1

2
c1 +

1

12
(c21 + c2)

)
=

1

2
D2+

1

2
Dc1+

1

12
(c21+c2),
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thus χ(OS) = 1
12 (c21+c2) by setting D = 0, which recovers Noether’s formula. Note

that c1 = −KS , so χ(OS) = K2+c2

12 . We can then rewrite this as

χ(D) =
D(D −K)

2
+ χ(OS)

where χ(OS) = 1 − q + pg.

Remark 4.4. Recall that for a curve D on a surface S, one has degKD = 2pa(D)−
2 and KD = (KS +D)

∣∣∣
D

. From the genus formula, pa(D) = D(D+K)
2 + 1.

Example 4.5. Consider S = P2, so KS = −3H and K2
S = 9. Check that

χTop(S) = 3 by counting torus fixed points in the standard polytope, and thus
c21+c2
12 = 9+3

12 = 1. Check that

h0(OP2(d)) =


(
d+2
2

)
i = 0

h0(−3 − d) i = 2

0 i ̸= 0, 2

.

Thus χ(OS) = 1.

Example 4.6. Let S = P1 ×P1, so K = O(−2,−2) = 2e− 2f and K2 = 8 since
ef = 1. Moreover deg c2 = 4 by considering the toric polytope and counting points.
Noether’s formula yields 8+4

12 = 1.

Remark 4.7. Note that χTop(OS(D)) can be computed easily for toric varieties.
The Euler characteristic is additive, and every such variety decomposes as (C×)2

∐
C×∐ {pi},

and χ(C×) = 0, so only points pi contribute.

4A. Birational geometry of surfaces.

Remark 4.8. Recall that rational maps on irreducible varieties are regular func-
tions on open subsets, and correspond to maps X → A1. Note that any two
open subsets of an irreducible variety intersect. One can add, multiply, and invert
nonzero rational functions by throwing out closed sets of zeros, so these form a

field. Say X
∼
99K Y are birationally isomorphic if they share a common open set

X ⊇ U ⊆ V . Say X is rational iff X
∼
99K Pn or An, and X is unirational if there ex-

ists a dominant rational map Pn 99K X (covered by a rational variety). Dominant
morphisms: closure of the image is the entire space. Note that dominant rational
maps X → Y yields an embedding of fields C(Y ) ↪→ C(X). Thus rational varieties
of dimension n satisfy C(X) = C(x1, · · · , xn), while unirational means C(X) is a
subfield.

Remark 4.9. Luroth problem: does unirational imply rational? True for n = 1, 2,
we will prove that n = 2 case in this course. Generally false for n ≥ 3.

Theorem 4.10. Suppose that S1
∼
99K S2 are birationally isomorphic smooth pro-

jective surfaces. Then there exists a diagram of blowups and blowdowns forming a
correspondence:
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S

• •

• •

S1 S2

blowups blowdowns

> Link to Diagram

Remark 4.11. We will define a blowup of a smooth surface at a smooth point
π : Blp S → S. We start with the example of S = A2 and p an arbitrary point.
This will be birational because A2 \ {p} ∼= Blp A

2 \ E. Different lines passing
through p will become disjoint curves intersecting E.

In equations, write Blp A
2 = {xY = yX} ⊆ A2 ×P1 with coordinates x, y and

X,Y respectively. Note that x/y = X/Y if y, Y ̸= 0.

Remark 4.12. In general, for S̃ → S, let x, y be local parameters for p ∈ S. One

takes OS,p ⊇ mp = ⟨x, y⟩ with Tp
∨X = ⟨dx, dy⟩ and ÔS,p = CJx, yK. So any local

regular function s can be approximated by a power series.

Remark 4.13. Claim: E2 = −1. Write P1 = A1 ∪ A1 with u = X/Y and
v = Y/X. Write Blp A

2 = A2
u,y ∪A2

v,x. This is a change of coordinates

• u, y = x
y , y where x = uy,

• v, x = y
x , x where y = vx.

If C is a line through p ∈ A2, which can be replaced with a curve C that is
smooth at p, then f∗C = C ′ + E where C ′ = f−1(C \ p) is the strict transform.
Write C = {g = 0} = {y + αx = 0}. Then f∗g = vx + ax = x(v + a) where
x = 0 is the equation of E and v + a is the equation of C ′. Conclude using the
projection formula: f∗C · E = C · f∗E = C · 0 on one hand, and is equal to
(C ′ + E)E = C ′E + E2 = 1 + E2 on the other hand, so E2 = −1.

https://q.uiver.app/#q=WzAsNyxbMywwLCJTIl0sWzIsMSwiXFxidWxsZXQiXSxbMSwyLCJcXGJ1bGxldCJdLFswLDMsIlNfMSJdLFs0LDEsIlxcYnVsbGV0Il0sWzUsMiwiXFxidWxsZXQiXSxbNiwzLCJTXzIiXSxbMCwxXSxbMSwyLCJcXHRleHR7Ymxvd3Vwc30iLDJdLFsyLDNdLFswLDRdLFs0LDUsIlxcdGV4dHtibG93ZG93bnN9Il0sWzUsNl1d
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5. 2024-08-29-12-46-42

Remark 5.1. Recall the construction of the blowup at a point π : S̃ → S. We
proved E2 = −1.

Lemma 5.2. Some facts:

• Pic S̃ = PicS ⊕ ZE
• NS(S̃) = NS(S) ⊕ ZE

Thus every line bundle on S̃ is of the form π∗L + mE for some m and some
L ∈ Pic(S).

Proof. Write Pic(S) as divisors modulo principal divisors, where the latter are
(φ) = (φ)0 − (φ)∞ for some φ ∈ C(S). The numerator includes an additional
divisor E, while the denominator is the same since they are birational.

□

Lemma 5.3. If p ∈ C, then π∗C = C ′ + mE where C ′ is the strict transform of
C, C ′ = π−1(C \ p).

Proof. Cover S̃ by S×A1
u and S×A1×v. On the first we have coordinates x, u where

y = xu, on the second we have y, v where x = yv. Then the map is (x, u) 7→ (x, xu),
the affine blowup. Note that x = 0 7→ (0, 0) is the exceptional curve. If x ̸= 0 this
map is invertible, since u = y/x. Write π∗fm(x, y) = fm(x, xu) = xmg(x, u), and
this is mE + C ′.

□

Lemma 5.4.

K̃S = π∗KS + E.

Proof. Write O(KS) = Ω2
S = ⟨dx ∧ dy⟩OS

. Check dx, dy in the coordinates y = xu
to get

dx ∧ dy = dx ∧ d(xu) = dx ∧ (udx+ xdu) = xdx ∧ du.
Conclusion: π∗Ω2

S ⊆ Ω2
S̃

, and π∗Ω2
S = Ω2

S̃
(E) since these forms vanish along E.

This says π∗KS = KS̃ − E.
□

Lemma 5.5. Claim:

• (C ′)2 = C2 −m2.
• C ′

1C
′
2 = C1C2 −m1m2.

• pa(C ′) = pa(C) − m(m−1)
2 .

Proof. We have π∗C1π
∗C2 = C1C2 since π is generically 1-to-1. By the projection

formula, π∗CE = Cπ∗E = 0.
Recall

pa(C) =
1

2
(KSC + C2) + 1,

so write

pa(C ′) =
(π∗KS + E)(π∗C −mE) + (π∗C −mE)2

2
+ 1.

□
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Remark 5.6.

Remark 5.7. Blow up the nodal curve to get p′a = pa − 1. Blow up the cuspidal
curve to get. . . .something.

Note that all cubics have the same pa, since it only depends on the linear equiv-
alence class of C.

Consider resolving C to C ′ by ν and use the fundamental SES

0 → OC → ν∗OC̃ → F → 0.

Then χ(OC̃) = χ(OC)+χ(F ) where χ(F ) = h0(F ) = d > 0. Recall pa = 1−χ(OC).
If C is smooth then pa(C) = g.

5A. Castelnuovo.

Theorem 5.8. Suppose S̃ is a smooth surface containing E ∼= P1 where E2 = −1.

Then ∃π : S̃ → S where E 7→ pt such that S̃ \ E ∼= S \ pt and S̃ ∼= Blp S.

Remark 5.9. On linear systems: let V ⊆ H0(L) where L = O(C). Let s ∈ V , then

(s) = D an effective divisor. Write PV =
{

(s)
∣∣∣ s ̸= 0

}
, this is equivalent to the set

of effective divisorsD ∼ C. Recall |C| = H0(O(C)) =
{
ϕ rational

∣∣∣ (φ) + C = D ≥ 0
}

,

i.e. those (ϕ) such that (ϕ) + C has no poles. This is a complete linear system.

Note that (φ1) = (φ2) ⇐⇒
(

φ1

φ2

)
= 0. Here s and φ are in bijection.

Remark 5.10. Let f : S → Pn such that f(S) is not contained in a hyperplane.
This yields a linear system. In projective coordinates xi of Pn, write a hyperplane
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H as
∑
cixi ∈ PV where Pn = PV ∨. Then f∗H is a divisor on S. Define a

line bundle L = f∗OPn(1) on S. Each H defines a section s. This yields an
(n+ 1)-dimensional vector space V ⊆ L.

Remark 5.11. Write the base locus of PV as
⋂

D∈PV D. A base component is a
divisor in the base locus. Say PV is basepoint free if Base(PV ) = ∅. We then get
a bijection between linear systems without base components for smooth varieties S
and rational maps S 99K Pn.

Lemma 5.12. If C is a smooth curve and C 99K Pn, then this map can be extended
to a regular map.

Remark 5.13. Write the uniformizer of OC,p as t, let ϕ0, · · · , ϕn be rational func-
tions. Write ϕi = utmi , take d = minmi, and divide by td.

Example 5.14. Consider the linear system L of lines through a point in P2. Then
L ∼= P1, since each such line is specified by a point in P1. Write H0(OP2(1)) =
⟨x0, x1, x2⟩, so L = ⟨x1, x2⟩. Then take the rational map

P2 → P1

[x0 : x1 : x2] 7→ [x1 : x2]

which is undefined at [1 : 0 : 0]. This single point is the base locus of L.

Example 5.15. Take H0(OP2(2)) ⊇ L =
〈
x21, x1x2

〉
. Write L′ = L + E where

E = {x1 = 0}.

Example 5.16. Let S = P2 and L = |2H−p|, quadrics passing through the origin.
A basis for all quadrics is given by

〈
x20, x

2
1, x

2
2, x0x1, x0x2, x1x2

〉
. Imposing x20 = 0

yields L ∼= P4. What is the image? It is the blowup of P2 at the origin. Note
that there are no basepoints on the blowup. The pullbacks of all such quadrics

contain E, generically with multiplicity one. The pulled back linear system on S̃ is

|2H − E|; this gives an embedding S̃ → P4.

Remark 5.17. Next time:

• f is injective if L separates points: ∀p, q,∃D such that p ∈ D but q ̸∈ D.
• f is a closed embedding if L separates tangent vectors.
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This prevents the following situation, where a tangent vector is sent to zero:

6. 2024-09-03-12-46-25: Linear Systems

Remark 6.1. Recall that a linear system is defined by L = P(V ) where V ⊆ H0(F )
is a finitely-generated vector space. We define Base(L) = ∩(s) for s ∈ V . Recall
that if F is a line bundle then F = OX((s)) for any effective (s).

Theorem 6.2. There is a bijection between maps X
f−→ Pn with f(X) not contained

in a hyperplane and linear systems L with Base(L) = ∅. One sets F := f∗OPn(1)
in one direction. In the other direction, writing s =

∑
cixi with x0, · · · , xn local

coordinates on Pn and sets D = (s).

Remark 6.3. Recall that

• f is injective ⇐⇒ L separates points.
• f is an isomorphism ⇐⇒ additionally L separates tangent directions.

Writing TX,p = (mp/m
2
p)∨, the latter condition means Tp → Tf(p) is injective, or

equivalently T∨
f(p) → T∨

p surjective. This is satisfied if the pullbacks f∗y1, · · · , f∗yn
generate mp/m

2
p, where y1, · · · , yn are local coordinates in Pn. Note that a surjec-

tion on maximal ideals corresponds to a surjection on the completions of local rings

Ôf(p) ↠ Ôp.

Remark 6.4. For X a smooth curve, these conditions simplify:

• Base(|D|) = ∅, or equivalently h0(D − p) = h0(D) − 1. These numbers are
equal iff every divisor passes through p. This is proved by Riemann-Roch.

• Separating points: h0(D− p− q) = h0(D− p)− 1, so not all of the divisors
that pass through p also pass through q.

• Separating tangents: h0(D − 2p) = h0(D − p) − 1.

Note that on a surface, |D − p| is a just convenient notation for divisors that
pass through p, since D − p is not a divisor.

Theorem 6.5. If X is a smooth variety, then rational maps X 99K Pn are in
bijection with linear systems without base components, i.e. Base(L) does not contain
a divisor.
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Remark 6.6. One can always remove the indeterminacy in codimension 1, but not
necessarily in codimension 2.

Theorem 6.7. Suppose ϕ : S → S′ is a map from a smooth surface to a projective
surface. Then there exists a diagram where Si = Blpi

Si−1:

Sk

. . .

S1

S0 := S S′

f (regular)

> Link to Diagram

Remark 6.8. Idea:

https://q.uiver.app/#q=WzAsNSxbMCwzLCJTXzAgXFxkYSBTIl0sWzEsMiwiU18xIl0sWzMsMCwiU19rIl0sWzYsMywiUyciXSxbMiwxLCJcXGRvdHMiXSxbMCwzLCIiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwwXSxbMiw0XSxbNCwxXSxbMiwzLCJmXFxxcXVhZFxcdGV4dHsocmVndWxhcil9Il1d
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On the proof: let D = D0 be a divisor in the linear system. Resolve to get

D1 = f∗1D−m1E1 where m1 = multp(L) := min
{

multp(D)
∣∣∣ D ∈  L

}
. Check that

D2
1 = D2

0−m2
1 and D2

i ≥ 0 for all i. But the self-intersection can’t decrease forever.

Remark 6.9. Let L = P1 in P2 be the set of lines through zero. Blowing up yields
a fibration Blp P

2 → P1 which is a ruled surface with fibers the exceptional curves.
This surface is F1.

Theorem 6.10. Let f : S′ → S be a birational map between smooth surfaces where

f−1 is undefined at a point p ∈ S. Let ε : Ŝ → S be the blowup at p, then f factors
through ε.
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Corollary 6.11. Any birational map of smooth projective surfaces S → S′ factors
into a sequence of blowups and blowdowns.

Remark 6.12. Blowup enough to make the rational map regular. Either it’s an
isomorphism or undefined at a point. In the latter case, blowup and apply the
theorem. Why this terminates: f−1(p) contains finitely many divisors.

Toward proving the theorem:

Lemma 6.13. Let f : S′ → S be birational with g := f−1 undefined at p. Then
∃C ⊆ S′ a curve with f(C) = p.

Why this implies the theorem:

Proof. Suppose C 7→ p and consider ε : Ŝ = Blp S → S. Extend f : S′ → S to
g = ε−1 ◦ f . If g is a morphism, we’re done. If g is undefined then there exists a

curve in Ŝ which is contracted by g−1. Note that g−1 is only undefined at finitely
many points, and thus can’t contract a curve. So the exceptional point is contracted
to a point q in S.

DZG: Missed parts here!

Conclusion: ε−1(z) vanishes along E with multiplicity m ≥ 2. Conclude that
f−1(z) also vanishes along C with multiplicity ≥ 2, but this contradicts the con-
struction of the blowup.

□

Remark 6.14. Note that this proof does not use Castelnuovo’s criterion.

7. 2024-09-05-12-47-08

Remark 7.1. Last time: S′ f−→ S with S smooth and f−1 undefined at p ∈ S.
Then f contracts a nonempty curve C ⊆ S′, i.e. f(C) = p.

Remark 7.2. Recall Zariski’s main theorem: if f : X → Y is finite and birational
with Y normal, then f is an isomorphism. Recall that Y is normal iff OY,p is
integrally closed in its fraction field, and smooth implies normal because UFDs are
integrally closed. We give two proofs of the theorem from last time.

Proof. We will show that f is finite and affine, i.e. preimages of affines are affines.
Recall a morphism SpecA → SpecB is finite if B → A makes A a finite B-
module. Finite is equivalent to quasifinite (finite fibers) and proper. Note that
projective morphisms are proper, and any morphism between projective varieties
is automatically projective.

□

Proof. Recall S is smooth, so OS,p is a UFD. Embed S′ ⊆ Pn and consider f−1 :
U → An ⊆ Pn where U is an affine neighborhood of p. Then f−1 = (φ1, · · · , φn)
is given by n rational functions. Write u/v for where ϕ1 is undefined at p, then
u(p) = v(p) = 0. Let u/v be coprime. Pullback and consider f∗u, f∗v. Then
f∗u = f∗v · x1 where xi are coordinates on U . They are coprime in the UFD
OS,p. So these differ by a regular function. Consider the curve where f∗v = 0,
then f∗u = 0. By the principal ideal theorem, f∗v = 0 is codimension one, hence
a curve.

□
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Remark 7.3. Slogan: non-regular rational maps insert curves. Note that it may
factor as a sequence of blowups. Recall Castelnuovo’s contractibility criterion:
rational (−1)-curves can be blown down.

Lemma 7.4. If S is smooth projective and contains E ∼= P1 with E2 = −1, then
∃f : S → S′ with S′ smooth and S = Blp S

′, i.e. f(E) = p is a point and f |S\E is

an isomorphism.

Proof. Consider OS(1) = OPm(1)
∣∣∣
S

and let H be a hyperplane. Then H is very

ample. Let A = mH for m ≫ 0; note A is also very ample. I.e. there is some

S ↪→ Pk where OS(m) = OPk(1)
∣∣∣
S

, this follows from pulling back a Veronese

embedding Vm : Pm → Pk. The degree of the curve under this embedding is
A.E > 0. Define L = A + mE, then L.E = 0. Claim: |L| is basepoint-free,
contracts E to a point, and the induced morphism ϕ|E| is an isomorphism outside
of E.

Step one: L is basepoint-free. Consider H0(L). We know Base(L) ⊆ E since

the only possible zeros are along E. Consider H0(L
∣∣∣
E

) induced by the restriction

O(L) ↠ OE(L). Note that degOE(L) = 0, and since Pic(Pn) = Z we have
OE(L) ∼= OPn . There is a SES 0 → OS(L − E) → OS(L) → OE(L), so by taking
the LES, it suffices to show H1(OS(L − E)) = 0. Now apply Serre’s vanishing
theorem: if X is projective and F ∈ Coh(X), the twist F (m) for m ≫ 0 has
vanishing higher cohomology and F (m) is globally generated. So H1(OS(A)) = 0,
and L = A+mE, so L−E = A+(m−1)E. We want H0(A+(m−1)E) = 0. There
are SESs 0 → OS(A+ (k − 1)E) → OS(A+ kE) → OE(A+ kE). By induction, it
suffices to show H1(P1,O(m + k)) = 0. This is dual to H0(P1,O(−2 −m − k)),
which is zero if k ≤ m− 1.

Missed details here, the markers were dying!

Delicate part of the argument: showing S′ is smooth. It suffices to see that
dimC mp/m

2
p = 2. For that, we produce two explicit generators. Take a SES

0 → OS(L− 2E) → OS(L−E) → OE(L−E) = OP1(1) → 0. Take the LES, note
H0(OP1(1)) = ⟨x, y⟩ is 2-dimensional. This is isomorphic toH0(L−E)/H0(L−2E),
we want to show this is F ⊗mp/m

2
p for F some invertible sheaf.

Write S′ ↪→ Pn and g : S → Pn for the composition with f . Then L = g∗OPn(1).
Check that sections of L − E vanish along E to order at least 1, so are in mp.
Similarly sections of L− 2E vanish along E to order at least 2 and are thus in m2

p.
Thus F = OS′(1).

Note f∗OS = OS′ and L = f∗OS′(1), so by the projection formula,

f∗L = f∗ (f∗OS′(1)) = f∗OS ⊗OS′(1) = OS′(1).

Apply f∗ to O(L−E) ↪→ O(L) ↠ OE(L) and show one gets mp(1) → OS′(1) →
Cp → R1f∗OS(L − E) = 0. Something similar must be shown for L − 2E, but
this requires a spectral sequence argument. We instead appeal to Grothendieck’s
theorem on formal functions.

□

Remark 7.5. Normalization produces a Stein factorization:
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S̃′

S S′ Pn

> Link to Diagram

Here S̃′ is the normalization, and can be written as S̃′ = Spec f∗OS .

Remark 7.6. Grothendieck’s theorem on formal functions: let f : X → Y be
projective, F ∈ Coh(X), and p ∈ Y . Consider the higher direct images Rif∗F

on Y , which is an OY -module. Complete the stalk at p to get R̂if∗F p which is

a module over ÔY,p. This can be computed as a limit colimZ F
∣∣∣
Z

where Z are

thickenings of the fiber f−1(p).

Remark 7.7. We first apply this for i = 0; we get f̂∗OS = ÔS′ . For smoothness,
we want to show the latter is isomorphic to CJx, yK. The theorem says to compute
colimmH0(mE). We have 0 → OS(mE) → OS → OmE . The claim is that the
colimit is C[x, y, x2, xy, y2, · · · , ym], the monomials up to the mth order. Use the
fact that OE(−mE) = OP1(m).

Remark 7.8. This concludes chapter 2. Next time: ruled surfaces.

8. 2024-09-12-12-46-17

8A. Classification of ruled surfaces.

Remark 8.1. Recalling ruled surfaces: let f : S → C where all fibers are isomor-
phic to P1. We proved it is a locally free P1 bundle, so ∀p ∈ C there is some U ∋ p
such that f−1(U) ∼= U ×P1.

Remark 8.2. Classification of locally free rank r sheaves E and locally free A1 bun-
dles (vector bundles). Letting X =

⋃
Ui, there is an isomorphism gi : E|Ui

∼−→O⊕r
Ui

.

Different choices of isomorphisms yield elements gi ∈ GLr(O(Ui)) = Aut(O⊕r
Ui

).
The coefficients are in the ring of regular functions on Ui. How do these isomor-
phisms glue? We specify transition functions gij ∈ GLr(O(Ui ∩ Uj)) satisfying the
1-cocycle condition on triple intersections gijgjkgki = 1 ∈ GLr(O(Ui ∩ Uj ∩ Uk)).

We mod out by the relation g′ij = g−1
j gijgi, the 1-coboundary condition. This yields

Čech cohomology Ȟ1(U,GLr(O)) ∼= H1(X,GLr(O)). This works generally: global
versions on locally free objects live in Ȟ1(U,Aut(E)).

Remark 8.3. Vector bundles are locally free Ar bundles. Let f : Y → X have
fibers A1, so Ui ⊆ X lifts to f−1(Ui) = Ui×Ar. What are the transition functions?
One looks for automorphisms of (Ui ∩Uj)×Ar ∋ (x, y1, · · · , yr), which correspond
to gij(x) ∈ GLr(O(Ui ∩ Uj)). What is the corresponding sheaf? Let E(U) be
sections over U , so morphisms s : U → f−1(U). Locally this is given by r regular
functions, so E(Ui) = O(Ui)

⊕r.

Remark 8.4. For ruled surfaces, we consider Ȟ1(C,PGL2(O)). More generally,
take PGLr(O).

https://q.uiver.app/#q=WzAsNCxbMCwyLCJTIl0sWzIsMiwiUyciXSxbMywyLCJcXFBQXm4iXSxbMSwwLCJcXHRpbGRlIFMnIl0sWzAsM10sWzMsMV0sWzAsMV0sWzEsMiwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=
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Theorem 8.5. All geometrically ruled surfaces are of the form PC(E) where E is

a locally free sheaf of rank 2. Moreover, PC(E)
∼−→PC(E ′) over C iff E ′ ∼= E ⊕ L

for L some line bundle.

Remark 8.6. Thus E on C is in bijection with an A2 bundle A(E) → C. What is
PC(E)? This is the bundle of lines in the vector bundle. Dually, one could define
this as rank 1 quotients of the vector bundle. Passing back and forth: replace E by
E∨.

Proof. There is a sequence 1 → C2 → GL2(C) → PGL2(C) → 1 which globalizes
to 1 → O× → GL2(O) → PGL2(O) → 0. Taking the LES yields Pic(C) →
H1(GL2(O)) → H1(PGL2(O)) where the middle corresponds to rank 2 locally free
bundles and the right corresponds to locally free P1 bundles. It suffices to show
this is surjective, so consider H2(O×

C ) – this is trivial by Grothendieck vanishing
since dimC = 1.

□

Remark 8.7. Goal: understand locally free sheaves on curves, e.g. P1 (easy),
elliptic curves (harder), and curves of general type (generally hard). Next: relate
birationally and geometrically ruled surfaces.

Remark 8.8. A (classically) minimal surface is a smooth projective surface with
no −1 curves.

Remark 8.9. Ruled surface: S
∼
99K C × P1 for C a curve. Take a sequence

of blowups to obtain S̃ → C × P1 a regular morphism. Consider the composite

S̃ → C ×P1 → C; most fibers are P1 but some are more complicated:

Claim: either S̃ = PC(E) or there exists a −1 curve in a fiber. In the first case,

S̃ → PC(E) → C is a relatively minimal model.

Proof. Consider a reducible fiber F =
∑
miDi. Then every D2

i < 0. Use that F 2 =

0. Consider Di0 ·F = 0 one one hand, and is equal to Di0

(
mi0Di0 +

∑
j ̸=imjDj

)
.

Then Di0Dj ≥ 0 for all j, so we must have D2
i0
< 0 for this to equal zero.

Moreover (KS + F )
∣∣∣
F

= KF = KP1 , and F
∣∣∣
F

= 0, so KSF = −2. Thus

there exists a Di ⊆ F with KSDi < 0. If Di is a connected curve, one can show
pa(Di) = 1

2 (KDi +D2
i ) ≥ 0. Since D2

i < 0 and KDi < 0, this forces Di
∼= P1.

Missed last part of this argument.

□
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Remark 8.10. Fact: there are no covers P1 → C if g(C) > 0. By Riemann-
Hurwitz, KP1 = f∗KC +

∑
(mi − 1)pi, and taking degrees yields −2 on the LHS

and 2g − 2 > 0 and a positive contribution on the RHS, a contradiction.
Alternatively, consider π : C ′ → C and consider the induced map π∗ : H0(ΩC) →

H0(ΩC′). Note y = f(x) =⇒ dy = f ′(x)dx. The claim is that this map is injective,
so the genus increases.

8B. Classification of PC(E).

Theorem 8.11. (Grothendieck) On P1, every locally free sheaf is uniquely isomor-
phic to

⊕
i O(ni).

Corollary 8.12. L ⊗ E = O ⊕ O(n) for some n ≥ 0. Thus geometrically ruled
surfaces over P1 = C are Hirzebruch surfaces Fn := PP1(O ⊕ O(n)). Note that
F0 = P1 ×P1.

Theorem 8.13. (Atiyah) If C is an elliptic curve, then for any rank r there exists
a unique indecomposable rank r locally free sheaf E, modulo twisting by a degree
zero line bundle L ∈ Pic0(C) = C.

Corollary 8.14. If deg E is even, then there exists an L such that deg(E⊗L) deg(E)+
2 deg(L) = 0. Thus either E = L1 ⊕L2 or O⊕L3. If deg E is odd, deg(E ⊗L) = 1.

Remark 8.15. Note Ext(A,B) = Ext(O, B ⊗A−1) = H1(B ⊗A−1). Considering
an elliptic curve and 0 → O → E → O → 0, one has H1(O ⊗ O−1) = H1(O) =
g(C) = 1, so there is a nontrivial extension.

Remark 8.16. Next time: deg E = deg det E as a line bundle.

9. 2024-09-17-12-46-29

Remark 9.1. We proved that every geometrically ruled surface is of the form
PC(E) with rank E = 2. Recall that locally free OC modules are in bijection with
An bundles over C.

Lemma 9.2. For all rank 2 locally free sheaves E, there is a SES

0 → L→ E →M → 0

where L,M are line bundles. If h0(E) > 0, then L = O(D) for D an effective
divisor. Note that deg E := deg det(E) = deg∧2E.

Proof. Sections s ∈ H0(C; E) correspond to morphisms OC
s−→ E where 1 7→ s.

Note that the cokernel of a morphism of locally free sheaves may not be locally

free. Taking duals yields E∨ s∨−→ OC . Note E∨ ↠ Q = O(−D) with kernel K,
which is locally free. This yields 0 → K → E∨ → Q → 0, so dualize to get the
result.

This holds under the hypothesis h0(E) > 0, so there is a section. By Serre,
E(n) := E ⊗OC(n) is generated by global sections for n≫ 0. So H0(E(n))⊗OC ↠
E(n), and the previous argument applies, then untwist.

□

Remark 9.3. Recall Riemann-Roch for line bundles on a curve: χ(L) = degL +
1 − g. Note that det(E) ∼= L⊗M , so deg(E) = deg(L) + deg(M). Thus

χ(E) = χ(L) + χ(M) = (degL+ 1 − g) + (degM + 1 − g) = deg(E) = 2(1 − g).
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Remark 9.4. When does this extension split? Twist L → E → M by M−1

to get L ⊗M−1 → E ⊗M−1 → O. A section of the former is the same as a map
O → E⊗M−1. A section s ∈ H0(E⊗M−1) maps to 1 ∈ H0(O) which further maps
to some e ∈ H1(L ⊗M−1) in the associated long exact sequence. The extension
splits iff the extension class e = 0. As a corollary, if H1(L ⊗M−1) = 0 then the
extension splits.

Remark 9.5. On P1, any rank r vector bundle E splits as a sum of O(ni).

Proof. Compute deg(E ⊗ A) = degE + 2 degA when rankA = 1. Replace E by
some E(n) so that degE = 0 or −1. By Riemann-Roch, χ(E) = degE + 2 = 2 or
1. Thus h0(E) ≥ 1. There is then a SES O(n) → E → O(m) where m = degE−n
with n ≥ 0. The extension class e ∈ H1(O(2n− degE)) = 0, since 2n− degE ≥ 0.
This uses that H1(O(d)) = 0 if d ≥ −1, since this is dual to h0(O(−2 − d)).

□

Remark 9.6. Why this decomposition is unique: this minimum of n1, n2 is unique
as a function of E. The max(n1, n2) is the maximal n such that h0(E(−n)) > 0,
since twisting by −n yields O ⊕O(n2 − n) where n2 − n ≤ 0.

Remark 9.7. For an elliptic curve C, the only indecomposable rank 2 bundles are
extensions E in O → E → O where e ∈ H1(O) = C, or O → E → O(p) with
e ∈ H1(O(−p)) = H0(O(p))∨ = C for p ∈ C a point. One can take either of these
and tensor by a line bundle.

Remark 9.8. For curves of genus g ≥ 2, there is a moduli space of indecomposable
rank 2 vector bundles of degrees 0 or 1. The dimension is 3g − 3.

Corollary 9.9. The geometrically ruled surfaces over P1 are P(O ⊕O(n)) = Fn,
the Hirzebruch surfaces, for n ≥ 0.

9A. Tautological line bundles on PC(E).

Remark 9.10. On S, there is a natural SES N → p∗E → OP(E)(1) where p : S →
C, p∗E is rank 2, and N,OP(E)(1) are line bundles. There is a similar sequence on

fibers O(−1) → O⊕O → O(1). Regard a point in a fiber as an A1 ⊆ A2. We thus
call OP(E)(1) the tautological bundle.

Remark 9.11. Sections s : C → PC(E) are in bijection with rank 1 locally free
quotients of E on C.

Remark 9.12. Intersection theory on a deeper level, toward the enumerative ge-
ometry of PC(E). Let X be a variety, and F a rank r vector bundle on X. Then
there exist Chern classes ci(F ) ∈ Ai(X) for 0 ≤ i ≤ dimX. Recall that Ai(X)
are codimension i cycles

∑
nkZk modulo linear equivalence, so A1(X) = Pic(X).

Recall linear equivalence:
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The total Chern class is c(F ) :=
∑

i ci(F ). It is additive in SESs: for A→ B →
C, one has c(B) = c(A) · c(C). A map f : X → Y induces f∗ : Ai(Y ) → Ai(X)
where ci(f

∗F ) = f∗(ci(F )). If L is a line bundle, then c(L) = 1 + L.

Remark 9.13. By general principles, c2(p∗E) = 0. Next time [N ] · [PC(E)] = 0.

10. 2024-09-19-12-49-21

Remark 10.1. Let C be a curve of genus g and E a rank 2 vector bundle, and let
S = PC(E) → C. There is an exact sequence 0 → N → p∗E → OS(1) → 0 over S
where the ranks are 1,2,1 respectively. Let h = c1(OS(1)) ∈ NS(S); on any fiber f
this restricts to OP1(1). Note that h need not be effective.

Theorem 10.2. Three equations:

• Pic(S) = p∗ Pic(C) ⊕ Zh
• NS(S) = p∗NS(C) ⊕ Zh ∼= Z⊕ Zh.
• H2(S;Z) = p∗H2(C;Z) ⊕ Zh.

Moreover:

• f2 = 0
• hf = 1
• h2 = degE

Finally,
KS = −2h+ (degE + 2g − 2)f.

Proof. Let D ∈ Pic(S) and consider d := D.f . Then D′ := D − dh yields D′.f =
0, and we claim that D′ = p∗L for some L ∈ Pic(C). It suffices to show that
h0(D′ + nf) > 0 for some n. Note that h2(D′ + nf) = h0(K − D′ − nf) = 0,

since (K − D′ − nf)f = −2 which follows from (K + f)
∣∣∣
f
= Kf = KP1 = −2.

Riemann-Roch yields

χ(D′ + nf) =
1

2
(D′ + nf)(D′ + nf −K) + χ(OS) = n+ c

for c some constant. Let A ∼ D′+nf , then A.f = 0. So A is effective and intersects
every fiber by zero, so every reducible component is contained in a fiber. So A is
a sum of fibers with some multiplicities, which is thus the pullback of some divisor
on C.
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Note that we have a SES Pic0(S) → Pic(S) → H2(S;Z) → H2(OS). Note that
Pic0(S) = H1(OS)/H1(S;Z) and H2(S;Z) = NS(S) in this case. This yields the
conclusion.

□

Proof. For F a sheaf on X, c0(F ) = rank(F )[X], c1(F ) is a divisor, and c2(F ) is
codimension 2. Recall c(N) · c(OS(1)) = c(p∗E). This yields (1 + n)(1 + h) =
1 + c1(p∗E) + c2(p∗E). Note that c1(p∗E) = p∗c1(E) = (degE)f and c2(p∗E) =
p∗c2(E) = p∗0 = 0, since c2 vanishes for a curve. Thus

(1 +N)(1 + h) = 1 + (deg(E))f,

and so

• n+ h = (deg(E))f ,
• nh = 0.

Thus ((deg(E))f − h)h = 0.
□

Remark 10.3. Note that twisting E by a line bundle changes h but does not
change PC(E).

Proof. Let s be a section, then s = h + af since s.h = 1 and s.f = a is unknown.
Note that degKs = 2g − 2, and we can write KS = −2h + bf for some b. By

adjunction, Ks = (KS + s)
∣∣∣
s
, and taking degrees yields

2g − 2 = (−2h+ bf + h+ af)(h+ af) = (−h+ (a+ b)f)(h+ af) = −deg(E) + b.

Note that b does not depend on the section s, hence the cancellation of a. Solving
yield b = deg(E) + 2g − 2.

□

Remark 10.4. Recall that N was defined by varying lines in A2 along a fiber.
Twisting by a line bundle yields 0 → N ⊗ p∗L → p∗(E ⊗ L) → OS(1) ⊗ p∗L → 0.
This yields h′ := h+ p∗L and (h′)2 = h2 + 2 deg(L).

Remark 10.5. Basic numerical invariants:

• q(S) = h1(OS) = h0(ΩS),
• pg(S) = h2(OS) = h0(Ω2

S),
• Pm(S) = h0(OS(mK)) = h0((Ω2

S)⊗m).

Note that P1 = pg and P0 = 1.

Theorem 10.6. q, pg, Pm are birational invariants for smooth projective varieties.

Proof. Step 1: Global sections of differential forms tend to be birational invariants.
Let X be such a variety and ϕ : X 99K Y a rational map. Then ϕ is undefined
in codimension ≥ 2 – there exists Z ⊆ X with codimX(Z) ≥ 2 and U := X \ Z
such that φ|U = f : U → Y is a regular map. Let D ⊆ X be a divisor cut out by
t = 0 in a local coordinate. Embed Y ⊆ PN , and clear denominators and rescale
by powers of t. We can thus pull back differential forms to U .

Step 2: Hartog’s theorem. A differential form on U with codim(X \ U) ≥ 2 can
be extended to all of X when X is smooth.

□

Corollary 10.7. If ϕ : X → Y is a dominant rational map then
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• q(X) ≥ q(Y )
• pg(X) ≥ pg(Y )
• Pm(X) ≥ Pm(Y )

Remark 10.8. Rational maps thus yield inequalities in both directions.

Remark 10.9. We now consider ruled surfaces S
∼
99K C ×P1. We obtain

• q(S) = g,
• pg(S) = 0,
• Pm(S) = 0.

Let pi : C × P1 → C,P1 be the coordinate projections. Then TC×P1 =
p∗TC ⊕ p∗TP1 . Take duals to get ΩS = p∗ΩC ⊕ΩP1 and check h0(ΩS) = h0(ΩC) +
h0(ΩP1) = g + 0 = g. Note that pg(S) = h0(KS). Also note that K2 is not a bira-
tional invariant, since blowing up decreases this by 1. Here we have K2

S = 8 − 8g
by computing (−2h+ (degE + 2g− 2))2 = 4 degE − 4(degE + 2g− 2). For g = 0,
we get P1 ×P1, check K2

S = (2h+ 2f)2 = 8. For g = 1, check K2
S = 0.

Remark 10.10. Note that a surface S is birationally ruled iff Pm(S) = 0 for all m.
This is a classical theorem. It is rational iff q(S) = P2(S) = 0. Recall that Kodaira
dimension is defined by Pm ∼ mκ(S). For κ(S) = 0, there is a full classification in
terms of the above invariants. There is a structure theorem for κ(S) = 1, elliptic
surfaces. For κ(S) = 2, there are finitely many types where q = pg = 0, but there
is not a full classification.

11. 2024-09-24-12-46-22

Remark 11.1. New chapter: rational surfaces. Recall that a variety X is rational

iff ∃f : X
∼
99K PN for some N . Examples include Hirzebruch surfaces Fn, geomet-

rically ruled surfaces over P1. These are fibrations S → P1 where every fiber is
P1. Recall that geometrically ruled surfaces are of the form PP1(V ) where V is
a vector bundle of rank 2. We showed that any such bundle on P1 is of the form
O(a) ⊕ O(b), and tensoring by O(−a) yields O ⊕ O(n) where n ∈ Z≥0. We write
Fn = PP1(O⊕O(n)). Note that F0 = P1 ×P1. We can write Pic(F0) = Ze+ Zf
where e, f are fibers of the two projections. These satisfy e2 = f2 = 0 and ef = 1.
Any effective curve C ⊆ F0 can be written as ae + bf for some a, b ≥ 0. Why
this is true: note that C.f = a ≥ 0 because |f | is basepoint free. Alternatively,
check that p∗(f) = 0 where p is the projection onto P1, and p∗(e) = [P1]. Thus
p∗(C) = [P1] · deg(C → P1) ≥ 0.

Proposition 11.2. In parts:

• In Fn there exists a unique section sn such that s2n = −n. This is the
unique section with negative square.

• For all irreducible curves C ̸= sn, one has C2 ≥ 0.
• Fn

∼= Fm ⇐⇒ n = m.

Proof. Write Fn = PC(E)
p−→ C. We have a sequence 0 → N → p∗E →

OPC(E)(1) → 0. We write [OPC(E)] = h, and we showed NSPC(E) = Zh⊕ Zf for

hf = 1 and h2 = deg(E). We have a bijection between sections of p and sequence
p∗E → F → 0. We have i∗OPC(E)(1) = F as sheaves on C. Consider the sequence

O ⊕ O(n) → O(d) → 0 on P1. What values of d can occur? First we analyze
for which a, b there is a nontrivial homomorphism O(a) → O(b). Untwisting, this
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is equivalent to a homomorphism O → O(a − b), which is equivalent to a global
section s of O(a− b). Such an s exists if a− b ≥ 0. By cases:

• If d < 0, there is no homomorphism O ⊕O(n) → O(d).
• If d = 0, there is a unique such homomorphism up to scaling 1 7→ λ, which

is surjective. This yields the exceptional section sn.
• If 0 < d < n, s ∈ H0(O(d)) has d zeroes and thus fails surjectivity at these

points.
• If d ≥ n, there are many such sections, which can be chosen to have disjoint

zeros and thus generate the image.

We now examine sn. We have O⊕O(n) ↠ O, this yields a section i : P1 → Fn.
Since O = i∗OP(E)(1), we have hs = 0. We have h2 = deg(E) = n, fh = 1, and

f2 = 0. We can write s = ah+ bf , now check that 1 = sf = a so s = h+ bf . Then
0 = sh = (h+bf)h = n+b and thus b = −n. Finally s2 = (h−nf)2 = n−2n = −n.

Any other section s′ corresponding to O⊕O(n) ↠ O(n) yields s′ ∼ h+(d−n)f ,
and one can check (s′)2 = n + 2(d − n) ≥ n. Any two such s′ intersect at h2 = n
points and are disjoint from sn. Other sections are sometimes denoted s∞, and one
has s∞ ∼ h. One can also write Pic(S) = ⟨h, f⟩ = ⟨s∞, f⟩.

□

Proof. Write C = ah + bf , then C.sn ≥ 0 and in fact C.sn = b. One has C2 =
a2n+ 2ab ≥ 0.

□

Proposition 11.3. F1
∼= Bl1 P

2.

Proof. Check that Bl1 P
2 → P2 is geometrically ruled and has a fiber of square −1.

□

Lemma 11.4. There is a diagram of blowups and blowdowns:

• •

Fn−1 Fn Fn+1

> Link to Diagram

Proof. Consider the −n section sn intersecting a fiber f with sn.f = 1. One checks
that (π∗sn−E)(π∗f−E) = snf+E2−π∗snE−π∗fE = 1−1−0−0 = 0. Because
the fiber directions are different than the section directions, sn intersects E and
not the strict preimage of f .

□

Remark 11.5. Note that the classical minimal model is not unique. If n ̸= 1,
there are no −1 curves. If n = 1 the −1 curve can be blown down to obtain P2.
Thus Fn is minimal when n ≥ 1, but all of the Fn are birational.

Theorem 11.6. (Mumford) Suppose S → S′ contracts several curves
⋃

1≤i≤k Ei

to a point. Then the k × k matrix Mij = EiEj is negative definite.

https://q.uiver.app/#q=WzAsNSxbMCwyLCJcXEZGX3tuLTF9Il0sWzEsMCwiXFxidWxsZXQiXSxbMiwyLCJcXEZGX24iXSxbMywwLCJcXGJ1bGxldCJdLFs0LDIsIlxcRkZfe24rMX0iXSxbMSwwXSxbMywyXSxbMyw0XSxbMSwyXV0=
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Remark 11.7. If f contracts a curve E, it must be the case that E2 < 0. Why:
write f∗C = C” + mE, then E.f∗C = f∗E.C = 0.C = 0 on one hand, and
E.f∗C = (C ′ + mE)E = C ′.E + mE2, and since C ′.E > 0 and m > 0, one must
have E2 < 0.

Remark 11.8. Question: conversely, if ∪Ei ⊆ S and [Ei.Ej ] is negative definite,
does there exist a contracting morphism S → S′? Answer: yes, if S′ is a complex
analytic surface. This in fact holds for any Moishezon variety. By Artin, the
answer is yes if the configuration is rational, which is computable. This is proved
constructively.

Remark 11.9. Next time: del Pezzo surfaces.

12. 2024-10-03-12-49-19

12A. Del Pezzo surfaces.

Definition 12.1. A del Pezzo surface is a smooth projective surface over C such
that −KS is ample.

Remark 12.2. Recall that if S is a surface then TS is a rank 2 vector bundle with
dual ΩS . We define the canonical line bundle ωS := det ΩS = ∧2ΩS . This is spanned
by dx∧dy and is thus rank 1. Since this is a line bundle, it is of the form OS(KS) for
some divisor KS , denoted that canonical divisor. The anticanonical bundle is ωS

∨,
the dual of the canonical, with associated divisor −KS , the anticanonical divisor.
Note that any toric boundary divisor is anticanonical. This divisor is not unique.

Remark 12.3. Recall that a line bundle L is very ample if the associated rational
map ϕ : S → PH0(L)∨ (where x 7→ P(s 7→ s(x))) is well-defined everywhere.
Equivalently, L is basepoint free, i.e. for every x ∈ S there is a section s where
s(x) ̸= 0. This follows because [0 : · · · : 0] is not a point in PN , and this condition
guarantees that at least one coordinate is nonzero. In this case, ϕ is an embedding.
A divisor L is very ample iff OS(L) is very ample. We say L is ample if L⊗n is very
ample for some n ∈ Z>0.

Remark 12.4. In higher dimensions, any X with −KX ample is called a Fano
variety. Thus a Fano surface is by definition a del Pezzo surface. This condition
roughly describes having positive curvature – determining precisely when such met-
rics exist uses K-stability. An interesting research question: can Fano varieties be
classified? Some classification results:

• dimX = 1: X = P1 is the only Fano.
• dimX = 2: del Pezzo surfaces, which we will classify today.
• dimX ≥ 3: there are finitely many Fanos up to deformation (theorem,

1960s). In dimX = 3, there are 105. In dimX = 4, the number is unknown.

Remark 12.5. Claim: P2 is a del Pezzo surface. Check that −KP2 = OP2(3),
which is very ample. Sections intersect the zero section along a cubic, and this has
10 global sections since these biject with degree 3 homogeneous polynomials in 3
variables x, y, z on P2. Note that P2 is toric, so choosing this as a polarization yields
a moment polytope with 10 integral points: a triangle with side lengths 3. −KP2

defines an embedding P2 ↪→ PH0(O(3)) which sends [x : y : z] to [x3 :, x2y :, · · · , ],
all monomials of degree 3.
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Theorem 12.6. A surface S is a del Pezzo if it either obtained from P2 by blowing
up k points in general position where 0 ≤ k ≤ 8, or S ∼= P1×P1. Note that general
position means

• No 3 points are on a line, and
• No 6 points are on a conic.

Remark 12.7. If S is a del Pezzo surface, then

• K2
S > 0, and

• −KS .C > 0 for any algebraic curve C on S.

Note that (−KS)2 = K2
S . Generally, if L is ample then L2 > 0. We define the

degree of a del Pezzo surface to be K2
S . Note that conversely, any surface satisfying

these properties is a del Pezzo by the Nakai-Moishezon criterion. This is proved in
Hartshorne chapter 5.

Remark 12.8. Some non-obvious del Pezzo surfaces:

• (P2,O(3))
• (P1 ×P1,O(2, 2)).
• (S = Blk P

2,O(−KS)) where −KS = 3H −
∑
Ei with E2

i = −1 the
exceptional curves and H ∈ Pic(S) is the class of a general line in P2

(avoiding the blowup points).

The first two are very ample, which is easy to check. Note that Pic(S) = H2(S;Z)
in the third case, and that the k points must be in general position. Different
configurations of points yield deformation-equivalent surfaces. In dimX = 2, there
are thus 10 possible del Pezzo surfaces up to deformation equivalence. To compute
(−KS)2, one needs to know

• H2 = 1
• H.Ei = 0
• EiEj = 0 for i ̸= j
• E2

i = −1

Distributing and multiplying, one obtains K2
S = 9−k which is positive iff k ≤ 8.

Remark 12.9. A counterexample where the points are not in general position: let
p1, p2, p3 ∈ l be three points contained in a line in P2. The strict transform of l is
of the form H − E1 − E2 − E3. Intersect

−KS .(H−E1−E2−E3) = (3H−E1−E2−E3)(H−E1−E2−E3) = 3−1−1−1 = 0,

which violates the second condition in the definition of a del Pezzo. Similarly,
taking 6 points on a conic, the strict transform is 2H −E1 − · · · −E6. Intersecting
as above yields 6−1−1−1−1−1−1 = 0. One could formulate similar conditions
on higher numbers of points, but we already require k ≤ 8 and the next condition
would be on 9 points.

Remark 12.10. Denote by Sd a del Pezzo of degree d, obtained by blowing up
k = 9 − d points in general position in P2. How to remember: d = 9 yields k = 0
points, and degOP2(3) = 32 = 9. By assumption −KSd

is ample, and it will be
very ample if 3 ≤ d ≤ 9. This corresponds to blowing up k ≤ 6 points. One can
calculate h0(−KSd

) = 10 − (9 − d) = d+ 1, so Sd ↪→ Pd where 3 ≤ d ≤ 9. This is
referred to as the anticanonical embedding of Sd into Pd.

Example 12.11. For d = 3, we have S3 = Bl6 P
2 ↪→ P3, and in fact any smooth

projective cubic surface can be embedded in P3.
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Theorem 12.12. Any smooth projective cubic surface is isomorphic to the del
Pezzo surface S3.

Example 12.13. S4 = Bl5 P
2 ↪→ P4, which is true since S4 is a complete inter-

section of two quadrics in P4. Note that a complete intersection is a transverse
intersection of hypersurfaces. Note that S5 is no longer a complete intersection.

Corollary 12.14. Any del Pezzo surface is birational to P2.

Remark 12.15. One could ask if this is true for higher dimensional Fano varieties.
It fails in dimension 3 – not every Fano threefold is rational.

13. 2024-10-08-12-51-02

Remark 13.1. Last time: del Pezzo surfaces, where −KS is ample. Note that for
del Pezzos, −KS is also effective, and is of the form S = P1 × P1 or S = Blk P

2

where 0 ≤ k ≤ 8.

Example 13.2. Let S = Bl8 P
2, then there always exists a curve C through these

8 points whose preimage satisfies [−KS ] = [C̃] = 3H −
∑
Ei.

Remark 13.3. Generally, L is an effective line bundle iff L has a nonzero section
s. By intersecting s with the zero section of L, one obtains a divisor D. In the
1-dimensional case, this is the correspondence D ⇌ L := O(D).

Remark 13.4. Question: is −KX effective for any (smooth) Fano of any dimension
over C?

• Dimension 2: true.
• Dimension 3: true (Sokurov, 1980).
• Dimension 4: true (Kawamata, 2000).
• Dimension n ≥ 5: open.

Remark 13.5. Generally ample does not imply effective. For example, let C be
a genus 2 curve and L a degree 1 line bundle. Any positive degree line bundle on
a curve is ample. Consider the moduli space Pic1(C) of degree 1 line bundles on
C. This is isomorphic to the Jacobian of C, an abelian variety of dimension 2. If
L is effective as a line bundle, then L ∼= O(D) with D effective. By definition, D is
effective iff D =

∑
aiDi with ai > 0. Since degL = 1, without loss of generality we

can write a1 = 1 and thus ai = 0 for i ̸= 1. So L = O(a1p) where p ∈ C is a point.
Thus the moduli space of such bundles is in bijection with the points of C, and is
dimension 1. Since Pic1(C) includes ample line bundles, there are many ample but
non-effective bundles.

Remark 13.6. For any algebraic curve C, there is an Abe-Jacobi map given by
ϕ : Symd(C) → Picd(C). Note that Symd(C) = Cd/Sd where Sd is the symmetric
group, and is the moduli space of degree d effective divisors on C. On the other
hand, Picd(C) is the moduli space of degree d line bundles. This map is given by
D 7→ O(D), and is not surjective in general.

Remark 13.7. Recall that X is rational if X
∼
99K Pn. In dimension 1, P1 is the

only smooth projective rational curve. In dimension 2, any del Pezzo is rational.
Questions:

• Can we classify all rational surfaces?
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• Can we find criteria to decide if a surface is rational or not?

Remark 13.8. Recall that Ωk
X is the vector bundle of algebraic k-forms on a

smooth projective variety X of dimension n. These are used to define Hodge num-
bers hk,0(X) = dimH0(Ωk

X), which are birational invariants.

Remark 13.9. For X = Pn, one has hk,0 = 0 for k ̸= 0 and h0,0 = 1. For P2, this
yields the following Hodge diamond:

1

0 0

0 1 0

0 0

1

> Link to Diagram
Thus any rational surface should have a Hodge diamond of the following form:

h2,2

h2,1 h1,2

0 h1,1 h2,0

0 h1,0

1

> Link to Diagram
One can conclude, for example, that K3 surfaces are not rational.

Remark 13.10. Question: is any surface S with h1,0(S) = h2,0(S) = 0 necessarily
rational? Answer: no, consider Enriques surfaces, which are not rational:

https://q.uiver.app/#q=WzAsOSxbMiwwLCIxIl0sWzEsMSwiMCJdLFszLDEsIjAiXSxbMCwyLCIwIl0sWzIsMiwiMSJdLFs0LDIsIjAiXSxbMSwzLCIwIl0sWzMsMywiMCJdLFsyLDQsIjEiXV0=
https://q.uiver.app/#q=WzAsOSxbMiwwLCJoXnsyLDJ9Il0sWzEsMSwiaF57MiwxfSJdLFszLDEsImheezEsMn0iXSxbMCwyLCIwIl0sWzIsMiwiaF57MSwxfSJdLFs0LDIsImheezIsMH0iXSxbMSwzLCIwIl0sWzMsMywiaF57MSwwfSJdLFsyLDQsIjEiXV0=
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1

0 0

0 10 0

0 0

1

> Link to Diagram

Remark 13.11. We instead introduce more refined birational invariants in terms
of h0((Ωk)⊗m) for m > 0. For Pn, these vanish for all m. For dimX = k, we define
the plurigenus

Pm(X) := H0((Ωk
X)⊗m).

For m = 1, this is referred to as the geometric genus.

Theorem 13.12. (Castelnuovo’s rationality criterion) If X is a smooth projective
surface, then X is rational iff

• h1,0(X) = 0
• P2(X) = 0

14. 2024-10-10-12-51-51

Remark 14.1. Let S be a smooth projective surface. Then S is rational iff

• q := h1,0 = 0 (vanishing irregularity)
• P2 = h0(ω⊗2

S ) = 0.

In the forward direction, this is clear since these are birational invariants and
q(P2) = h1,0(P2) = 0 and P2(P2) = 0. The other direction requires a difficult
proof. We’ll assume S is minimal, i.e. S does not contain a smooth rational curve
C with C2 = −1 (which can be contracted).

Proposition 14.2. If S is a minimal smooth projective surface with q = P2 = 0,
then there exists a curve C ∼= P1 on S such that C2 ≥ 0.

Remark 14.3. General philosophy: C is given by V (f) for some polynomial f ,
and since C2 ≥ 0 it can be deformed to V (f ′). One can form the pencil {uf + vf ′}.

Lemma 14.4. Under the same conditions as the last proposition, there exists an
irreducible algebraic curve C with

• KS .C < 0, and
• |KS + C| = ∅.

Remark 14.5. Consider S = P2, take C to be any line in P2. Then O(−3).[C] =
−3 < 0, and L := O(KS + C) ∼= O(−2) has no sections.

https://q.uiver.app/#q=WzAsOSxbMiwwLCIxIl0sWzEsMSwiMCJdLFszLDEsIjAiXSxbMCwyLCIwIl0sWzIsMiwiMTAiXSxbNCwyLCIwIl0sWzEsMywiMCJdLFszLDMsIjAiXSxbMiw0LCIxIl1d
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Remark 14.6. Why the lemma implies the proposition: let C be a curve satisfying
the conditions of the lemma, then we claim C ∼= P1. The proof uses adjunction
and Riemann-Roch: 2g − 2 = C(C + KS) where g is the arithmetic genus, and
χ(O(D)) = 1

2D(D −KS) + χ(O). Note that χ(O) = 1 − h1,0 + h2,0 = 1 − 0 + 0 by

assumption, so χ(O(D)) = 1
2D(D −KS) + 1. Take D := KS + C. Recall that by

Serre duality, h2(O(D)) = h0(O(KS−D)). Thus h2(O(KS+C)) = h0(O(−C)) = 0
since −C is not effective. As a result, χ(KS +C) = h0(KS +C)−h1(KS +C). We
know by assumption that h0(KS + C), so χ(KS + C) ≤ 0. Substituting this into
Riemann-Roch yields 1

2 (KS +C)C+ 1 ≤ 0. Solving for g in the adjunction formula

yields g = 1
2 (KS + C)C + 1, so g ≤ 0. The arithmetic genus can not be negative

for an irreducible curve, hence g = 0 and C ∼= P1.
It remains to show that C2 ≥ 0. By adjunction, −2 = 2g−2 = C(KS +C) since

g = 0. We assumed C.KS < 0, so C2 + C.KS < C2, so C2 = −1 or C2 ≥ 0. The
former case is ruled out because we assumed S to be minimal.

Remark 14.7. On the proof of the lemma: it is broken into the following three
cases,

• K2 < 0,
• K2 = 0,
• K2 > 0.

We’ll consider the case K2 = 0. We first claim −KS is effective, i.e. h0(−KS) ̸=
0. Applying Riemann-Roch to −KS yields χ(−KS) = 1

2 (−K)(−K − K) + 1 =

−K2 + 1 = 1 since K2 = 0. By Serre duality, h2(−KS) = h0(KS − (−KS)) =
h0(2KS), but note O(2KS) = O(KS) ⊗ O(KS) = ω⊗2

S , so h0(2KS) = P2 = 0 by
assumption. Thus h0(−KS) = 1 + h1(−KS) > 0.

Claim: let H be a very ample divisor, which is in particular effective. Then
−KS .H > 0 since −KS is effective, so KS .H < 0. We’ll show H + nKS is not
effective if n is large enough. Consider H(H+nKS) = H2+nHKS ; sine HKS < 0,
this is negative for some n since H2 is a fixed number. If H + nKS were effective,
this would have to be positive. So there exists a unique minimal n0 such that
H + n0KS is not effective for any n ≥ n0. So take C := H + n0KS . One then
checks KS .C = KS .H < 0 since H2 = 0 and −KS is effective with H ample.
Furthermore KS + C = KS +H + n0KS = H + (n0 + 1)KS which is not effective
by definition of n0, thus |KS + C| = ∅.

Remark 14.8. Note that we didn’t show C was irreducible. If it is not, then take
any irreducible component C ′ with C ′.KS < 0, which must exist since KS .C < 0.

15. 2024-10-15-12-51-37

Remark 15.1. Recall that a minimal surface is a smooth projective surface which
does not contain any smooth rational (−1)-curves. Castelnuovo’s contraction the-
orem implies that any smooth projective surface is birational to a minimal surface.
Goal: classify all smooth projective surfaces up to birational equivalence. A related
question: in any birational equivalence class, is there a unique minimal surface? Or
can two minimal surfaces be birational? Answer:

• No for rational surfaces,
• Yes for non-ruled surfaces.
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Recall that a ruled surface is birational to C × P1 for C a smooth projective

curve. Note that rational implies ruled, since P2 ∼
99K P1×P1 which is ruled. Every

non-ruled surface admits a unique minimal model up to isomorphism.

Remark 15.2. Let S, S′ be non-ruled surfaces and ϕ : S′ ∼
99K S be a birational

map. We want to show that S′ ∼= S. Note that ϕ is a composition of blowups and

blowdowns, so there exists some Ŝ with f : Ŝ → S and ε : Ŝ → S′ where f, ε are
compositions of blowups. Choose a diagram such that ε is composed of a minimal

number n ∈ Z≥0 of blowups. By cases: if n = 0, then S′ ∼= Ŝ, and f : S′ → S is
a composition of blowups. The last blowup would introduce an exceptional curve,
contradicting the fact that S′ is minimal. Thus f is an isomorphism.

Suppose now that n ̸= 0; we’ll show that this can never happen. Let E be the

exceptional curve of the blowup ε in Ŝ. Consider f(E), then either

• f(E) is contracted, so f(E) is a point, or
• f(E) is a curve.

The first case contradicts the minimality of n by removing the blowup/blowdown
of E from the diagram. In the second case, we’ll show such a curve can not exist,
reaching a contradiction.

Lemma 15.3. Let X be any surface and f : X̂ → X is the blowup at a point. Let

Γ̂ ⊆ X̂ be an irreducible curve which is not contracted by f , so Γ := f(Γ̂) ⊆ X is a
curve. Then

KX̂ .Γ̂ ≥ KX .Γ.

Proof. As long as Γ̂ ̸⊆ E, it is not contracted to a point when E is blown down. So

this yields some curve Γ ⊆ X, possibly singular. Let m := E.Γ̂ <∞, which is finite

because Γ̂ is not contained in E. Note KX̂ = f∗KX +E. We can write Γ̂ = f∗Γ +
mE. Recall that f∗D1.f

∗D2 = D1.f∗f
∗D2, so f∗KX .f

∗Γ = KX .f∗f
∗Γ = KX .Γ,

so

KX̂ .Γ̂ = (f∗KX + E)(f∗Γ −mE)

= f∗KX .f
∗Γ + E.f∗Γ −mf∗KX .E −mE2

= KX .Γ + 0 + 0 − 1.

Moreover, f∗D1.D = D1.f∗D, so we have

E.f∗Γ = f∗Γ.E = Γ.f∗E = 0

since f∗E is a point and not a divisor. This proves the lemma. Note that equality

is attained iff m = 0, so Γ̂ does not intersect E.
□

Remark 15.4. We now apply this lemma to the previous proof. Recall that

ε : Ŝ → S produces an exceptional curve E = Γ̂ where the last blowup εn produces

E. Let C = f(E). Apply the lemma to each blowup f1, · · · , fm by setting Γ̂ = E.
By the adjunction formula, 2g(E) − 2 = E.(E + KŜ), and since g(E) = 0 one
obtains E.KŜ = −1. Thus C.KS ≤ −1 by the lemma. Claim: C.KS ̸= −1, so the
inequality is strict. If KS .C = −1, then KŜ .E = KS .C and this only happens if E

does not intersect the other exceptional divisor E. So f(E) ∼= C ∼= E, so C ∼= P1

with C2 = −1, but this contradicts minimality of S. Thus C.KS ≤ −2.
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By adjunction,

2g(C) − 2 = C.(C +KS) = C2 + C.KS =⇒ C2 = 2g − 2 − C.KS =⇒ C2 ≥ 0

since C.KS ≤ −2.

Lemma 15.5. We thus have two properties:

• C.KS ≤ −2,
• C2 ≥ 0.

If such a curve exists, all plurigenera Pm(S) vanish.

Proof. Note that Pm(S) = 0 iff mKS is not effective. If D = mKS is effective,
then D = D′ + aC where a ≥ 0 such that D′ does not contain C. Then D.C =
D′.C + aC2 ≥ 0 by assumption, but this implies mKS .C ≥ 0, a contradiction.

□

Remark 15.6. Hence Pm(S) = 0, and in particular P2(S) = 0. Cases:

• h1,0(S) = 0, which implies S is rational by Castelnuovo, hence ruled, a
contradiction.

• h1,0(S) ̸= 0, which we claim also can not happen.

Assume the second case. Black box: for any surface S, there is a natural map
ψ : S → Alb(S) where ψ(S) is a curve of genus h1,0. Moreover, ψ is generically
finite, and Alb(S) is generally a genus g abelian variety. Since C is rational, it must
be a fiber of ψ. One can show S ∼= Alb(S)×P1, showing S is ruled, a contradiction.
This forces n = 0 and S ∼= S′.

Remark 15.7. Next time: the Albanese variety.

16. 2024-10-17-12-49-00

Remark 16.1. Let S, S′ be non-ruled surfaces, then any birational map S
∼
99K S′

is an isomorphism. Factoring as a composition of n blowups and m blowdowns, we
saw that if n = 0 this is true. For n ≥ 1, we showed existence of a curve C with
KS .C ≤ −2 and C2 ≥ 0, which implied Pm(S) = 0, and in particular P2(S) = 0.
There were two cases:

• h1,0(S) = 0 =⇒ S is rational, hence ruled, a contradiction, or
• h1,0 ̸= 0.

In the latter case, we have a natural map ψ : S → Alb(S), which is an abelian
variety. The image ψ(S) is a genus g curve where g = h1,0(S). Note that a priori,
one could have dimψ(S) = 0, 1, 2, so we argue that dimψ(S) ̸= 0, 2. If ψ(S) is a
point, the universal property of the Albanese yields a contradiction. If ψ(S) is a
surface, then ψ is generically finite and P2(S) = P2(Alb(S)) ̸= 0.

16A. Albanese varieties.

Remark 16.2. Let X be any smooth projective variety, then there is an abelian va-
riety Alb(X). This can be written as H0(ΩX)∨/ι(H1(X;Z)) where ι : H1(X;Z) →
H0(ΩX)∨ is defined by γ 7→ (ω 7→

∫
γ
ω). It is a theorem that the image is always

a lattice Γ, so Γ ⊗C = H0(ΩX)∨. The proof uses deep facts from Hodge theory.

Remark 16.3. Recall that h1,0 = dimCH
0(ΩX) := n, so H0(ΩX) ∼= Cn ∼= R2n.

Writing H1(X;Z) = Zb1 +T where T is torsion, note that ι(T ) = 0. Note also that
b1 = h1,0+h0,1. Moreover ι(Zb1) ∼= Zb1 . Thus Alb(X) ∼= R2n/Z2n ∼= (S1)2n. There
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is a natural complex structure on Alb(X), and moreover is smooth and projective.
The proof again uses Hodge theory. By GAGA, Alb(X) is the unique variety with
this underlying complex manifold structure.

Remark 16.4. Recall Pic0(X) is the connected component of Pic(X) containing
the trivial line bundle. A theorem of Grothendieck shows that Pic0(X) is an abelian
variety of dimension h1,0. We also have Alb(X) = Pic0(X)∨ – more generally, for
any abelian variety A, one defines A∨ := Pic0(A) since Pic0(Pic0(A)) = A. We
thus regard Alb(X) as the “smallest” abelian variety associated to X. The map
ψ : X → Alb(X) can be given by x 7→ (ω 7→

∫ p

x
ω) where p is a fixed choice of point

on X. The universal property is that for any abelian variety A, any map X → A
factors as X → Alb(X) → A.

17. 2024-10-22-12-46-33

Remark 17.1. Recall Castelnuovo’s rationality criterion: let S be a smooth projec-
tive surface, then S is rational iff q := h1(OX) = h0(ΩX) = 0 and P2 := h0(2KS) =
0. As a corollary, S is rational iff S is unirational, i.e. there is a dominant map
P2 99K S of some degree d. We discussed minimal surfaces, for which there are two
cases:

• S is ruled, so S
∼
99K C ×P1 for some curve C. This implies that a generic

point is contained in a rational curve.
• S is not ruled. In this case, there are few rational curves.

We showed that if S is not ruled, there exists a unique minimal model in every

birational equivalence class. That is, if f : S′ ∼
99K S with S, S′ minimal surfaces,

then f is an isomorphism. If S is ruled, minimal models are not unique – blow
up any point in a fiber of S → C to transform one (0)-curve to a union of two
(−1)-curves, and blowdown the other curve to get another ruled surface.

Theorem 17.2. If S is a rational minimal surface, then S ∼= P2 or Fn for some
n.

Theorem 17.3. If S is ruled and not rational, then S ∼= PC(E) is a geometrically
ruled surface where C is a curve of genus g ≥ 1.

Remark 17.4. Important trick: suppose C is an effective irreducible curve where
|KS + C| = ∅. Suppose also that χ(OS) = 1, noting that χ(OS) = 1− q+ p2 which
vanishes for rational surfaces. Then C ∼= P1.

Recall that χ(O(D)) = χ(OS) + 1
2D(D − KS). Applying this to D = K + C

yields χ(K + C) = 1 + 1
2 (K + C)C = pa(C). On the other hand, χ(K + C) =

h0(K+C)−h1(K+C)+h0(−C). Here h0(K+C) = h0(−C) = 0, so χ(K+C) ≤ 0,
and thus pa(C) ≤ 0, forcing pa(C) = 0 and C ∼= P1.

Recall that if ν : C̃ → C is the normalization, then pa(C) ≥ pa(C̃) = g(C̃).

Corollary 17.5. Suppose χ(OS) = 1 and C =
∑
aiCi is an effective curve, and

suppose |K + C| = ∅. Then each Ci
∼= P1 since |K + Ci| = ∅.

Remark 17.6. Consider S = P2; the key is to look at minimal rational curves on
S. Note that this generalizes to higher dimensions, viz. Mori theory. For P2, these
minimal curves will be lines. If C is a line, then KC = −3 < 0 and |K + C| =
|−3H +H| = ∅.
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For S = Fn, note that this is a P1 fibration over P1 and the minimal rational
curves are its fibers. Letting C be a fiber, we have C2 = 0 and by the genus formula,
KC = −2. Moreover |K + C| = ∅, using the following observation:

Remark 17.7. Suppose A is an irreducible effective curve with A2 ≥ 0 with
D.A < 0. Then D is not effective and |D| = ∅. This follows from D = nA+

∑
aiBi

with ABi ≥ 0 and nA2 ≥ 0.

Remark 17.8. One can then check that if K + C is effective, then its restriction
to a fiber is still effective. However, KP1 = OP1(−2) is not effective.

Remark 17.9. We now prove that if S is rational and minimal, then S ∼= P2,Fn.

Consider the set of irreducible curves
{
C ∼= P1 ⊆ S

∣∣∣ C2 ≥ 0
}
̸= ∅. This is nonempty

by a previous result on existence of special curves on such surfaces. Consider the
subset of such curves with minimal square C2 = m. Fix a hyperplane section H,
so C.H = deg(C), and consider the further subset with minimal C.H.

Proposition 17.10. Step 1: in |C|, every curve is irreducible and isomorphic
to P1. Thus in this minimal covering set, the curves do not split into multiple
components.

Proof. Suppose D ∈ |C| and write D =
∑
aiCi, then all Ci

∼= P1. Then |K +D| =
|K + C| = ∅. This follows from the “useful observation”, since (K + C)C =
2pa(C) − 2 = −2. Note that H.Ci < H.C.

We’ll return to this proof later.

□

Proposition 17.11. Step 2: dim |C| ≤ 2. Note that if one considers the divisors in
|C| passing through a fixed point p, the dimension either stays the same or decreases
by one. This is a codim ≤ 1 condition. Those passing through p with multiplicity
≥ 2 is a codim ≤ 3 condition. Given OS ↠ OS/m

2, we have H0(O(C)) →
H0(O(C) ⊗ OS/m

2) and OS/m
2 has dimension 3, so the kernel has dimension at

most 3. Supposing dim |C| ≥ 3, there exists a curve D ∈ |C| passing through p with
multiplicity ≥ 2, which is thus a singular curve – but this contradicts step 1.

Proposition 17.12. Step 3: there is a SES 0 → OS → OS(C) → OC(C) → 0
gotten by twisting OS(−C) ↪→ OS ↠ OC by C. Note that OC(C) = OP1(m).
Taking the LES, note that H1(OS) = 0 by rationality, so we have

0 → H0(OS) = C → H0(OS(C)) → H0(OP1(m)) → 0.

We claim |C| has no base points. Note that h0(OS(C)) = m, and by the LES,
dim |C| = m+ 1 since h0(OP1(m)) = m+ 1. Since m+ 1 ≤ 2, we have m ≤ 1 and
thus m = 0, 1. If m = 0, then dim |C| = 1 yielding a morphism S → P1 with C
a fiber, making S ruled by a previous theorem. Since S is minimal, this yields Fn,
since it is a geometrically ruled surface over P1. If m = 1, dim |C| = 2 and this
yields a morphism S → P2. Since the degree is C2 = 1, this is an isomorphism.

Remark 17.13. Next time: finish step 1, understand the minimal surfaces which
are rational and not ruled.
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18. 2024-10-24-12-40-57

18A. Chapter 5 Recap.

Remark 18.1. For minimal surfaces, there is a division:

• Non-ruled surfaces: ∃! minimal model in every birational class. We showed
there is a sequence of contractions S →→→ Smin where Smin has no (−1)-
curves. Therefore our next step will be classifying such minimal surfaces.

• Ruled surfaces: minimal models are never unique. There are two cases:
– q := h1(OS) = 0: regular surfaces. Minimal surfaces are P2 and Fn

for n ̸= 1, thus rational.
– q ̸= 0: non-regular surfaces. Minimal surfaces are PC(E) with rank E =

2 and E a vector bundle, i.e. geometrically ruled surfaces (every fiber
is P1). Here g(C) = q and p : S → C is the Albanese map.

Last time: suppose S is a rational surface, we considered minimal rational curves
C on S, i.e.{
C ∼= P1 ⊆ S

∣∣∣ C2 ≥ 0
}
⊇

{
C

∣∣∣ C2 = m is minimal
}
⊇

{
C

∣∣∣ deg(C) := C.H is minimal
}
.

Then every D ∈ |C| is smooth, irreducible, and D ∼= P1, i.e. curves in |C| do not
split. For example, conics in P2 degenerate into unions of lines and thus do split.

Proof. Suppose minimal just means C.H is minimal, dropping the condition that
C2 = m is minimal. Write D ∈ |C| as D =

∑
niCi. By the genus formula,

0 = g(C) = C2+CK
2 +1, and so C2+CK = 2g−2 = −2 and thus CK = −2−C2 < 0

since C2 ≥ 0. Moreover DK = CK < 0. There exists an i such that CiK < 0,
and if C2

i ≥ 0 then C is not minimal since degCi ≤ degC. If C2
i < 0, combine

this with CiK < 0 and substitute into the genus formula to conclude C2
i = −1 and

g(C) = 0, this Ci is a rational (−1)-curve, contradicting minimality of S.
□

Remark 18.2. This argument generalizes to higher dimensions. Note that |C| is a
covering family of S of rational curves with minimal degree. See e.g. Mori’s Annals
paper proving Hartshorne’s conjecture, which started the Mori program, or papers
that use the bend-and-break technique. E.g. if X is a smooth projective Fano
variety, so −KX is ample, then X is covered by rational curves and such covering
families exist.

Remark 18.3. Recall that ruled non-regular surfaces (q ̸= 0) are birational to
C×P1 where g(C) = q. First factor S → C×P1 as S →→→ S′ →→→ C×P1 as
a composition of blowdowns and blowups. Note that blowing up points in fibers of
S → C ×P1 yields unions of P1s. The claim that Ei must be contained in a fiber,
and thus not horizontal. This is because g(Ei) = 0 but g(C) = q > 0, and P1 can
not map to a curve of higher genus. One can show this using Riemann-Hurwitz,
since degKC = 2g(C) − 2 and degKP1 = −2 < 0. Alternatively, f∗ΩC ⊂ ΩE

which, by taking dimensions, yields g(C) ≤ g(E). Thus the exceptional curves are
vertical. Since there is a fibration S′ → C, there are thus fibrations to C after each
blowdown and S → C fibers over C.

Remark 18.4. Note that the Ei are not equivalent to fibers, because the intersec-
tion form of the exceptional curves is negative semi-definite. Next chapter: ruled,
non-regular surfaces, then we move on to non-ruled surfaces.
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18B. Chapter 6: pg = 0, q > 0.

Remark 18.5. Recall pg := h0(KS), so if pg = 0 then there is not effectiveD ∼ KS .
For ruled surfaces, all Pm := h0(mKS) = 0, so no multiple of KS is effective. Use
the useful observation: if C2 ≥ 0 with mK.C < 0 then mK is not effective. Take
C to be a fiber F , then mKS .F + F 2 = 2g(F ) − 2 and so mKS .F = −2 < 0.

Remark 18.6. Noether’s formula: χ(OS) = K2+χ(S)
12 =

c21+c2
12 , which was derived

from Hirzebruch-Riemann-Roch,

χ(D) =

∫
X

eD Td(TX),

where you multiply the corresponding power series and take the top degree terms.
We have χ(OS) = 1−q+pg in general, and note that pg = 0 in this case. Note that
χ(S) =

∑
(−1)ibi = 2 − 2b1 + b2 by Poincare duality, and b1 = h1,0 + h0,1 = 2q by

the Hodge decomposition. Substituting these facts into Noether’s formula yields

12(1 − q) = K2 − 4q + b2 =⇒ K2 = 10 − 8q − b2.

Lemma 18.7. In parts:

a. If pg = 0 and q > 0 then K2 ≤ 0 and K2 < 0 only if q = 1, b2 = 2.
b. If S is minimal with K2 < 0 then S is ruled.

Proof. We know q ≥ 1 and b2 ≥ 1 since there is always a hyperplane section. If
q ≥ 2, we’re done, since K2 < 0 by the above formula. If q = 1 then b2 ≥ 2: this
follows from producing two linearly independent divisors in H2(S;Z). Consider the
Albanese map p : S → Alb(S). If S is a curve C, recall that Alb(C) = Jac(C) =
Pic0(C). This map contracts rational curves. Two cases:

• dim p(X) = 1
• dim p(X) = 2

It’s nonzero since p(X) generates Alb(X) and thus can not be a point if q =
dim p(X) > 0. In the first case, the generic fiber F is a curve with F 2 = 0
which is not a multiple of a hyperplane section H since H2 > 0; then ⟨H,F ⟩ ⊆
H2(S;Z). In the second case, one can pull back differential forms on p(X) ∼=
Cg/Z2g, contradicting pg = 0.

□

19. 2024-10-29-12-44-54

Remark 19.1. Surfaces with pg = 0 and q ≥ 1, i.e. ruled irregular surfaces (plus
a little more). The next main goal: minimal non-ruled surfaces.

Lemma 19.2. In parts:

a. (A little more) pg = 0, q ≥ 1 =⇒ K2 ≤ 0, or K2 = 0 and q = 1, b2 = 2.
b. (Ruled irregular) If S is minimal and K2 < 0 then pg = 0 and q ≥ 1.

Proposition 19.3. If S is minimal and K2 < 0 then S is ruled.

Proof. Of lemma part (a): by Noether’s formula, K2 = 10 − 8q − b2. Use the
Albanese map to show b2 ≥ 2.

Of lemma part (b): if pg := h0(KS) ̸= 0, then K is effective. Write K =
∑
niCi,

then K2 < 0 =⇒ ∃Cj such that KCj < 0 and C2
j < 0. By the genus formula,

pg(Cj) =
KCj+C2

j

2 + 1, forcing Cj to be a negative curve, contradicting minimality
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of S. This argument shows that in fact Pm = 0 for all m. Suppose that q ̸= 0,
we will then argue S is rational, and hence either P2 or Fn by minimality. But
K2

P2 = 9 and K2
Fn

= n > 0, contradicting K2 < 0. By Castelnuovo’s criterion, S is
rational iff 2KS is effective, which it is not (by repeating the above argument).

□

Remark 19.4. Examples where K is not effective but 2K is effective: Enriques
surfaces.

Remark 19.5. Proving the proposition, the main tool: the Albanese map p :
S → Alb(S) which is an abelian variety of dimension q. Note that p(S) generates
Alb(S), and p has connected fibers. If q ≥ 1 then dim p(S) = 1, 2. If pg = 0, then
dim p(S) = 1. Any abelian variety is of the form A = Cg/Z2g, and the differential
forms are those with constant coefficients, e.g. dz1, · · · , dzn, dz1∧dz2 · · ·, etc. These
are translation invariant and thus descend to the quotient. One then produces a
differential form in Alb(S) which pulls back to S, yielding a nontrivial section of
Ω2(S), forcing dim p(S) = 1. In this case, p : S → B where B is a smooth curve of
genus q. Note that if a single fiber is P1 then S is ruled. We’re trying to rule out
fibers with higher genus.

Proof. Step 1: suppose C ⊆ S is a curve with KC < 0 and |K + C| = ∅. Then

p|C : C → B is etale (unramified), and if q ≥ 2 then p|C : C
∼−→B. Suppose C

is contained in a fiber, so C collapses to a point. We first claim that this fiber
F must be irreducible. Toward a contradiction, write F = C +

∑
niCi. Since

the intersection form on fibers is negative definite, we have C2 < 0. But then C
is forced to be a (−1)-curve, contradicting minimality. Suppose F = nC, then

C2 = 0. The genus formula yields pa(C) = KC+C2

2 + 1 = 0 =⇒ KC = −2, then

C ∼= P1 and S is ruled, a contradiction. So C is necessarily a horizontal curve.
Step 1.5: Riemann-Roch. Write 0 = h0(K +C) ≥ χ(K +C) since h2(K +C) =

h0(−C) = 0 since C is effective. We have

χ(K + C) = χ(OS) +
(K + C)C

2
= 1 − q + (pa(C) − 1) = pa(C) − q ≤ 0,

and thus pa(C) ≤ q. But this contradicts the fact that the genus decreases if q ≥ 2,
by Hurwitz: 2g(C) − 2 = d(2g(B) − 2) + ε. The only way this can happen is if
B ∼= C, in which case g(C) = g(B) = 1 (they are elliptic curves) and ε = 0 since
the map is unramified.

□

Proof. Step 2: we’ll show there exists an irreducible curve C ⊆ S such that KC ≤
−2 and |K + C| = ∅. Recall that we proved the following: if S is minimal and
K2 < 0, then there exists a D′ such that KD′ < −n is arbitrarily negative and
|K +D| = ∅. Write D =

∑
1≤i≤r niCi ≤ D′ =

∑
njCj where all KCi ≤ −1,

i.e. keep just those curves that intersect K negatively. We have |K +D| = ∅. Thus
we are done unless

a. there exists some ni ≥ 2 or
b. r ≥ 2,

i.e. we want to show that D is a single curve with coefficient 1.
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In case (a), |K + 2Ci| = ∅ and thus

0 = h0(K + 2Ci) ≥ χ(K + 2Ci) = χ(OS) +
(K + 2Ci)2Ci

2

= (1 − q + pg) + (KCi + 2C2
i )

= (1 − q + pg) + (2KCi + 2C2
i −KCi)

= (1 − q + pg) + (2(2pa(Ci) − 2) −KCi)

= (1 − q + pg) + (2(2q − 2) −KCi)

= (1 − q) + (4(q − 1) −KCi)

> 3(q − 1)

≥ 0

noting that h2(K + 2Ci) = 0. This yields 0 > 0, a contradiction.
□

Proof. Step 3: get a contradiction. Take C as in step 2.
Case 1: p : C

∼−→B. By Riemann-Roch,

h0(C) ≥ χ(OS) +
C(C −K)

2
= (1 − q) + (q − 1 −KC) ≥ 2,

noting that C(C+K)
2 + 1 = q. Note that this implies that C, as a section of p,

moves. Thus intersecting C with the general fiber F yields a point that moves,
thus defining a map F ∼= P1.

Case 2: g(B) = g(C) = 1 (elliptic curves) and p is étale. In this case, make
a base change. Write S′ = S ×

B

C, which changes a multisection into an honest

section. Note that q(S′) ≥ q(S) ≥ 1, and pg(S′) = h0(ω2
S′) = 0.

□

Remark 19.6. What remains to do: look at the “a little more” case. Two cases:

• The genus of the general fiber satisfies g(F ) ≥ 2, then p is a smooth map
yielding a family of elliptic curves over an elliptic curve

• g(F ) = 1, there may be multiple fibers. These appear in the classification
of minimal models with κ = 0. Proofs here involve the topological Euler
characteristic.

20. 2024-10-31-12-45-31

Remark 20.1. Recall that we are considering minimal surfaces S with q ≥ 1, pg =
0. We had K2 = 10 − 8q − b2, and concluded that if K2 < 0 then S is ruled. We
consider now the extreme case where K2 = 0, so q = 1, pg = 0, b2 = 2, and S is not
ruled. Consider the Albanese morphism p : S → B ⊆ Alb(S) with g(B) = q; we’d
like to show every fiber is irreducible. If any fiber is reducible, this forces b2 ≥ 3
by taking two components along with a horizontal part. If any fiber is P1, then S
is ruled and birational to B ×P1. Since S is reduced and p is nonconstant onto a
smooth curve, p is flat.

Theorem 20.2. If g ≥ 2 then p is smooth, so every fiber is smooth and reduced
(multiplicity one). If g = 1 then every fiber F is of the form F = nC for C a
smooth elliptic curve. In any case, p is an isotrivial family, i.e. any two fibers are
isomorphic.
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Remark 20.3. In the g = 1 case, the fibration p is almost smooth. Note that
isotrivial families aren’t necessarily cartesian products. Moreover, we claim that p
is never the trivial family S = B × F . If it were, KS = π∗

1KB + π∗
2KF is effective,

contradicting pg = 0.

Remark 20.4. To study this, we consider the topological Euler characteristic,

defined as χTop(X) =
∑dimR X

i=0 (−1)i dimHi
c(X) for X any algebraic variety over

C, not necessarily compact. Fact: if X ⊇ Z a closed set with open complement
U := X \ Z, one has χTop(X) = χTop(Z) + χTop(U). As a corollary, for a fibration
like p, one has

χTop(S) = χTop(B) · χTop(Fgen) +
∑
finite

χTop(Fs) − χTop(Fgen)

where Fs is the special fiber. Note that there is a LES Hi
c(U) → Hi

c(X) → Hi
c(Z)

given by including cycles along Z ↪→ X and restricting cycles to the open subset
U ⊆ X.

Note that b2 = 2q by Hodge conjugate symmetry, and so in our case

χTop(S) = 1 − b1 + b2 − b3 + 1 = 2 − 2b1 + b3 = 4 − 4q = 0.

If C is a smooth curve of genus g,

χTop(C) = 1 − b1 + 1 = 2 − 2g.

Note that when C is smooth, χ(OC) = h0(OC)−h1(OC) = 1−g, and so χTop(C) =
2χ(OC).

Remark 20.5. Claim: χTop(Fs) > χTop(Fgen), so the finite sum in χTop(S) is
nonzero. Equality only holds in the g = 1 case of the above theorem. This will
prove the first part of the theorem. Let F be a fiber, then there is a SES OS(−F ) ↪→
OS ↠ OF given by restriction to a fiber. Thus

χ(OF ) = χ(OS) − χ(OS(−F )) = χ(OS) −
(
χ(OS) +

F (F +K)

2

)
=

−FK
2

.

By the same argument, χ(OC) = −CK
2 = −FK

2n since C2 = 0. Consider the case
g(Fgen) ≥ 2, then χ(OC)−χ(OFgen) > 0. Similarly when g = 1. It remains to show
smoothness.

Lemma 20.6. If C is singular, then

χTop(C) > 2χ(OC).

Example 20.7. Let C be a cuspidal rational curve, i.e. a cubic curve with a cusp.

Let η : C̃ → C be its normalization, so C̃ = P1. Note that η is not an algebraic
isomorphism, but is a homeomorphism. Thus χTop(C) = 2. There is an embedding
C ↪→ P2 as a plane cubic, and thus a SES OP2(−3) → OP2 → OC and thus
χ(OC) = 0.

Example 20.8. Let C be a rational cubic with a node, then again C̃ = P1.

Note that χTop(pt) = 1, and by an argument deleting points in C and C̃ one has
χTop(C) = 1. Again one can argue χ(OC) = 0.

Example 20.9. The general case is a combination of the two above cases, uni-
branch (where η is a homeomorphism) and two branches crossing. Consider a
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curve with a node with b = 3 independent tangent directions. Take the seminor-
malization and then normalize, which separates the node into 3 points. In the first
step, the seminormalization is a homeomorphism, so χTop doesn’t change. In the

second step, it increases by b− 1. Let π : C\ → C be the seminormalization, then
there is a SES

OC → π∗OC\ → Q

where Q is a skyscraper sheaf, which is nonzero if π is not an isomorphism. Thus

χ(OC) increases in the first step. Similarly, for the normalization η : C\ → C̃,
there is again a SES

OC\ → η∗OC̃ → Q′

where Q′ is a skyscraper sheaf of length b− 1.

Remark 20.10. Fact: any proper non-isotrivial family of curves of genus g ≥ 1
must degenerate, i.e. there must be a singular fiber. A similar statement holds for
abelian varieties. For g ≥ 2, consider Ag as a coarse space. Adding a level structure
for m ≥ 3 yields a fine space Ag(m), where a level structure is an isomorphism

A[m]
∼−→ (Z/mZ)2g. This kills automorphisms. Note that for g = 1, this is easier

since M1 = A1 and any map from a projective to an affine variety is constant.

21. 2024-11-05-12-50-39

Remark 21.1. Recall: let S be a minimal non-ruled surface with pg = 0 and q ≥ 1,
which implies K2 = 0 and b2 = 2. Then π : S → B is isotrivial, where B is a curve
with g(B) = q. Either

• All fibers are smooth with multiplicity 1 and g(B) ≥ 2, or
• g(B) = 1 and all fibers are either smooth or a multiple of a smooth curve.

Theorem 21.2. Let G be a finite group acting freely on B′ × F . Then there is an

etale cover B′ ×F → B′×F
G = S where B′×F

G → B′/G = B. Thus any such surface
is a quotient of a cartesian product. Here g(B′), g(F ) ≥ 1.

Remark 21.3. Thus there is an etale base change such that S is a Cartesian
product and the group action is free.

Lemma 21.4. If g(B′) = g(F ) = 1, then ∃N such that NKS ∼ 0. Otherwise, if
either g(B) ≥ 2 or g(F ) ≥ 2, there exists a sequence of integers n1 ≤ n2 ≤ · · · such
that Pni

→ ∞.

Remark 21.5. In the first case, κ(S) = 0, and in the second, κ(S) ≥ 1. Note that
if G↷ B′ by translations and B′ is elliptic, then B = B′/G is elliptic as well.

Proof. Let S′ := B′ × F and f : S′ → S. Then by Riemann-Hurwitz, KS′ =
f∗KS + ε, and since f is étale, ε = 0. Moreover f∗KS′ = f∗f

∗KS = dKS where
d := deg f = ♯G. Thus f∗(nKS) = ndKS . Note that KB′×F = π∗

1KB′ + π∗
2KF , so

if either g(B′), g(F ) ≥ 2, then the plurigenera go to infinity.
□

Example 21.6. Let S′ = E1 × E2 be a product of elliptic curves and let G =
⟨ι⟩ be the group generated by an involution. Define ι(x, y) = (x + a,−y) where
a ∈ E1[2] is 2-torsion, so the action on the first coordinate is free. Note S′ →
E′

1 := E1/ι1 with fibers E2, and B := E′
1 is again an elliptic curve. There is also a

projection S′ → E′
2 := E2/ι2 with fibers either E1 or 2E′

1. Analyzing E2 → E′
2, the
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ramification points are y where 2y = 0, so this is ramified over 4 torsion points. By
Riemann-Hurwitz, the genus decreases, so E′

2
∼= P1. Locally this can be written

y2 = x(x − 1)(x − λ) and the involution is (x, y) 7→ (x,−y) which ramifies over
0, 1, λ,∞ ∈ P1.

Claim: pg = 0, q = 1. Write pg(S′) = h0(Ω2
E1×E2

). Note that h0(ΩE1
) = 1,

generated by dx which is translation invariant on C. We have H0(Ω2
E1×E2

) =

⟨dx ∧ dy⟩C, and H0(Ω2
E1×E2/G

) = H0(Ω2
E1×E2

)G, the G-invariant differential forms

on S′. One now checks that under (x, y) 7→ (x+ a,−y), we have

• dx 7→ dx
• dy 7→ −dy
• dx ∧ dy 7→ −dx ∧ dy.

Thus there are no invariant forms and H0(Ω2
E1×E2

)G = 0. This also shows

H0(ΩS′/G) = H0(ΩS′)G = ⟨dx⟩C. Note also that KS ̸∼ 0 but 2KS ∼ 0.

Remark 21.7. Other examples: let G ↷ E1 × E2 by a finite group action where
G ↷ E1 by translation and E2/G ∼= P1. These are referred to as bielliptic
surfaces. Consider Aut(E) for E an elliptic curve. This always contain Aut0(E)
generated by translations x 7→ x + a for a ∈ E. One can write Aut(E) = H ⋊
Aut0(E) where H is a finite group isomorphic to Aut(E, 0), the automorphisms
that fix the origin. Generically H = C2 generated by the elliptic involution. Let
Eτ := C

Z⊕Zτ , then

H =


C2 y 7→ −y
C4 y 7→ iy(Ei)

C6 y 7→ ζ3y(Eζ3)

.

Remark 21.8. There is a finite list of possible actions G↷ E1 ×E2 for bielliptic
surfaces:

1. C2

2. C2 × C2

3. C4

4. C4 × C2

5. C3

6. C3 × C3

7. C6

We have

• 2KS ∼ 0 in cases 1,2,
• 4KS ∼ 0 in 3,4,
• 3KS ∼ 0 in 5,6,
• 6KS ∼ 0 in 7.

Note that as a corollary, we always have 12KS ∼ 0 in this case.

Remark 21.9. Claim: there is a base change of S → B to S′ → B′ such that S′

is a Cartesian product. This is case 1 from earlier. An idea of the proof: there is
a constant map B → Mg → Ag at the level of coarse spaces. Pass to fine spaces
Mg(N) → Mg, and Ag(N) → Ag, which are quotients by finite groups. The latter

is comprised of pairs [C, Jac(C)N
∼−→C2g

N ]. One then considers trivializing the local
system R1π∗CN .

Remark 21.10. The κ(S) = 0 case is particularly important case for us.
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22. 2024-11-12-12-46-21

Remark 22.1. Goal: classify surfaces with κ(S) = 0. Let S be a minimal non-
ruled surface, so Pm = 0, 1 for all m and Pm = 1 for at least one m. We know KS

is nef and thus K2
S = 0.

Theorem 22.2. There are four possibilities for S:

1. pg = 0, q = 0 and χ(OS) = 1 − q + pg = 1 (K ̸= 0, 2K = 0: Enriques),
2. pg = 0, q = 1 and χ(OS) = 0 (Bielliptic),
3. pg = 1, q = 0 and χ(OS) = 2 (K = 0: K3 surfaces),
4. pg = 1, q = 1 and χ(OS) = 1 (not possible),
5. pg = 1, q = 2 and χ(OS) = 0 (K = 0: abelian surfaces).

Corollary 22.3. 4KS = 0 or 6KS = 0, so 12KS = 0 in any case.

Remark 22.4. Note that if X is a projective variety of dimension n and D is a
nef divisor, then Dn ≥ 0. If A is an ample divisor, then Kleiman’s criterion D+ εA
is ample ∀ε > 0. Ampleness implies (D + εA)n > 0 since this is the degree of X.
Then take ε→ 0. Note that torsion in Pic(X) is numerically zero.

Kleiman’s criterion: consider N1(X) = {
∑
niCi} / ∼, sums of curves modulo

numerical equivalence. Similarly N1(X) = {
∑
njDj} / ∼, sums of divisors modulo

numerical equivalence. There is an intersection product N1(X)×N1(X) → Z, and
numerical equivalence means they intersect the same way. This is a perfect pairing,
and rankRN1(X) ⊗ R = rank NS(X), so N1(X) = NS(X)/tors. There is a cone
NE1(X) ⊆ N1(X)⊗R, the Mori-Kleiman cone (or Mori cone). Any divisor E gives
a linear function fE on NE1(X). The Kleiman criterion states that a divisor E is

ample if fE > 0 on NE(X) \ {0}. Thus nef divisors are limits of ample divisors.
Mori proved that if one partitions NE1(X) by the hyperplane KX , the negative

part is polyhedral, generated by extremal rays. For Fano varieties, the entire cone
is polyhedral, while for abelian surfaces it is the round cone. More cones of K3
surfaces are partly polyhedral, partly round.

Lemma 22.5. χ(OS) ≥ 0.

Remark 22.6. Note χ(OS) = 1 − q + pg, and by Noether’s formula, χ(OS) =
c21+c2
12 = K2+χ(S)

12 . If K2 = 0, then 12χ(OS) = χ(S) =
∑
bi = 1−2q+ b2−2q+ 1 =

2 − 4q + b2. Note b2 = h0,2 + h1,1 + h2,0 = 2pg + h1,1, thus b2 ≥ 2pg and

12χ(OS) = 2 − 4q + b2 ≥ 2 − 4q + 2pg.

There is a problem if q is large. Note that −4χ(OS) = −4 + 4q − 4pg, and adding
this to the above equation yields

8χ(OS) = −2 − 4pg + b2 ≥ −2 − 2pg.

Note that −4pg = 0,−4, but if −4pg = −4 then χ(OS) < 0 would contradict this
inequality.

Remark 22.7. Thus the possibilities for χ(OS) = 1 − q + pg are

• pg = 0 =⇒ χ(OS) = 1 − q ≥ 0,
• pg = 1 =⇒ χ(OS) = 2 − q ≥ 0.

These yield the four possibilities in the theorem.

Lemma 22.8. Suppose κ(S) = 1. Letm,n > 0 and d = gcd(m,n). If Pm = Pn = 1
then Pd = 1.
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Remark 22.9. Consider S :=
{
m

∣∣∣ |mKS | ≠ ∅
}
⊆ Z; this forms a semigroup. We

will show that S is in fact a group.

Proof. Case 1: mK ∼ 0, which happens iff nK ∼ 0. This happens if K.H = 0 for
H a hyperplane. Then for all a, b ∈ Z, we have (am+ bn)K = 0, so dK = 0.

Case 2: mK = Cm ̸= 0 is a nonzero effective curve iff nK = Cn ̸= 0 is as well.
This happens if K.H > 0. Write m = m′d, n = n′d where gcd(m′, n′) = 1. Write
mK =

∑
niCi and nK =

∑
bjDj . Note that dm′n′K ∼

∑
nin

′Ci ∼
∑
bjm

′Dj ,
but in fact these are equal divisors (not just linearly equivalent) since Pm = 0, 1
forces uniqueness of effective divisors in |mK| when they exist. Note that

∑ ai

n′Ci

and
∑ bj

n′Dj are integral divisors, and we claim these divisors are in |dK|.
□

Remark 22.10. We now discuss the proof of the theorem. Case 1: pg = 0, q =

0, χ(OS) = 1. By Riemann-Roch, χ(D) = χ(OS) + D(D−K)
2 = h0(D) − h1(D) +

h0(K − D), and so h0(D) + h0(K − D) ≥ χ(D). Applying this to D = mK
yields h0(mK) + h0((1 − m)K) ≥ χ(OS). We’ll show a positive multiple and a
negative multiple of K is effective, which can only happen if the multiple if zero.
If χ(OS) = 1, we have h0(3K) + h0(−2K) ≥ 1. If h0(−2K) = 1, then −2K ∼ 0.
Consider the case where h0(3K) ≥ 1. This implies p3 = 1. In this case we have
h0(2K) ≥ 1 since q = 0 and S is not rational. This implies p2 = 1, which implies
p1 = pg = 1, contradicting pg = 0.

Remark 22.11. Case 2: we have already considered these in a previous chapter.

Remark 22.12. Case 3: pg = 1, q = 0, χ(OS) = 2, and we want to conclude
K ∼ 0. By Riemann-Roch, h0(2K) + h0(−K) ≥ 2. We know h0(2K) = 1, thus
h0(−K) ≥ 1 and −K is effective. Since K is effective, we have K ∼ 0.

Remark 22.13. Case 4: pg = 1, q = 1, χ(OS) = 1, we want to show this is

impossible. Recall the SES Pic0(S) ↪→ Pic(S) ↠ NS(S), and note Pic0(S) ∼=
Cq/Z2q = C/Z2 in this case. This is a complex torus, which has a 2-torsion point
ε ∈ Pic0(S). By Riemann-Roch, h0(ε)+h0(K−ε) ≥ 1. Since ε can not be effective
since 2ε = 0 (intersect with a hyperplane), we have h0(ε) = 0. So h0(K − ε) ̸= 0.
We thus have ∃D ∈ |K| and ∃E ∈ |K − ε|. Note that 2D = 2E ∈ |2K| since
there is a unique divisor in this linear system. Either this is zero, or effective and
nonzero. We want to conclude D = E, and thus ε = D − E = 0, a contradiction.

Called case 3.5 in class.

Remark 22.14. Case 5: the hardest case. Use the Albanese map α : S → Alb(S),
an abelian variety of dimension q = 2. Claim: α is surjective and étale. Fact: if
X → Y is an etale map between projective varieties and Y is an abelian variety,
then X is an abelian variety. I.e. any etale cover of an abelian variety is again an
abelian variety. We have to prove the image of α is not just a curve, and that α is
unramified.

Called case 4 in class.

23. 2024-11-19-12-46-23: K3 Surfaces

Remark 23.1. Let S be a minimal surface with pg = 1, q = 0, χ(OS) = 2 with

κ = 0. We proved KS ∼ 0. By the Noether formula, χ(OS) = K2+χ(S)
12 , so

χ(S) = 24. We have the following Hodge diamond:
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h2,2 = 1

h1,2 = 0 h2,1 = 0

h0,2 = h0(ωS) = 1 h1,1 = 20 h2,0 = 1

h0,1 = q = 0 h1,0 = 0

h0,0 = 1

> Link to Diagram

Example 23.2. Let S = X4 ⊆ P3 be a quartic, then KS = KP3 + S
∣∣∣
S

= −4H +

4H = 0. Take the SES OP3(−4) → OP3 → OS given by restriction of functions.
Note that Hi(OPn(d)) = 0 unless d = 0, n, so by the LES, H1(OS) = 0.

Example 23.3. Let X3,2 ⊆ P4 be a complete intersection, then KX = KP4 +D3+

D2

∣∣∣
X

= −5H + 3H + 2H = 0. Computing H1(OX) proceeds similarly. A similar

example is X2,2,2 ⊆ P4.

Remark 23.4. Each of these defines a K3 with an ample line bundle L := OX(−1),
the restriction of OPn(−1) to X. In these cases:

• L2 = H2X = 4
• L2 = 2 · 3 = 6
• L2 = 2 · 2 · 2 = 8.

All of these yield a pair (X,L), and we define the degree of the pair as d := L2.
These are the only complete intersections which are K3s.

Lemma 23.5. On a K3 surface, for any divisor D, one has D2 even.

Remark 23.6. By Riemann-Roch, χ(D) = D2−DK
2 , and DK = 0. This in fact

holds for all minimal surfaces with κ = 0, since some multiple of K is zero.

Remark 23.7. Suppose d = 2. Then L can not be ample. There is a double cover
f : X → P2 branched over B = {f6 = 0}, a smooth curve given by an equation
of degree 6. By Riemann-Hurwitz, KX ∼Q f∗(KP2 + 1

2B) ∼ 0, which forces B
to be a sextic. Clearing denominators yields 2KX ∼ f∗(2KP2 + B). We generally
have f∗OX = OP2 ⊕ F−1 where F 2 = O(B). This is the decomposition into the
±1 eigenspaces of f∗OX respectively under an involution. There is a grading, this
is given by a multiplication morphism F−1 ⊗ F−1 → OP2 , or equivalently a map
O → F 2 where 1 7→ s. The cover has local coordinates z2 = s(x, y), and (s) = B
cuts out the ramification locus, so s ∈ OP2(B) and F 2 = OP2(B) is necessary. We
have f∗ωX = ωP2 ⊕ ωP2(F ). Moreover H1(OX) = H1(OP2) ⊕H1(OP2(−3)) = 0,
so q = 0. Similarly, H0(ωX) = H0(OP2(−3)) ⊕H0(OP2(−3 + 3)) ∼= 0 ⊕C, so ωX

has a section and this forces KX ∼ 0.

https://q.uiver.app/#q=WzAsOSxbMiwwLCJoXnsyLDJ9PTEiXSxbMSwxLCJoXnsxLDJ9PTAiXSxbMywxLCJoXnsyLDF9PTAiXSxbMCwyLCJoXnswLDJ9ID0gaF4wKFxcb21lZ2FfUykgPSAxIl0sWzIsMiwiaF57MSwxfSA9IDIwIl0sWzQsMiwiaF57MiwwfT0xIl0sWzEsMywiaF57MCwxfT1xPTAiXSxbMywzLCJoXnsxLDB9PTAiXSxbMiw0LCJoXnswLDB9ID0gMSJdXQ==
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Example 23.8. Let f : X → P1 × P1 with B ⊆ |OP1×P1(2, 2)|, noting that
KP1×P1 = O(2, 2). A similar calculation shows that this is a K3 surface. One
sets L = f∗O(1, 1), where O(1, 1) is very ample and embeds P1 × P1 ↪→ P3 as a
conic. Then L2 = 2 · 2 = 4, yielding a degree 4 K3. Note that X → P3 is not an
embedding in this case; it covers a degree 2 surface.

Remark 23.9. One could generalize this to consider double covers of other del
Pezzo surfaces branched over B ∈ |−2K|.

Example 23.10. Elliptic K3s: by analogy, these are the d = 0 case. These come
with a line bundle which is not ample. They are elliptic surfaces: fibrations f :
S → C with generic fiber Fg of genus 1. In the K3 case, C = P1 since there are
no differential forms. We have χ(S) = χ(C)χ(Fg) +

∑
F (χ(F ) − χ(Fg)), and since

χ(F ) = 2 − 2g = 0, all contributions come from the excess term. The simplest
singular fibers are nodal curves, which normalize to CP1 ∼= S2. So there are
generically 24 singular fibers, and there may or may not be a section.

Remark 23.11. Minimal surfaces with κ = 1 are elliptic, but not every elliptic
surface satisfies κ = 1. If the fibration admits a section, the fibers are genus 1 curves
with a point and the fibration is called Jacobian. The fibers have Weierstrass form
y2 = x3 + Ax+ B where A(t0, t1), B(t0, t1) are homogeneous in the coordinates ti
on P1. One checks ∆24 = 4A3

8 + 27B2
12.

Remark 23.12. Note L = f∗OP1(1) yields L2 = 0. One can choose other polar-
izations, e.g. L = s+ df . Then L2 = s2 + 2dsf + f2 = −2 + 2d+ 0 = 2d− 2, where

s2 = −2 follows from the genus formula g(s) = s2+sK
2 +1 with sK = 0. For generic

choices, L will be ample, and L2 = 2d− 2 achieves every even integer.

Remark 23.13. Let’s count moduli for the examples given above.

• X4: there are
(
7
4

)
monomials, minus dim PGL4 =?, minus 1 for projectiviz-

ing equations. This yields 35 − 16 = 19.
• X2,3: a more delicate count yields 19.
• X2,2,2: one gets 19 by computing the dimension of a Grassmannian.

• f : X → P2: the number of sextics in P2, minus dim PGL2, yields
(
8
2

)
−9 =

19.
• f : X → P1 ×P1: counting yields 18.
• Elliptic: count possibilities for A8 and B12, modulo PGL2, yields 18.

Why the difference: rank Pic(X4) = 1 generically, while rank Pic(X) = 2 for
e.g. X → P1 × P1. So larger Picard rank yields fewer moduli; in general one has
20 − rank Pic(X) moduli.

Remark 23.14. In every even degree d ≥ 4, there exist K3s with a very ample
line bundle. This comes from studying things like X4 which also admit an elliptic

fibration, and setting L̃ := L+ kF for F a fiber class. Then L̃2 = L2 + 2kLF , and

since L is very ample and F is basepoint free, L̃ is again very ample.

Remark 23.15. Suppose X is a K3 and C ⊆ X is a smooth curve with g(C) ≥ 2.
Note C2 = 2g − 2 by the genus formula, since K = 0. Then |C| is basepoint free,
and ϕ|L| : X → im(X) ⊆ P3 is degree either 1 or 2. In this case we say X is a
hyperelliptic K3.
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Proof. Consider the SES OX → OX(C) → OC(C). By adjunction KC = KX +

C
∣∣∣
C

= OC(C), so OC(C) = OC(KC). The result follows from the theory of curves.

□

Remark 23.16. Next time: Hodge theory, deformations, Enriques surfaces. Last
class: elliptic surfaces.

Remark 23.17. Note ρ ≤ 20 in characteristic zero, but possibly ρ = 22 in positive
characteristic.

24. 2024-11-21-12-48-29

Remark 24.1. K3 surfaces: X with pg = 1, q = 0,KX ∼ 0, χ(X) = 24, χ(OX) = 2.
Polarized: pairs (X,L) with L an ample line bundle satisfying L2 = 2d. Note
that any two K3 surfaces over C are homeomorphic, and π1(X) = 1 and thus
H1(X;Z) = 0. By UCT, H2(X;Z) = Hom(H1(X;Z),Z) ⊕ T , where T is the
torsion in H1, is torsionfree is isomorphic to Z22. There is an integral bilinear
form H2(X;Z) × H2(X;Z) → H4(X;Z) ∼= Z. Note that (x, x) is even for all
x, symmetric, and unimodular. The form has signature (3, 19). Such indefinite
unimodular even forms are unique, so this lattice is II3,19 ∼= U3 ⊕ E2

8 . Note that
U = II1,1 and E8(−1) = II0,8.

Note that Pic(X) = H1(O×
X). Take the LES for the exponential SES Z → OX →

O×
X to get

0 → Pic0(X) → Pic(X) → NS(X) = ker
(
H2(X;Z)

f−→ H2(OX)
)
.

We have Pic0(X) = H1(OX)/H1(X;Z) = Cq/Z2q, and Pic(X) ∼= NS(X) ⊆
H2(X;Z) = II3,19. By the Hodge index theorem, NS(X) has signature (1, r − 1)
for some r. The inclusion NS(X) ⊆ H2(X;Z) is a primitive embedding of lattices,
i.e. nv ∈ NS(X) =⇒ v ∈ NS(X), since NS(X) is isomorphic to a kernel. Nikulin
classified which hyperbolic lattices can be primitively embedded into II3,19, and
moreover shows they are all attained by some K3 surface.

Remark 24.2. Understanding ker f from above: it is the composition

H2(X;Z) → H2(X;C) = H2,0 ⊕H1,1 ⊕H0,2 ↠ H2,0 = H2(OX).

Write H0,2 = H0(Ω2) = H0(KX) = CωX .

Lemma 24.3.

NS(X) = H2(X;Z) ∩H1,1 =
{
α ∈ H2(X;Z)

∣∣∣ α · ωX = 0
}
.

Proof. Write α = α2,0 +α1,1 +α0,2 where α2,0 = α0,2 and α1,1 = α1,1. If α ∈ ker f
then α2,0 = 0 and so α = α1,1. The second identification comes from the fact
that α · ωX ∈ H2,2 + H1,3 + H0,4 = H2,2 and the pairing H2,0 × H0,2 → H2,2 is
nondegenerate.

□

Remark 24.4. Thus varying ωX amounts to varying NS(X), and one has 0 ≤ r ≤
20 for r := rank NS(X). We define a period domain

D :=
{

[ω]
∣∣∣ ω ∈ II3,19 ⊗C, ω · ω = 0, ω · ω > 0

}
⊆ CP21.
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The Torelli theorem states that for any ω ∈ D there exists a complex analytic K3
surface X with ωX = ω, together with a marking H2(X;Z)

∼−→ II3,19. Further, two
marked K3s are isomorphic iff ωX = ωX′ .

25. 2024-11-26-12-46-18: Elliptic Surfaces

25A. Examples of Elliptic Surfaces.

Definition 25.1. An elliptic surface X is a (smooth) fibration π : X → C over a
curve C whose generic fiber is a genus 1 curve, not necessarily with an origin fixed.
We assume there are no (−1)-curves in a fiber, so π is relatively minimal.

Remark 25.2. Multiple fibers are allowed, as well as non-reduced and non-irreducible
curves.

Example 25.3. Begin with P2 and take two general polynomials f3(x0, x1, x2), g3(x0, x1, x2)
and consider the pencil sf3 + tg3 = 0 where [s : t] ∈ P1. Generically, f3 ∩ g3 is
9 points, so blow these up. These yields a pencil without basepoints with a map
Bl9 P

2 → P1 with coordinates [s : t]. The generic fiber is an elliptic curve, and this
surface has 9 sections E1, · · · , E9.

More generally, it’s enough to assume this pencil contains an irreducible curve,
and the points of blowup are allowed to be infinitely near (e.g. tangency of the
curves). In this case, at least E9 is a section, so this always yields an elliptic
surface with a section. Thus the points need not be in general position. The most
degenerate case is when all other 8 curves are contained in a fiber. In this case,
κ = −∞, so X is a RES (rational elliptic surface). Note that there are many
(−1)-curves, but they are all sections and not contained in fibers.

Remark 25.4. Such surfaces (X,E) with a section biject with del Pezzo surfaces
of degree 1. Start with such a X = dP1 and consider |−KX |. Since h0(−KX) = 2,
this linear system is a P1 and any two elements intersect at one point. This yields

a pencil with a basepoint. If C ∈ |−KX |, then KC = KX + C
∣∣∣
C

= 0, so this is an

elliptic curve. Conversely, taking an RES and blowing down E yields a dP1.

Remark 25.5. Such a family of curves can be regarded as a single curve over the
function field of P1. There is still a section, so Mordell’s theorem guarantees that
the sections form a finitely generated group. This produces a surface with infinitely
many (−1)-curves.

Example 25.6. Some K3 surfaces are elliptic; there is an 18-dimensional family
of them. Produce these using Weierstrass equations. Here κ = 0.

Example 25.7. All Enriques surfaces are elliptic (without a section). There are
always two double fibers in a fibration over P1. Note that if you have a section,
you can not have a multiple fiber, by considering intersection multiplicities. Again,
here κ = 0.

Remark 25.8. All surfaces S with κ(S) = 1 are elliptic. The fibration is induced
by mKX for m≫ 1. The rational map it induces maps to a curve since κ = 1. The
nontrivial fact is that this map is basepoint free and is thus regular. Adjunction
shows that the generic fiber is an elliptic curve.

Lemma 25.9. Surfaces with κ(S) = 2 are not elliptic.
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Remark 25.10. KX .C ≥ 0 for all curves C. However, the restriction of KX to a
fiber must be zero, so KX .F.F = 0 for every fiber F . So every multiple mKX must
contract every fiber, along with all curves it intersects by zero. Thus the image
must be a curve, but κ = 2 forces the image to be a surface.

Remark 25.11. A generic K3 has ρ = 1, but any elliptic fibration has a fiber and
a multisection, so ρ ≥ 2. So the generic K3 is not elliptic.

Remark 25.12. Halphen pencils: start with a cubic f3 and a sextic g6 and take
the pencil sf3 + tg6. The intersection f3 ∩ g6 is 9 points, and we can arrange for
the multiplicity is 2 at each point. Taking Bl9 P

2, this has a fibration to P1. This
is a RES without a section with a multiple fiber.

There is a variation sf3d+tg3d, and blowing up again yields a RES with multiple
fiber. We recover the previous case by taking f3d = fd3 for d = 2.

Remark 25.13. There is a construction with takes elliptic surfaces π : X → C to
Jacobian elliptic surfaces : π : JX → C, i.e. elliptic surfaces with a section. On
smooth fibers, this sends Xt to (JXt, 0), since the Jacobian has a distinguished
origin. This construction removes multiple fibers, and on singular fibers one takes
a compactified Jacobian. Multiple curves nE are mapped to E, any other curves
Xt are sent to JXt

∼= Xt (which has a section). It follows that χ(Xt) = χ(JXt).

Remark 25.14. What happens to an Enriques surface under this construction?
Considering the first example: since χ(P2) = 3 and χ(P1) = 1, we have χ(Bl9 P

2) =
12 since points are replaced with P1s, increasing χ by one each time. Note that
χ(OX) = 1 for this RES, for K3s χ(OX) = 2, χ = 24, and for Enriques surfaces
χ(OX) = 1, χ = 12. Here we’ve used that K2 = 0 and thus χ = 12χ(OX) by
Noether’s formula.

Lemma 25.15. Let X be relatively minimal. Then KX ∼ cF where c ≥ 1 and F
is a fiber.

Proof. Write KX =
∑
niCi with Ci in fibers. Pick a fiber F , then for some index

set J we have
∑
mjCj = F . Compute pa(F ) = 1 since this is constant in a flat

family. On the other hand, we have pa(F ) = (KX+F )F
2 + 1, and since F 2 = 0 we

have KX .F = 0. Then either

1. KX .Cj = 0 for all j, or
2. ∃j such that KxCj < 0.

This follows from the fact that KX .F =
∑
mjKX .Cj = 0. If C2

j < 0, then note

that pa(Cj) =
KX .Cj+C2

j

2 + 1. Then either

• F = mjCj is irreducible, or
• pa(Cj) = 0, Cj

∼= P1, C2
j = −2, and KX .Cj = 0.

This follows from the fact that the numerator is either (−1) + (−1), which is
ruled out by relative minimality, or (0) + (−2). The latter is the only possibility.
In any case, KX .Cj = 0, and

∑
niCi =

∑
diFi for some collection of fibers Fi.

□

25B. Singular fibers.

Remark 25.16. Since g(E) = 1, the singular fibers are either of the for mE, or
a cuspidal or nodal curve. If the singular fiber is a collection of (−1)-curves, take
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the dual graph. This has an associated matrix Mij = Ci.Cj which is negative

semidefinite. The possible graphs that can arise are Ãn, D̃n, Ẽm for m = 6, 7, 8.
Taking the determinants of these matrices yields

• detAn = n+ 1,
• detD4 = 4,
• detE6 = 3,
• detE7 = 2,
• detE8 = 1.

These graphs uniquely recover the fibers, with the exception of Ã0, Ã1, Ã2.

One has M(In) =

[
1 n
0 1

]
and M(I∗n) =

[
1 −n
0 1

]
for monodromy around these

fibers.

Remark 25.17. The canonical class formula:

KX ∼Q π∗KC +
∑ mi − 1

mi
Fi +M.

where the sum is over multiple fibers and called the divisor part, and M is called
the moduli part. One sets M = j∗OP1

j
(1) +

∑
ciFi where the ci are prescribed

based on the Dynkin type. Here j : C → P1 is the map sending a fiber Xt for t ∈ C
to its j-invariant. This puts significant restrictions on the fiber types.
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