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Abstract. We describe a modular KSBA stable pair compactification of the

moduli space of Coble surfaces and compare it to a semitoroidal compactifi-

cation of the corresponding period domain. We further describe KSBA stable
limits in terms of integral affine structures.
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1. Introduction

Remark 1.1. A Coble surface is a smooth projective rational surface S with
|−KS | = ∅ but |−2KS | ≠ ∅. Such surfaces arise from the work of [Cob19] and
[Cob29] on Cremona transformations of P2 preserving an irreducible rational sex-
tic C with ten nodes – the blowup S along these nodes yields a Coble surface.
[Cob19] shows that the Cremona class of such a curve C can be written as a union
of finitely many projective equivalence classes, and that if C is sufficiently general
then Aut(S) ∼= W (E10), the Weyl group of an infinite root system of type E10.
Moreover, he shows that that modulo Aut(S), there are only finitely many smooth
rational negative curves on S.

Coble surfaces occur as degenerations of Enriques surfaces and were ultimately
classified in [DZ99]. As such, they are intimately tied to the theory of algebraic
K3 surfaces equipped with a nonsymplectic involution, which were classified by
[Nik79b]. For a reduced plane sextic C, the double cover of S branched along the
proper transform of C is a K3 surface X which can be realized as a degeneration
of the universal double cover of an Enriques surface, where X acquires an A1

singularity fixed by the Enriques involution. The resulting quotient has a quartic

singularity whose resolution is an irreducible smooth rational curve C̃ satisfying

C̃2 = −4, and thus by [Nue16, §3] is a Coble surface.
We will be interested in Coble surfaces in the strong sense, where |−2KS | =

{C1 + · · ·+ Cn} is a single reduced divisor comprised of n disjoint smooth rational
curves referred to as boundary components of S. It is known that 1 ≤ n ≤ 10,
and for each such n, there is a moduli space FCo,n of Coble surfaces with n bound-
ary components. When n = 1, the moduli space FCo := FCo,1 of Coble surfaces
can be described as a boundary divisor H−2 in the 10-dimensional moduli space
FEn of unpolarized Enriques surfaces, and thus FCo is 9-dimensional. Moreover,
FCo was shown to be rational in [DK13b] via a comparison to a moduli space of
cuspidal plane quintics. A natural question is whether or not FCo admits a geo-
metrically meaningful, modular compactification FCo, and if so, if the boundary
∂FCo can be described and classified. Toward this end, we turn to the stable pair
compactifications of Kollár, Shepherd-Barron, and Alexeev [KS88; Ale96; Kol23].

Remark 1.2. The search for modular compactifications of moduli spaces is a cen-
tral problem in algebraic geometry. The prototypical example stems from the work
of [DM69; KM76; Knu83] on the Deligne-Mumford-Knudsen compactificationMg,n

of the moduli space of stable pointed curves Mg,n. By [Mum65; Nam76; AN99;

Ale02], a similarly modular compactification Ag of the moduli space Ag of princi-
pally polarized abelian varieties via stable pairs exists, the normalization of which
coincides with a particular choice of toroidal [Ash+75] compactification by the work
of [KS88] and [Ale96]. By [PS71], the coarse moduli space F2d of primitively po-
larized K3 surfaces of degree 2d is isomorphic to an arithmetic quotient DL2d

/ΓL2d

of a Type IV Hermitian symmetric domain associated to a lattice L2d, where DL2d

is a period domain classifying Hodge structures of K3 type and ΓL2d
is an arith-

metic subgroup of the orthogonal group O(L2d). By [BB66], such domains admit
a Baily-Borel compactification which is a projective variety. For F2d and related
lattice-polarized moduli spaces FS of K3 surfaces, the boundary of the compact-
ification consists of a configuration of 0-cusps (points) and 1-cusps (curves), see
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[Sca87]. By [Ash+75], there additionally exist infinitely many toroidal compact-
ifications described by a choice of fans at each cuspidal point of the Baily-Borel
compactification. The work of [Loo85] on semitoroidal compactifications simulta-
neously generalizes the Baily-Borel and toroidal compactifications, retaining the
advantage that the boundary can be understood in terms of semifans and studied
using toric geometry.

Semitoroidal compactifications are advantageous due to their explicit and com-
binatorial nature, but do not a priori carry a clear modular interpretation along
the boundary strata. Alternatively, letting (S,R) be a pair consisting of a surface
and a suitably chosen divisor, the work of [KS88; Ale96; Kol23] yields a compacti-
fication obtained by taking the closure of pairs (S, εR) in the space of KSBA stable
pairs. Although KSBA compactifications admit strong modular interpretations,
their boundary strata are generally quite difficult to describe. A recent strategy
employed in [ABE23; AET23; AE23b; Ale+23] is to simultaneously leverage the
advantages of both semitoric and KSBA compactifications by finding comparison
morphisms between them. This allows the modular boundary of the KSBA com-
pactification to be studied and classified using the combinatorics of toric geometry,
lattice theory, and critically, advances in integral affine geometry and mirror sym-
metry.

The moduli space FCo of Coble surfaces with n = 1 boundary components admits
a Hodge-theoretic period domain description of the form D(TCo)/ΓCo where TCo is
a fixed lattice and ΓCo := O(TCo) is its orthogonal group. Its Baily-Borel compact-

ification FCo
BB

contains only one 0-cusp p0, and thus the combinatorial data of a
semitoroidal compactification is determined by a single ΓCo-invariant semifan asso-
ciated to a lattice at p0. A canonical choice one can take is the Coxeter fan, formed
by a fundamental domain of the action of the lattice’s Weyl group, along with its
reflections. Perhaps more naturally, one can also search for a semifan F such that

the resulting compactification FCo
F

is isomorphic to the KSBA compactification
FCo for a suitably chosen divisor, and indeed this is what we do in this paper. To
this end, we prove the following:

Theorem 1.3. There is a semifan F such that there exists a morphism

Ψ : (FCo)
ν → FCo

F

from the normalization of the KSBA compactification to the semitoroidal compact-
ification associated with F . The Coxeter fan of TCo is a refinement of F , and
stable Coble surfaces in the boundary of FCo admit explicit descriptions in terms of
surfaces associated to sub-Dynkin diagrams of Coxeter diagrams.

Remark 1.4. This result is made possible by recent advances in [AE23b; AEH21]
on compactifications of K3 surfaces with nonsymplectic automorphisms, along with
the theory of recognizable divisors developed in [AE23a]. We also critically leverage
the related stable pair compactification of the moduli spaces of Enriques surfaces
studied in [Ale+23]. In particular, we use the folding theory of Coxeter diagrams,
their associated integral affine structures, and the theory of ADE+BC surfaces in
order to explicitly describe stable degenerations of Coble surfaces.

Acknowledgements. I would like to thank my advisor Valery Alexeev for his
guidance and support throughout this project. I thank Luca Schaffler and Philip
Engel for many useful discussions. I would also like to gratefully acknowledge
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financial support from the Office of the Graduate School of the University of Georgia
and the Research and Training Group in Algebra, Algebraic Geometry, and Number
Theory at the University of Georgia.

2. Coble surfaces

2A. The geometry of Coble surfaces.

Remark 2.1. For the general theory of Coble surfaces, we refer to [CDL24; DK24],
along with [DM20; DZ99; DK13a; CD89; CD12; Dol17]. Following [DM20, §5.1],
a Coble surface is a smooth projective rational surface S with |−KS | = ∅ but
|−2KS | ̸= ∅. We say S is of K3 type if |−2KS | consists of a single smooth
divisor C = C1+ · · ·+Cn, the union of n disjoint smooth rational curves satisfying
Ci · Cj = −4δij . For Coble surfaces obtained as the blowup along ten nodes of a
nodal plane sextic, this calculation follows from adjunction and the genus formula.
We refer to C as the anti-bicanonical curve of S, and note that KS ·Ci = −2. The
Ci are referred to as the boundary components of S.

By [Dol17, §5.1], such a Coble surface is known to be a basic rational surface,
i.e. there is a birational morphism π : S → P2. Writing −K2

S = n, one can
decompose π as a blowup of N = 9 + n points in P2. It is known that n ≤ 10,
c.f. [DK24, Prop. 9.1.5]. The image of C is contained in |−2KP2 | = |OP2(6)| and
is thus generically a nodal plane sextic where the images of Ci are its irreducible
components.

We will primarily be interested in the case n = 1, whence S is obtained as the
blowup of a plane sextic along N = 10 ordinary double points, some of which may
be infinitely near to each other. Such Coble surfaces are not the image of any
birational but not biregular morphism from another Coble surface and are said to
be terminal. We say S is minimal if the blowdown of any (−1)-curve on S is
no longer a Coble surface, or equivalently if S does not admit a birational but not
biregular morphism onto another Coble surface.

Remark 2.2. Let L := OS(−KS) ∈ Pic(S); By [DK24, Prop. 9.1.1], taking a
section s ∈ H0(L⊗2) with Z(s) = C yields a double branched double cover f : X →
S where X is a smooth K3 surface. By [CDL24, Def. 5.4.3], the preimages f−1(Ci)
are disjoint (−2)-curves and Pic(X) is a 2-elementary lattice with invariants of the
form

(r, a, δ)1 = (10 + n, 12− n, δ)1.

By [CDL24, Def. 5.4.3, Eqn. 5.3.1], the ramification divisor R is explicitly of one
of the following forms:

• R = ∅ if (r, a, δ) = (10, 10, 0),
• R is a sum of two elliptic curves if (r, a, δ) = (10, 8, 0),
• R is the sum of a single rational curve and n− 1 other disjoint (−2)-curves
otherwise.

It is also known that δ = 1 unless n = 8, c.f. [CDL24, Table 5.1]. Thus if S is
a terminal Coble surface of K3 type with n = 1, the ramification locus of the K3
cover is a single smooth rational curve, and we obtain a lattice with invariants

SCo := (11, 11, 1)1 ∼= ⟨−2⟩ ⊕ E10(2)

with orthogonal complement

TCo := S⊥LK3

Co = (11, 11, 1)2 ∼= I2,9(2) ∼= ⟨2⟩ ⊕ E10(2).
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Explicitly, SCo is generated by the preimages Ei for 1 ≤ i ≤ 10 under f of the
ten exceptional divisors of the blowup, along with the preimage E0 under f of the
pullback of a hyperplane class of P2 under π. One can show that E2

0 = 2 and
E2

i = −2 for i ≥ 1, and thus these divisors form a lattice of the form

SCo
∼= ⟨2⟩ ⊕ ⟨−2⟩⊕10 ∼= I1,10(2) ∼= (11, 11, 1)1,

and the identification SCo
∼= ⟨−2⟩ ⊕ E10(2) follows from the fact that both def-

initions of SCo are 2-elementary lattices of signature (1, 10) with discriminant
group (Z/2Z)11, which are classified uniquely up to isometry by their invariants
(r, a, δ)n+

. Similarly, the identification of TCo follows from the fact that it is again
a 2-elementary lattice of signature (2, 9) satisfying qTCo

∼= −qSCo , and the iso-
morphism class of qTCo

determines TCo up to isometry. Alternatively, this can
be seen directly using the mirror move S ⇝ T of [AE22, Thm. 5.10] applied to
SCo = (11, 11, 1)1 in [AE22, Fig. 1], immediately yielding TCo = (11, 11, 1)2.

The lattices SCo and TCo will be of fundamental importance in constructing the
Hodge-theoretic period domain for Coble surfaces, yielding a coarse space for the
corresponding moduli space.

Remark 2.3. Following [CD12], we note that this computation is a special case
of a general construction. Let S be any basic rational surface and write S as the
blowup of P2 at N points p1, · · · , pN with N ≥ 9. It is a fact that Pic(S) ∼= I1,N,
since one can construct a geometric basis in the following way: let e0 be the
class of the total transform of a hyperplane class in P2 and for 1 ≤ i ≤ N , let
ei be the class of the total transform of the exceptional divisor over pi. Then
Pic(S) = ⟨e0, e1, · · · , eN ⟩ and ρ(X) = N + 1; one verifies that e20 = 1, and for
i ≥ 1, that e2i = −1. Moreover eiej = 0 for i ̸= j, making this an orthogonal
basis with respect to the intersection pairing, yielding I1,N. In the case of Coble
surfaces, the effect of taking the K3 double cover is to twist this lattice by 2, yielding
Pic(X) = I1,N(2), generated by preimages of the ei. We remark that

KS = −3e0 + e1 + · · ·+ eN .

3. Lattice Theory

Remark 3.1. We refer to:

• [Vin85]
• [Vin75]

3A. Basic Theory.

Remark 3.2. The study of semitoroidal compactifications of moduli spaces of
Coble surfaces largely reduces to lattice theory, of which we will now recall the
essential notions.

Remark 3.3 (Basic invariants). By a lattice, we mean a free Z-module L of
finite rank equipped with a nondegenerate1 symmetric integral bilinear form βL :
L ⊗Z L → Z. We abbreviate vw := βL(v, w) and v2 := βL(v, v) and refer to the
latter as the norm of v. We write LR := L ⊗Z R and βLR

for R = Q,R,C
for the Z-linear extensions of (L, βL) to the rational, real, and complex numbers
respectively.

1A bilinear form is nondegenerate if for any x, βL(x, L) = 0 implies x = 0.
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A submodule M ⊆ L is a sublattice if the restricted bilinear form βL|M endows
M with the structure of a lattice. A vector v ∈ L is isotropic if v2 = 0, i.e. it
is norm zero, and more generally a sublattice M ⊆ L is isotropic if βL|M ≡ 0.
A lattice is said to be even if x2 ∈ 2Z for all x ∈ L, and odd otherwise. A
nondegenerate symmetric bilinear form can be linearly extended to LR and by
Sylvester’s theorem, diagonalized with only 1 or −1 on the diagonal. We write n+

and n− respectively for the number of ±1 entries on the diagonal. The signature
of L is the pair (n+, n−), and the index is n+ −n−. We say L is definite if either
n+ or n− is zero, and indefinite otherwise. More precisely, if n− = 0 we say L
is positive definite, and similarly if n+ = 0, we say L is negative definite. A
negative definite lattice generated by elements of norm −2 is said to be a root
lattice, and such elements are referred to as roots.

The rank r of a lattice is its rank as a free Z-module and is given by r =
n+ + n− = dimQ LQ. An indefinite lattice of signature (1, r − 1) is said to be
hyperbolic. Fixing a generating set ei of L, we define the Gram matrix of L as
the matrix GL := (βL(ei, ej))ij , and the discriminant as discL := detGL. The
discriminant is independent of the choice of generating set.

Remark 3.4 (Discriminant forms). The dual lattice to L is denoted L∨ :=
HomZ(L,Z), and there is an morphism

ι : L ↪→ L∨

x 7→ βL(x, ·)

which, if L is nondegenerate, is an injection with finite index image. The discrim-
inant group is AL := coker ι ∼= L∨/L; this is a finite order group of order |discL|.
We say L is unimodular if any of the following equivalent conditions hold:

1. AL is the trivial group,
2. ι is an isomorphism and L ∼= L∨,
3. |discL| = 1.

If AL
∼= (Z/pZ)a for some a, we say L is p-elementary; in our applications we

will often have p = 2. For even lattices, the form βL descends to a well-defined
quadratic form

qL : AL → Q/2Z

x+ L 7→ βLQ
(x, x)mod 2Z

We call the pair (AL, qL) the discriminant quadratic form of L. A morphism
between two lattices is a morphism of Z-modules η : L → L′ respecting the bilinear
forms in the sense that βL(x, y) = βL′(η(x), η(y)), and is a primitive embedding
if η is injective and coker η is torsionfree. An isometry of lattices is an isomorphism,
defined in the obvious way. We write O(L) for the group of lattice automorphisms
of L, denoted the orthogonal group of L, and similarly O(qL) for the Z-module
automorphisms of of the discriminant form AL which preserve the quadratic form.
There is a natural group homomorphism O(L) → O(qL), the kernel is denoted

Õ(L).

Remark 3.5 (Orthogonal complements). Given two lattices L1, L2 we write L1⊕L2

for the orthogonal direct sum, which is the direct sum of the underlying modules
with bilinear form defined by

βL1⊕L2
(v1 + v2, w1 + w2) := βL1

(v1, w1) + βL2
(v2, w2).
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We write L⊕n for the direct sum of n copies of L. Let η : M ↪→ L be a primitive
embedding of lattices, for example the inclusion of a sublattice. We write

M⊥L :=
{
x ∈ L

∣∣∣ βL(x,M) = 0
}
.

If the ambient lattice L is understood, we often abuse notation and simply write
M⊥ without reference to L. Note that M⊥L⊕M ⊆ L may not be saturated, and is
generally a finite index sublattice of L. We note that M⊥L ∩M ̸= {0} in general.2

We also note that for any lattices Li,

AL1⊕···⊕Ln
= AL1

⊕ · · · ⊕ALn

Remark 3.6 (2-elementary lattices). Let L be a 2-elementary lattice. The di-
visibility of a vector v ∈ L, denoted divL(v), is defined by βL(v, L) = divL(v)Z,
i.e. the positive integral generator of the image of the map βL(v, ·) : L → Z. For 2-
elementary lattices, one always has divL(v) ∈ {1, 2}. We set v∗ := v/divL(v) ∈ AL.
Letting qL : AL → 1

2Z/Z be the induced quadratic form on AL, we say v∗ is char-
acteristic if qL(x) = βL(v

∗, x)modZ for all x ∈ AL, and is ordinary otherwise.
We say that a primitive isotropic vector e ∈ L is

1. odd if divL(e) = 1,
2. even ordinary if divL(e) = 2 and e∗ is ordinary, or
3. even characteristic if divL(e) = 2 and e∗ is characteristic.

The 2-elementary hyperbolic lattices admitting a primitive embedding into ΛK3

were classified by Nikulin in [Nik79a, §3.6.2]. An indefinite 2-elementary lattice is
determined up to isometry by a triple of invariants (r, a, δ). Here, r := rankZ(L) is
the rank, a = rankF2

AL is the exponent appearing in AL = (Z/2Z)a, and δ ∈ {0, 1}
is the coparity: we set δ = 0 if qL(AL) ⊆ Z, so qL(x) ≡ 0modZ for all x ∈ AL, and
δ = 1 otherwise. We accordingly specify such lattices using the notation (r, a, δ)n+

.

Remark 3.7 (Twists of a lattice). If L is a lattice with bilinear for βL, define L(n)
to be the twist of L by n, which has the same underlying Z-module but is equipped
with the scaled bilinear form

βL(n)(v, w) := n · βL(v, w).

Remark 3.8 (The lattice ⟨n⟩). The lattice ⟨n⟩ is defined as the rank 1 lattice Z
with one generator v satisfying β⟨n⟩(v, v) = n. The Gram matrix is the 1×1 matrix

G⟨n⟩ = [n], and the associated quadratic form is q⟨n⟩(x) = nx2.

Remark 3.9 (The hyperbolic lattice). In rank 2, there are two unimodular hy-
perbolic lattices: the odd I1,1 := ⟨1⟩ ⊕ ⟨−1⟩, and the even U := II1,1. We refer to
the latter as the hyperbolic lattice, which can be realized as U := Ze⊕ Zf with
e2 = f2 = 0 and ef = 1, and thus the following Gram matrix:

GU =

[
0 1
1 0

]
.

Remark 3.10 (ADE lattices). Any Dynkin diagram of type An, Dn, E6, E7, E8

corresponds to a root lattice of the respective type. By convention, we take the
negative definite twists of these lattices. Of particular importance to us is the E8

lattice associated to the following Dynkin diagram:

2For example, let L = U = ⟨e, f⟩ and M = ⟨e⟩. Then M⊥L = M .



8 D. ZACK GARZA

1 3 4

2

5 6 7 8

Figure 1. The Dynkin diagram E8

Remark 3.11 (The lattice Ip,q.). For any pair of non-negative integers (p, q), there
exists an odd indefinite unimodular lattice determined up to isomorphism by its
rank and signature:

Ip,q := ⟨1⟩⊕p ⊕ ⟨−1⟩⊕q
.

Remark 3.12 (The lattice IIp,q). Let L be an even indefinite unimodular lattice
of signature (p, q). Then p − q ≡ 0 (mod 8), and L is uniquely determined up to
isomorphism by its rank and signature:

IIp,q :=

{
U⊕p ⊕ E

⊕ q−p
8

8 , p < q

U⊕q ⊕ E8(−1)⊕
p−q
8 , p > q.

3B. Summary.

Remark 3.13. We summarize the lattices that will be relevant to our discussion:

LK3 = (22, 0, 0)3 = U3 ⊕ E2
8 = II3,19 E10 = (10, 0, 0)1 = U ⊕ E8 = I1,9

SEn = (10, 10, 0)1 = E10(2) TEn = (12, 10, 0)2 = U ⊕ E10(2)

SCo = (11, 11, 1)1 = ⟨−2⟩ ⊕ E10(2) TCo = (11, 11, 1)2 = ⟨2⟩ ⊕ E10(2)

SdP = (2, 2, 0)1 = U(2) TdP = (20, 2, 0)2 = U ⊕ U(2)⊕ E2
8

Lemma 3.14. Writing

TCo = ⟨2⟩ ⊕ E10(2) = ⟨h, e′, f ′, α1, · · · , α8⟩

TEn = U ⊕ E10(2) = ⟨ẽ, f̃ , ẽ′, f̃ ′, α̃1, · · · , α̃8⟩,
there is an embedding of lattices TCo ↪→ TEn:

η : ⟨2⟩ ⊕ E10(2) → U ⊕ E10(2)

(h, x) 7→ (ẽ+ f̃ , x)

which sends the generator h of ⟨2⟩ to ẽ + f̃ ∈ U and is the identity on the E10(2)
summand. Since coker η is torsionfree, η is a primitive embedding.

Lemma 3.15. There is a sequence of primitive embeddings

TCo ↪→ TEn ↪→ TdP ↪→ LK3

which is unique up to O(LK3). In particular, this yields an embedding TCo ↪→ TdP

given by

⟨2⟩ ⊕ U(2)⊕ E8(2) ↪→ U ⊕ U(2)⊕ E2
8

(h, x, y) 7→ (ẽ+ f̃ , x, y, y)

and thus an embedding FCo ↪→ F(2,2,0).
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Proof. By [Ale+23, Lem. 2.4], it suffices to show uniqueness of SEn ↪→ SCo, i.e.

E10(2) ↪→ ⟨−2⟩ ⊕ E10(2),

or equivalently by untwisting,

E10 ↪→ ⟨−1⟩ ⊕ E10.

This embedding is unique since one can write the codomain as E⊥
10 ⊕ E10. Sim-

ilarly, by [Nik79a, Cor. 1.5.2, Thm. 3.6.3], the homomorphism O(L) → O(TCo) is
surjective.

□

Lemma 3.16. The embeddings of lattices η : TCo ↪→ TEn (resp. TCo ↪→ TdP)
induce locally closed embedding FCo ↪→ FEn (resp. FCo ↪→ F(2,2,0)) which extend to
morphisms on the Baily-Borel compactifications.

Proof. This follows from [KK72, §5, Thm. 2].
□

Theorem 3.17. FCo is the normalization of a closed subvariety of FEn.

Proof. It suffices to show that D(TCo)/O(TCo) → D(TEn)/O(TEn) is a finite mor-
phism which is generically injective. The lattice embedding TCo ↪→ TEn induces an
injective morphism D(TCo) ↪→ D(TEn). It remains to show that the stabilizer of
TCo in O(TEn) is precisely O(TCo) and the morphism is finite.

This morphism is finite because. . .
The stabilizer statement follows from. . .

□

I don’t know how to prove this. Maybe one should embed into TdP instead to
get the stabilizer statement? Finiteness is still unclear. Maybe one can use fi-
nite ⇐⇒ proper and finite fibers, using Stacks tag 02LS. This can be checked
Zariski locally?

Maybe this can be proved using Zariski’s main theorem: a birational morphism
to a normal variety with finite fibers is an isomorphism onto an open subset. Is
this morphism birational? What are the fibers, and how can we tell if they are
finite?

3C. Moduli of Coble Surfaces.

Remark 3.18. We begin with a naive parameter space for Coble surfaces. Follow-
ing [DK13b], by varying the coefficients of pi in the planar blowup construction,
one can construct FCo as a locally closed subvariety of (P2)10/PGL3, which is of
dimension

dim(P2)10/PGL3 = dim(P2)10 − dimPGL3 = 2 · 10− (32 − 1) = 12.

A posteriori, the number of moduli for a Coble surface is 9, which means that
there should be 3 conditions imposed upon the configuration of 10 points. These 3
conditions are precisely the discriminant conditions described in [Cob19, §2, Prop.
(10)]. Letting D be the corresponding discriminant locus, we can identify FCo as
an open subset of

(
(P2)10 \D

)
/PGL3 at the level of coarse moduli spaces. We

note that [DK13b] shows that FCo is rational by relating it to a codimension one
subvariety of a moduli space of certain cuspidal quintics in P2.
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Remark 3.19. Alternatively, Horikawa [Hor78] and more recently [Ale+23] con-
sider the following: let Y := P1 ×P1 and define an involution τ(x, y) := (−x,−y).
Let B ∈ |−2KY |τ be a τ -invariant anti-bicanonical curve in Y . If B passes through
a τ -fixed point x, y ∈ {0,±∞}, then the corresponding double branched cover
branched over B is a nodal K3 surface X with covering involution ιdP such that
Y = X/ ⟨ιdP⟩. Letting ιEn be a lift of τ , the quotient Z := X/ ⟨ιEn⟩ is a Coble
surface. The case in which B does not pass through a τ -invariant point yields an
Enriques surface Z, and an analysis of the corresponding moduli space is carried
out in [Ale+23]. In this way, one realizes the moduli space FCo of unpolarized
Coble surfaces as a boundary divisor in FEn, the 10-dimensional moduli space of
unpolarized Enriques surfaces.

Remark 3.20. By passing to the K3 cover, one can embed FCo into an arithmetic
quotient of a 9-dimensional Hermitian symmetric domain of type IV. Let ΛK3 =
U3 ⊕E2

8 be the canonical K3 lattice. We recall that for any primitively embedded
lattice S ↪→ ΛK3, letting T := S⊥ΛK3 , there is a Hodge-theoretic description of the
coarse moduli space FS of S-polarized K3 surfaces given by

FS := DT /Õ(T )

where Õ(T ) := ker (O(T ) → O(qT )) and DT is a connected component of

ΩT :=
{
[v] ∈ P(TC)

∣∣∣ v2 = 0, vv > 0
}
.

Letting E10 := U ⊕ E8, one can consider the Enriques lattices SEn := E10(2) with
TEn := U ⊕ E10(2). Letting

H−2d =
⋃

δ2=−2d

δ⊥DT .

We note, as in [DK13b], that TCo
∼= v⊥TEn for some v2 = −2, which implies that

there is a birational isomorphism FCo
∼
99K H−2/O(TEn). Thus up to birational

isomorphism, one can present

FEn = (DTEn
\ H−2) /Õ(TEn)

FCo = H−2/Õ(TEn)

where surfaces along the divisor H−2 in FEn correspond precisely to Coble surfaces.
We note that surfaces along H−4 \ H−2 correspond to nodal Enriques surfaces, an
interesting divisor in its own right.

Remark 3.21. We summarize the relevant moduli spaces:

FEn = DTEn
/Õ(TEn) FEn,2 = DTEn

/ΓEn,2

FCo = DTCo/Õ(TCo) FCo,2 = DTCo/ΓCo,2

where

ΓEn,2 = O(TEn) ∩O(TdP) ⊆ O(ΛK3)

ΓCo,2 = StabO(TEn)(TCo) ⊆ O(TEn)

where TdP is described in [Ale+23]. Note that we implicitly use the embedding
η : TCo ↪→ TEn of lemma 3.14.
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Remark 3.22. By lemma 3.16, there are morphisms FCo
BB → FEn

BB
and FCo

BB →
F(2,2,0)

BB
which induce correspondences between the boundary cusps.

Remark 3.23. We set up the moduli space of KSBA stable pairs for Coble surfaces,
possibly using the ramification divisor of the K3 involution (which is in this case
not fixed-point free). The above embeddings should allow us to take closures of
stable pairs in already existing moduli spaces.

4. Cusp Correspondence

4A. Coble Cusps.

Remark 4.1. We recall the mirror move algorithm from [AE22]. We have Nikulin’s
2-elementary diagram:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

Figure 2. White nodes are δ = 0, black are δ = 1, double circled
are δ = 1, 2.

Remark 4.2. Having identified the 2-elementary lattice SCo = (11, 11, 0)1, one can
apply the mirror move algorithm of [AE22, Thm. 5.10] to determine the 0-cusps
and 1-cusps of FCo. The outcome of the algorithm is summarized by the following
tree:
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(11, 11, 1)1

(11, 11, 1)2

(9, 11, 1)1 (9, 9, 1)1 (9, 9, 0)1

• • • (7, 9, 1)0 (7, 7, 1)0 (7, 7, 0)0 • • •

Figure 3. Blue (resp. red) indicate lattices which are valid (resp.
invalid) targets of mirror moves.

Thus FCo has one 0-cusp corresponding to an isotropic vector v with

v⊥TCo
0 / ⟨v0⟩ ∼= (9, 9, 1)1 ∼= ⟨2⟩ ⊕ E8(2).

Moreover, this 0-cusp v0 is incident to one 1-cusp C0 corresponding to an isotropic
plane J = ⟨v0, v1⟩ with

J⊥TCo/ ⟨J⟩ ∼= (7, 7, 1)0 ∼= A⊕7
1 .

where v1 ∈ v⊥TCo
0 / ⟨v0⟩. In the diagrammatic language of [AE22, Fig. 1, Thm. 5.10],

this corresponds to a U2 move and can be summarized in the following mirror move
diagram as a composition of two even ordinary U(2)-type moves:

(11, 11, 1)1

S

(11, 11, 1)2

T

(9, 9, 1)1

T̄

(7, 7, 1)0

¯̄T
U(2) U(2)

Figure 4

Note that v0 corresponds to a Type III boundary, while C0 corresponds to a
type II boundary. It is easily verified that the Coxeter diagram G(9,9,1)1 at v0 has
precisely one maximal parabolic subdiagram, corresponding to a finite-index root
lattice of type A7. We note that by [AE22, §5], such isotropic vectors are unique
up to O(TCo), and so we can choose representatives:

• v0 = e′,
• v1 = 2h+ α1 + α2.
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Calculations verify that v20 = v21 = 0, that v1 ∈ vTCo
0 / ⟨v0⟩, and that v0v1 = 0,

and thus J := ⟨v0, v1⟩ is an admissible choice of an isotropic plane. We further
note that divTCo(v0) = divTCo(v1) = 2, which will be an important invariant for
establishing a correspondence to cusps of other moduli spaces. For an isotropic
plane J , we denote the divisibilities of the constituent generating vectors as a tuple
(d1, d2), and in this convention we have divTCo

(v0, v1) = (2, 2). We summarize this
in the following boundary cusp diagram:

⟨2⟩ ⊕ E8(2)D2 A⊕7
1

(9, 9, 1)1 (7, 7, 1)0

div ⟨e′⟩ = 2 div ⟨e′, 2h+ α1 + α2⟩ = (2, 2)

Figure 5. Cusp diagram for FCo = F(11,11,1) where TCo = ⟨2⟩ ⊕
E10(2).

Remark 4.3. As further proof that this cusp diagram is correct, we can use the
theory of Coxeter diagrams. Given an isotropic vector e ∈ L a lattice of signa-
ture (2, n), the lattice e⊥L/ ⟨e⟩ is a hyperbolic lattice equipped with a root system
Re with a Coxeter diagram Ge. Generally, when e corresponds to a 0-cusp in a
Baily-Borel compactification, the adjacent 1-cusps correspond precisely to maximal
parabolic subdiagrams of Ge. The cusp diagram above suggests that the 0-cusp v0
should have a Coxeter diagram Gv0 with precisely one maximal parabolic subdi-
agram. One can run Vinberg’s algorithm to determine the Coxeter diagram for
v0, and it is a straightforward check to determine that there is indeed a unique

maximal parabolic subdiagram of the form B̃7(2):

1 3 4

2

5 6 7 8 9

B̃7(2) ⊂ G(9,9,1)1

Figure 6. The unique maximal parabolic subdiagram B̃7(2) of
(9, 9, 1)1, corresponding to single one-cusp (7, 7, 1)0 in FCo.

Remark 4.4.

divTdP
(v0) = 2 divTdP

(v1) = 1.

The former is clear, since the image of v0 in TdP is e′ ∈ U(2) and e′f ′ = 2. The
latter follows from the fact that v1α3 = 1.

Remark 4.5. We note the divisibilities of vi under various lattice embeddings:
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Coble Vector Representative divTCo
divTEn

divTdP

v0 e′ 2 2 2
v1 2h+ α1 + α2 2 2 1

Table 1. Isotropic vectors in FEn,2 and their divisibilities.

More concisely:

Lattice Image of v0 Image of v1 Divisibility
TCo e′ 2h+ α1 + α2 (2, 2)
TEn e′ 2e+ 2f + α1 + α2 (2, 2)
TdP e′ 2e+ 2f + α1 + α̃1 + α2 + α̃2 (2, 1)

Table 2. Isotropic vectors in FEn,2 and their divisibilities.

4B. Enriques Cusps.

Remark 4.6. We recall the cusp diagram of FEn:

E10(2)

RP2

E8(2) U ⊕ E8(2)

D2

A⊕8
1 ∗

div ⟨e⟩ = 1

(10, 10, 0)1

div ⟨e, e′⟩ = (1, 2)

(8, 8, 0)0

div ⟨e′⟩ = 2

(10, 8, 0)1

div ⟨e′, 2e+ 2f + 2ᾱ1⟩ = (2, 2)

(8, 6, 0)0

Figure 7. Cusp diagram for FEn = F(10,10,0) corresponding to
TEn = U ⊕ E10(2).

This can be recovered using the mirror move algorithm:

U U(2)

U(2) U

U(2)

S T T̄ ¯̄T

(10, 10, 0)1 (12, 10, 0)2

(10, 10, 0)1

(10, 8, 0)1

(8, 8, 0)0

(8, 6, 0)0

Figure 8
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Remark 4.7. We recall the Coxeter diagrams and their maximal parabolic subdi-
agrams at the 0-cusps of FEn:

Figure 9

1 3 4

2

5 6 7 8 9 10

Ẽ8(2) ⊂ (10, 10, 0)1 1 3 4

2

5 6 7 8 9 10

Ẽ8(2) ⊂ (10, 8, 0)1

1 3 4

2

5 6 7 8 9 10

B̃8(2) ⊂ (10, 8, 0)1

4C. Sterk Cusps.

Remark 4.8. We recall Sterk’s cusp diagram for FEn,2:

2

E2
8

12

D+
16

245

1

3

4

5

E2
7C2 13

D2
8 14

A15A1(2) 15

A15A1(2) 34

D12D4 35

D2
8 45

E2
7C2 55

Figure 10. Sterk’s cusp diagram

We have the following divisibilities in various lattices:

4D. K3 Cusps.

Remark 4.9. We recall the cusp diagram for F(2,2,0):



16 D. ZACK GARZA

Sterk Cusp Vector divTEn
divTK3

1 e 1 1
2 e′ 2 2
3 e′ + f ′ + α8 2 1
4 2e′ + f ′ + α1 2 1
5 2e+ 2f + α1 2 1

Table 3. Isotropic vectors in FEn,2 and their divisibilities.

U ⊕ E2
8

E2
8

D+
16

U(2)⊕ E2
8

D2
8

E2
7C2

E8D8

D12D4

D16

A15A1(2)

(18, 0, 0)1 (16, 0, 0)0 (18, 2, 0)1 (16, 2, 0)0

div = 2 div = 1

div = (2, 1)

div = (1, ?)

Figure 11

4E. Coble to Enriques Cusp Correspondence.

Theorem 4.10. The embedding η : FCo → FEn induces the correspondence on
boundary cusps of the Baily-Borel compactifications shown in fig. 12.
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E10(2)

(10, 10, 0)1

RP2,div = 1

E8(2)

(8, 8, 0)0

U ⊕ E8(2)

(10, 8, 0)1

D2,div = 2

A⊕8
1 ∗

(8, 6, 0)0

⟨2⟩ ⊕ E8(2)

(9, 9, 1)1

D2,div = 2

A⊕7
1

(7, 7, 1)0

Figure 12. Cusp correspondence FCo → FEn.

Remark 4.11. We prove this correspondence by considering divisibilities at the
corresponding 0-cusps and 1-cusps in both moduli spaces. We first note that since
TCo can be written as L(2) where L = ⟨1⟩⊕E8, every v ∈ TCo satisfies divTCo(v) = 2.

Lemma 4.12. Fixing notation,

v1 := e′ w1 := η(v1) = ẽ′

v2 := 2h+ α1 + α2 w2 := η(v2) = 2ẽ+ 2f̃ + α̃1 + α̃2

J := ⟨v1, v2⟩ J̃ := ⟨w1, w2⟩

We then have divTEn(w1) = 2.

Proof. This follows from the fact that ẽ ∈ U(2) where TEn = U ⊕ U(2) ⊕ E8(2)

Noting that ẽ′f̃ ′ = 2, and ẽ′ is orthogonal to the remaining generators of in the U
and E8(2) summands, we thus have

divTEn
(w1) := divTEn

(η(e′)) = divTEn
(ẽ′) = 2.

Explicitly, one can check the pairing of ẽ′ against an arbitrary vector. Write x +
y + z ∈ U ⊕ U(2)⊕ E8(2), then

ẽ′ · (x+ y + z) = ẽ′ · y ∈ {0, 2}

since y ∈ U(2) and ẽ′ ∈ (U⊕E8(2))
⊥TEn . Thus βTEn(ẽ

′, TEn) = βTEn(ẽ
′, U(2)) = 2Z

since ẽ′ · f̃ ′ = 2.
□

Lemma 4.13. The 0-cusp (9, 9, 1)1 in FCo maps to the zero-cusp (10, 8, 0)1 in FEn.

Proof. The cusp correspondence follows from computing the lattice w⊥TEn
1 / ⟨w1⟩

under the primitive embedding η, since η(v1) = w1 and v1 is the isotropic vec-
tor corresponding to (9, 9, 1)1 in FCo. This particular case follows from a direct
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computation:

(ẽ′)⊥TEn

⟨ẽ′⟩
=

〈
ẽ, f̃

〉
⊕ ⟨ẽ′⟩ ⊕ ⟨α̃1, · · · , α̃8⟩

⟨ẽ′⟩
∼=

〈
ẽ, f̃

〉
⊕ ⟨α̃1, · · · , α̃8⟩

∼= U ⊕ E8(2) ∼= (10, 8, 0)1.

Alternatively, by [AE22, Prop. 5.5], the isomorphism type of w⊥TEn
1 /w1 is de-

termined by divTEn
(w1); by lemma 4.12 divTEn

(w1) = 2. Since the divisibility of
the isotropic vector at the Enriques 0-cusp (10, 8, 0)1 is also 2 and the two Enriques
0-cusps are distinguished by divisibility, the correspondence follows.

□

Lemma 4.14. Cusp (7, 7, 1)0 in FCo maps to cusp (8, 6, 0)0 in FEn.

Proof. The results follows from verifying that the unique orbit J of a primitive
isotropic plane in TCo satisfies J⊥TCo/J ∼= (7, 7, 1), and identifying the isomorphism

type of its image J̃⊥TEn/J̃ in TEn. One checks that both v2 and w2 are isotropic, and

v2 ∈ v⊥TCo
1 /v1, and so J and J̃ define isotropic planes in TCo and TEn respectively.

By [AE22, Prop. 5.5, Lem. 5.9], it suffices to show

div
w

⊥TEn
1 /w1

(w2) := divU⊕E8(2)(2ẽ+ 2f̃ + α̃1 + α̃2) = 2,

since the isomorphism type of J̃⊥/J̃ is uniquely determined by the isomorphism

type of w⊥TEn
2 /w2 in w⊥TEn

1 /w1, which is in turn uniquely determined by the char-

acterization of w2 as odd, even ordinary, or even characteristic in w⊥TEn
1 /w1, which

by lemma 4.13 is isomorphic to U ⊕E8(2). One checks directly in coordinates: let
x+ y ∈ U ⊕ E8(2) and consider its pairing with w2:

(x+ y) · w2 = (x+ y) · (2ẽ+ 2f̃ + α̃1 + α̃2) = 2x · (ẽ+ f̃) + y · (α̃1 + α̃2),

where we’ve used orthogonality relations. We note that the first term is evidently
even, while the second term is even because all pairings are either zero or divisible
by two in the E8(2) summand of U ⊕ E8(2).

□

5. Degenerations of stable Coble surfaces

Remark 5.1. We describe the KSBA stable limits of Coble surfaces.

Remark 5.2. We give an example of an integral affine structure for a degeneration
of Coble surfaces.

6. Appendix

Remark 6.1. Following [Ale+23], a Kulikov model is a K-trivial semistable
model X → (C, 0) of a degeneration of K3 surfaces over a pointed curve C. For
each such degeneration, one can define the dual complex of the central fiber Γ(X0).
For Type II degenerations of K3 surfaces, this yields an integral affine S2 with
singularities of total charge 24, and for Type III the dual complex is an interval D1.
The additional data of an integral affine polarization RIA ⊂ Γ(X0) describes the
KSBA stable limit of a degeneration (X ∗, εR∗). For Enriques (and hence Coble)
surfaces, we take the corresponding dlt models Z := X/ιEn and half-divisor models
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(Z,RZ) := (X ,R)/ιEn where X → (C, 0) and (X ,R) are Kulikov and divisor
models of their K3 covers.

Remark 6.2. The following is a representation of a Type II degeneration – it is
a chain of surfaces whose dual complex is an interval D1, where the ends V1 and
Vn are rational and the remaining Vi are isomorphic to E ×P1 for a fixed elliptic
curve E. The intersections Vi ∩ Vi+1 are double curves isomorphic to E.

Figure 13

A Type III degeneration can be represented by a triangulation of S2 with sin-
gularities, depicted as follows:
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Figure 14

Remark 6.3. The following is a combinatorial representation of a Kulikov model
for Sterk 2.
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