
DISSERTATION

D. ZACK GARZA

Abstract. Rough draft of my dissertation

Contents

1. Introduction 2
2. Preliminaries 3

2A. Lattices 3
2B. K3 surfaces, and nonsymplectic involutions 3

3. Moduli via period domains 4
3A. A general construction 4
3B. Generally finding cusps 4
3C. Moduli of K3 surfaces with nonsymplectic involution 5
3D. Hodge theoretic compactifications 5

4. Hyperelliptic K3s 6
4A. Hyperelliptic quartic K3s 6

5. Enriques surfaces 8
5A. The unpolarized case 8
5B. Degree 2 polarized Enriques surfaces 9
5C. Numerically polarized 10
5D. The family of degree 2 polarized Enriques surfaces 11

6. Morphisms of moduli and cusps 13
6A. Mapping the boundaries: matching cusp diagrams 13
6B. Type III KPP model at the (18,2,0) odd 0-cusp 15
6C. ADE surfaces 16

7. Our new results 17
7A. Enriques strategy 17
7B. Lemmas/theorems 17

8. The Baily-Borel compactification 20
8A. Toroidal and semitoroidal compactifications 22
8B. Misc 23
8C. Baily-Borel cusps and incidence diagrams 23
8D. Other compactifications 23

9. Scattone’s Baily Borel compactifications 24
9A. Degree 2d compactifications 24
9B. General theory 25

10. Moduli of polarized K3 surfaces of degree 2d 26
11. Boundary 28

11A. The case of abelian varieties 28

Date: January 21, 2025.

1



2 D. ZACK GARZA

11B. To the K3 case 33
11C. Notes from Phil’s talk 42

12. Coxeter Theory 48
12A. Coxeter groups and diagrams 48
12B. Coxeter polytopes 51
12C. Hyperbolic Coxeter polytopes 54
12D. Elliptic and Parabolic subdiagrams 57
12E. Some discrepancies 59
12F. Edge conventions for Coxeter diagrams 60
12G. Surfaces associated with Coxeter diagrams 62
12H. Incidence diagrams/dual complexes 63
12I. Dual complexes 63
12J. Edge notation 67

13. Hermitian Symmetric Domains 69
13A. Cusp correspondence for Hermitian symmetric domains 69
13B. Misc 74

14. Hyperbolic Geometry 75
14A. Hyperbolic lattices 75
14B. Models of hyperbolic space 77
14C. Root Systems 81
14D. General Period Domains 83

15. Appendix 84
15A. Dynkin Diagram 84
15B. Images 85

References 94

1. Introduction

Enriques surfaces Y are minimal algebraic surfaces of Kodaira dimension zero
satisfying h1(OY ) = h2(OY ) = 0 and KY ̸= 0 but 2KY = 0. A fundamental
property of an Enriques surfaces Y is that its universal cover X is isomorphic to a
K3 surface1. For both K3 and Enriques surfaces, the theory of compactifications is
very rich: once a polarization L is fixed, there is a Hodge-theoretic period domain
parametrizing isomorphism classes of polarized K3 or Enriques surfaces. These
are bounded Hermitian symmetric domains, and thus for appropriate choices of
arithmetic subgroups, the resulting arithmetic quotients admit Baily–Borel [BB66],
toroidal [Ash+75], and Looijenga semitoroidal compactifications [Loo03].

It is then natural to ask about geometric compactifications such as stable pair
compactifications and how they relate to these Hodge theoretic compactifications.
In a series of recent papers, Alexeev–Engel–Thompson have made breakthroughs
for K3 surfaces (see [ABE22; AE21; AE22; AEH22; AET23]). In particular, there
are explicit and effective answers to this question for K3 surfaces equipped with a
non-symplectic involution whose fixed locus is a curve.

Stable pair compactifications of the moduli space of Enriques surfaces are less
well-studied. In [Sch22] the second author studied the stable pair compactification
of the moduli space of Enriques surfaces with a degree 6 polarization (Enriques’

1A K3 surface is a smooth projective surface X with KX = 0 and h1(OX) = 0
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original construction) and give a full description for a 4-dimensional subfamily of
the moduli space. One of the obstructions to extending similar results to the entire
10-dimensional family is the high degree d of the polarization needed. It is thus
natural to consider instead the lowest value possible, which is d = 2. In this
situation, X is naturally equipped with a non-symplectic involution, the Enriques
involution, whose fixed locus is a curve, and thus the theory developed in [AE22]
is applicable.

However, the theory in [AE22] does not immediately apply in this situation – one
must account for the fact that there are certain natural geometric automorphisms.
Horikawa gives a construction of a K3 surfaceX as a degree 2 cover ρ : X → P1×P1

branched over a divisor D ∈ −2KP1×P1 of bidegree (4, 4). It can be shown that
ρ is symplectic and that ρ commutes with the Enriques involution, and thus the
theory in [AE22] must be modified to keep track of this extra symmetry.

2. Preliminaries

We follow closely the exposition in [AE22, § 2].

2A. Lattices.

Remark 2.1. By a lattice we mean a finitely generated free abelian group L of
finite rank equipped with a nondegenerate symmetric bilinear form b : L× L→ Z.
In particular, two lattices are isometric there exists an isomorphism of the under-
lying abelian groups which preserves the bilinear forms. Given a set of generators
e1, . . . , er of L, we can associate a Gram matrix given by (b(ei, ej))i,j . The lattice
L is called unimodular provided the determinant of a Gram matrix is ±1. The
lattice L is called even provided b(v, v) ∈ 2Z for all v ∈ L. Given a lattice L we
denote by L∗ its dual HomZ(L,Z). As the bilinear form is nondegenerate, we have
an inclusion L ↪→ L∗ and the quotient AL = L∗/L is a finite abelian group called
the discriminant group of L. The discriminant group AL comes equipped with a
quadratic form qL : AL → Q/Z by sending v + L 7→ b(v, v) mod Z. If S ⊆ L
is a sublattice and T is its orthogonal complement, we have that AL ∼= AT and
qS = −qT under this correspondence. The lattices for which AL ∼= Za2 for some
positive integer a are called 2-elementary.

2B. K3 surfaces, and nonsymplectic involutions.

Remark 2.2. A lot of the geometry and moduli theory of K3 surfaces is regulated
by lattice theory. For a K3 surface X it is well-known that H2(X,Z), endowed
with the cup product, is an even, unimodular lattice of signature (3, 19). It follows
that H2(X,Z) is isometric to the so-called K3 lattice II3,19 := U⊕3⊕E⊕2

8 , where U
is the hyperbolic plane ( 0 1

1 0 ) and E8 is the negative definite root lattice associated
to the corresponding Dynkin diagram. In particular, symmetries of the surface X
translate into symmetries of the K3 lattice II3,19.

Remark 2.3. A particularly rich setting is provided by nonsymplectic involutions,
i.e. order 2 automorphisms ι : X → X such that the induced map ι∗ : H2,0(X) →
H2,0(X) satisfies ι∗ωX = −ωX . Then we can look at the action of ι∗ on H2(X,Z)
and we denote by S its (+1)-eigenspace. It turns out that S is a hyperbolic
2-elementary lattice, and all the possibilities for S up to isometries were classi-
fied by Nikuln. More precisely, there are 75 cases which correspond bijectively to
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the triples of invariants (r, a, δ), where r is the rank of S, AS ∼= Za2 , and δ is the
so-called coparity of L: δ = 0 provided qL(v) ≡ 0 mod Z, and δ = 1 otherwise.

3. Moduli via period domains

3A. A general construction.

Remark 3.1. We describe here a construction common to the construction of many
Hodge-theoretic moduli spaces. Let Λ be an ambient lattice, S ≤ Λ a primitive
sublattice, and T := S⊥Λ its orthogonal complement in Λ. Define the period
domain associated to S to be

Ω±
S :=

{
[v] ∈ P(S ⊗Z C)

∣∣∣ v2 = 0 and vv = 0
}
.

As a matter of notation, we also set

ΩS := ΩS⊥ := ΩT .

In cases of interest, we have a decomposition Ω±
S = Ω+

S ⨿ Ω−
S into irreducible

components, both of which are type IV bounded Hermitian symmetric domains
which are permuted by Gal(C/R). We fix a choice of component Ω+

S , and let
O(S)+ ≤ O(S) be the subgroup fixing this component. We then form a locally
symmetric space and a corresponding Baily-Borel compactification

F (S) := O+(S)⧹Ω+
S F (S)

BB
:= O+(S)⧹Ω+

S

BB

.

More generally, one can let Γ be any neat arithmetic group that acts properly
discontinuously on SΩ+

S . One can then similarly form

F (S,Γ) := Γ⧹Ω+
S , F (S,Γ)

BB
:= Γ⧹Ω+

S

BB

.

Specific choices of S are used throughout our work to construct various coarse
moduli spaces. In some instances, we must remove a hyperplane arrangement to
form the correct moduli space. Let

H−2 :=

( ⋃
δ∈ΦN

δ⊥

)
∩ Ω+

N =
⋃
δ∈N,
δ2=−2

{
[v] ∈ Ω+

N

∣∣∣ v · δ = 0
}
.

and define

F (S,Γ,H−2) := Γ⧹
(
Ω+
S \ H−2

)
, F (S,Γ,H−2)

BB
:= Γ⧹

(
Ω+
S \ H−2

)BB

3B. Generally finding cusps.

Remark 3.2. We now discuss how ∂F (S,Γ,H−2) can be described lattice-theoretically.

Let Griso(S) be the isotropic Grassmannian of the lattice S, and write ∂F (S,Γ,H−2) =⋃
i≥0 ∂F (S,Γ,H−2)i for a stratification of the boundary by i-dimensional compo-

nents. One can show that there are bijections

Griso1 (L)/Γ ∼= ∂F (S,Γ,H−2)0, Griso2 (L)/Γ ∼= ∂F (S,Γ,H−2)1,

and so 0-cusps correspond to Γ-orbits of primitive isotropic lines and 1-cusps to
orbits of isotropic planes.
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3C. Moduli of K3 surfaces with nonsymplectic involution.

Remark 3.3 (Constructing moduli of quasi-polarized K3 surfaces lattice-theoreti-
cally). The coarse moduli space F2d of polarized K3 surfaces (X,L) can be realized
using the construction described in subsection 3A. Recall that H2(X;Z) ∼= II3,19.
Fix a marking φ : H2(X;Z) → II3,19 and a polarization L of degree 2d, and let
h := φ([L]) ∈ II3,19. One can then show that h⊥ ∼= L2d. Let

StabO(II3,19)(h) :=
{
γ ∈ O(II3,19)

∣∣∣ γ(h) = h
}

be the stabilizer of h in II3,19 and define

Γh := StabO(II3,19)(h)
+

to be the finite index subgroup fixing Ω+
Λ2d

. Letting Fqp
2d be the moduli stack of

quasi-polarized K3 surfaces of degree 2d, there is an analytic isomorphism at the
level of coarse spaces

F qp
2d

∼= Γh⧹Ω+
Λ2d .

However, Fqp
2d is generally not a separated stack. We can instead use the stack FADE

2d

of polarized K3s with ADE singularities, since there is an isomorphism FADE
2d

∼= F qp
2d

at the level of coarse spaces.

Definition 3.4. The theory of moduli of pairs (X, ι) with X a K3 surface and ι a
nonsymplectic involution can be approached using the construction in subsection 3A
as well. Let S ⊆ II3,19 be a primitive hyperbolic 2-elementary sublattice which is
the (+1)-eigenspace of an involution ρ of II3,19. A ρ-marking of (X, ι) is an isometry
φ : H2(X,Z) → II3,19 such that ι∗ = φ−1 ◦ ρ ◦φ. Fix such a marking ρ. We have a
period domain Ω+

S associated to S, and we define the change-of-marking group
associated to ρ to be

Γρ =
{
γ ∈ O(II3,19)

∣∣∣ γ ◦ ρ = ρ ◦ γ
}
.

One can then show that the coarse moduli space of ρ-markable K3 surfaces is
analytically isomorphic to the locally symmetric space

FS := F (S⊥,Γρ,H−2) := Γρ⧹(ΩS⊥ \ H−2).

In particular, the point corresponding to (X, ι) is [φ(CωX)].

3D. Hodge theoretic compactifications.

Remark 3.5. Hodge theory provides different ways to compactify ΩS⊥/Γ for any
finite index subgroup Γ ⊆ O(S⊥). A standard way that involves no choices is pro-

vided by the Baily–Borel compactification ΩS⊥/Γ
bb
. This is a projective normal

compactification whose boundary is stratified into 0-cusps and 1-cusps which cor-
respond to Γ-orbits of isotropic vectors I ⊆ T and isotropic planes J ⊆ T . Toroidal

compactifications ΩS⊥/Γ
F
are blow-ups of ΩS⊥/Γ

bb
which depend on the choice

of a compatible system of admissible fans F = {FK} for each isotropic vector I or
plane J . The fan FK is a rational polyhedral decomposition of the rational closure
CK,Q of the positive cone CK ⊆ K⊥/K ⊗ R. It is required to satisfy the usual
fan axioms, and additionally be Γ-invariant with only finitely many orbits of cones.
As this datum is trivial for isotropic planes, it is sufficient to provide the fan only
for the isotropic vectors I, hence F = {FI}. Lastly, Semitoroidal compactifications
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are due to Looijenga and simultaneously generalize the Baily–Borel and toroidal
compactifications by allowing the fans FI to be not necessarily finitely generated.

4. Hyperelliptic K3s

Definition 4.1. Let X be a K3 surface and let L ∈ Pic(X) be a line bundle with
L2 > 0 where the linear system |L| has no fixed components. We say that |L| is a
hyperelliptic linear system on X and X is a hyperelliptic K3 surface if |L|
contains a hyperelliptic curve.

Remark 4.2. The induced morphism φ|L| : X → Pg where L2 = 2g − 2 in this
case is a generally 2-to-1 morphism onto a surface F of degree g− 1 in Pg. By the
classification of surfaces, either F ∼= P2 or Fn

2 with n ∈ {0, 1, 2, 3, 4} ramified over
a curve C ∈ |−2KF |.

Remark 4.3. The open locus of F4,h.e.
BB

can be realized using the standard con-
struction of L-polarized K3 surfaces, taking L = U⊕2⊕D16. More generally, degree
n hyperelliptic K3 surfaces can be constructed by taking L = U⊕2 ⊕Dn−2.

4A. Hyperelliptic quartic K3s.

Remark 4.4. We now focus back on our main case of interest: hyperelliptic quar-
tic K3s, i.e. hyperelliptic K3 surfaces of degree 4. In this case, the hyperbolic
2-elementary even lattice S is given by U(2), which corresponds to the invariants
(r, a, δ) = (2, 2, 0).

The Baily–Borel compactification ΩS⊥/Γ
bb

. . . for which Γ? Was studied by
Laza–O’Grady.

Now relate Kh with ΩS⊥/Γ and an appropriate Looijenga semitoroidal. Where
is this in Valery and Phil’s work? Give appropriate references.

Remark 4.5. Following [LO21], consider the period domain construction described
in subsection 3A using the lattice ΛN := U⊕2 ⊕DN−2 and Γ = O(ΛN )+.3 We then
obtain a sequence of locally symmetric spaces

F(N) := F (ΛN ,O(ΛN )+) := O(ΛN )+⧹Ω+
ΛN .

In particular, taking N = 19 yields the F4, the coarse moduli space of standard
polarized K3 surfaces of degree 4, and taking N = 18 yields a coarse moduli space
F4,h.e. of quartic (i.e. degree 4) hyperelliptic K3 surfaces. The lattice embedding
Λ18 ↪→ Λ19 induced by D16 ↪→ D17 produces an inclusion F4,h.e. ⊆ F4 realiz-
ing F4,h.e. as a normal Heegner divisor in F4. This in turn induces a morphism

F4,h.e.
BB → F4

BB
. The Baily-Borel compactification F4,h.e.

BB
was studied in LO16

and [LO21], where in the latter they show

F4,h.e.
BB ∼= Chow2,4 //SL4,

a GIT quotient of the Chow variety of (2, 4) curves in P3.

See section 2.1 here https://arxiv.org/pdf/1801.04845.pdf#page=6&zoom=auto,-
87,319

2A Hirzebruch surface Fn := ProjP1 (OP1 (−n)⊕OP1 ).
3For moduli-theoretic purposes, if N ≡ 6mod 8, one then instead passes to a finite index

subgroup as detailed in [LO21].
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Theorem 4.6 ([LO21, Theorem 2.3]). The Baily–Borel compactification

F4,h.e.
BB ∼= O(Λ18)

+⧹Ω+
Λ18

BB

has two 0-cusps (type III boundary components) and eight 1-cusps (type II bound-
ary components). The incidences between 0-cusps and 1-cusps are represented in
Figure 1.

r1 : U ⊕ E8
⊕2 Z1

12 : E8
⊕2

Z2
12 : D16∗

r2 : U(2)⊕ E8
⊕2

Z1
2 : D2

8∗

Z2
2 : E7

⊕2 ⊕A1
⊕2∗

Z3
2 : E8 ⊕D8

Z4
2 : D12 ⊕D4∗

Z5
2 : D16

Z6
2 : A15 ⊕A1(2)∗

F4,h.e.
BB

Figure 1. Cusp diagram for degree 4 hyperelliptic K3 surfaces

F4,h.e.
BB

.

Remark 4.7. See https://arxiv.org/pdf/2006.06816.pdf#page=1&zoom=100,-
274,431

If C ⊆ P1×P1 is a smooth curve of bidegree (4, 4) and π : XC :→ P1×P1 is the
double cover branched along C, then XC is a smooth hyperelliptic polarized K3 sur-

face of degree 4 and thus XC ∈ F4,h.e.
BB

. Letting M := |OP1×P1(4, 4)|//Aut(P1 ×
P1) be the GIT quotient, LO21 describes a birational period map M 99K F4,h.e.

BB
.

Remark 4.8. The K3 surfaces parameterized by K are double covers of P1 ×P1

branched along curves of class (4, 4) in the monomials listed in (1). More in general,
the double covers of P1 ×P1 branched along general curves of class (4, 4) give rise
to K3 surfaces known as hyperelliptic K3 surfaces. Let us construct their family
and the KSBA compactification.

Let P24 be the space of coefficients, up to scaling, for a bidegree (4, 4) polynomial

in P1 ×P1. In this case, a monomial Xi
0X

j
1Y

k
0 Y

ℓ
1 is indexed by

Mh := {(i, j, k, ℓ) ∈ Z4
≥0

∣∣∣ i+ j = k + ℓ = 4}.

Let Uh ⊆ P24 be the dense open subset of coefficients [. . . : cijkℓ : . . .] such that
the corresponding (4, 4) curve is smooth. We can define a KSBA-stable family(

Xh := Uh × (P1 ×P1),
1 + ϵ

2
Bhyp

)
→ Uhyp,

where Bh is the relative divisor given by∑
(i,j,k,ℓ)∈Mh

cijkℓX
i
0X

j
1Y

k
0 Y

ℓ
1 = 0.
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We can consider the fiberwise double cover (Th, ϵRh) →
(
Xh,

1+ϵ
2 Bh

)
, which gives

rise to the family of hyperelliptic K3 surfaces. The automorphism group of P1 ×
P1 acts on Uh identifying isomorphic fibers. In particular, Uh/Aut(P1 × P1) is
the moduli space of smooth hyperelliptic K3 surfaces. To compactify it, we can

consider the stack P ′
h given by the closure of the image of the morphism Uh →

SP
(
1+ϵ
2 , 2, 8ϵ2

)
. Let P

′
h be the corresponding coarse moduli space and denote by

Ph its normalization, which gives rise to a compactification of the 18-dimensional
moduli space Uh/Aut(P1×P1). Alternatively, by using the family (Th, ϵRh) → Uh

and the moduli functor SP
(
ϵ, 2, 16ϵ2

)
instead, we obtain the compactifications Kh,

which instead parameterize generically the hyperelliptic K3 surfaces. We have that
Kh

∼= Uh.

Remark 4.9. The inclusion U ↪→ Uh induces an inclusion of the stacks P ′
↪→

P ′
h, and hence an inclusion of the corresponding coarse moduli spaces P

′
↪→ P

′
h.

Therefore, we have an induced morphism P → Ph which is finite and birational
onto its image. {Luca: The reason why this morphism exists is nontrivial! The
normalization is not functorial, so one has to really prove this.} {The above is also
missing the following. Do we have an embedding of U/G into Uh/Aut(P1 ×P1)?
Recall G = G2

m ⋊ (Z/2Z).}

Remark 4.10. The compactification Ph should be fully understood from the work
in [AE22]. Moreover, the GIT and Baily–Borel should be understood by [LO21].

5. Enriques surfaces

5A. The unpolarized case.

Remark 5.1. If Y is an Enriques surface, it is well known that the universal
cover π : X → Y is a µ2 Galois cover where X is a K3 surface and Y ∼= X/ι
for ι the basepoint-free involution swapping the sheets of the cover. We write
V+1(ι

∗), V−1(ι
∗) ⊆ H2(X;Z) for the (+1) and (−1)-eigenspaces respectively of the

induced involution in cohomology ι∗ : H2(X;Z) → H2(X;Z). It is well-known that

V+1(ι)
⊥H2(X;Z) = V−1(ι). The covering map π induces an embedding of lattices

π∗ : H2(Y ;Z) ↪→ H2(X;Z),

whose image is V+1(ι
∗). It is well known that

• H2(X;Z) ∼= II3,19 ∼= U⊕3 ⊕ E⊕2
8 is the K3 lattice;

• M := H2(Y,Z)/tors ∼= II1,9 ∼= U ⊕ E8 is the Enriques lattice;
• V+1(ι

∗) ∼= U(2)⊕ E8(2) ∼= II1,9(2);
• V−1(ι

∗) ∼= U ⊕ U(2)⊕ E8(2) = U ⊕ II1,9(2).

Remark 5.2. We will use the decomposition of the K3 lattice into summands
involving the Enriques lattice

II3,19 = II1,9 ⊕ II1,9 ⊕ U,

and describe a vector in the K3 lattice II3,19 with three coordinates (x, y, z) ac-
cordingly. Let U = Ze ⊕ Zf with {e, f} the standard hyperbolic basis satisfying
e2 = f2 = e · f − 1 = 0.



DISSERTATION 9

Remark 5.3 (Period domain for unpolarized Enriques surfaces). Again following
the period domain construction described subsection 3A, now with the lattice

N := U ⊕ II1,9(2).

The period domain for unpolarized Enriques surfaces is Ω+
N , and the correct asso-

ciated locally symmetric space is

E∅ := F (N,O(N)+,H−2) := O(N)+⧹
(
Ω+
N \ H−2

)
.

Lemma 5.4 (Torelli for Enriques surfaces, Horikawa). Points in E∅ correspond to
isomorphism classes of unpolarized Enriques surfaces.

Theorem 5.5 ([Ste91, Propositions 4.5 and 4.6]). The Baily–Borel compactification

E∅
BB

:= O+(N)⧹(Ω+
N \ H−2)

BB

has two 0-cusps and two 1-cusps. The incidences between 0-cusps and 1-cusps are
represented in Figure 2.

q1 Y12 q2 Y2

E∅
BB

Figure 2. Cusp diagram for the moduli space of unpolarized En-

riques surfaces E∅
BB

.

5B. Degree 2 polarized Enriques surfaces. For degree 2 polarized Enriques
surfaces, we consider the same period domain, but we change the arithmetic group
acting on it.

Definition 5.6. A polarization on an Enriques surface Y is a pseudo-ample
(i.e. big and nef) line bundle L on Y ; we call this an ample polarization if L is
ample.

Definition 5.7. A numerical (resp. ample numerical) polarization on Y
is a choice L of a numerical equivalence class of pseudo-ample (resp. ample) line
bundle L.

Definition 5.8. A numerically polarized Enriques surface is a pair (Y, L)
where Y is an Enriques surface and L is a numerical polarization on Y .4

Remark 5.9. Let L := U ⊕ II1,9
⊕2, noting that N ≤ L, and define the following

involution:

I : L→ L,

(x, y, z) 7→ (y, x,−z).

4Why introduce numerical polarizations? Recall that A is a polarized abelian variety if it

is equipped with an isogeny λ : A → A∨. If L is a numerical polarization on A, it induces
a unique isogeny λL, and every such isogeny comes from such an L, so numerical polarization

strictly generalizes this notion to other varieties.
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A result of Horikawa shows that there is an isometry µ : H2(X;Z) → L such
that I ◦ µ = µ ◦ I∗ and produces an embedding

M → L

m 7→ (m,m, 0).

Reference: https://file.notion.so/f/s/b5171ee5-610c-489f-b347-5839cc0005f0/Sterk.pdf?id=2a417bca-
589b-4639-86e6-6901fe36ff30&table=block&spaceId=7cb2f7c7-7373-
4d11-91ab-284625335dc8&expirationTimestamp=1686073894799&signature=AIqn4Lp1sajAsu5XQEbx0IS3DBeNdN6LRJIIrZeKpo0&downloadName=Ste91.pdf#page=6&zoom=auto,-
155,749

Define

Γ′ := {g ∈ O(L)
∣∣∣ g ◦ I = I ◦ g and g(e+ f, e+ f, 0) = (e+ f, e+ f, 0)},

automorphisms in the centralizer of I in O(L) fixing the point (e + f, e + f, 0). If
g ∈ Γ′ then g|N ∈ O(N). So definethis is what Sterk

claims, needs
proof. Γ := {g|N

∣∣∣ g ∈ Γ′} ≤ O(N),

which is the image of Γ′ in O(L−). Again using the construction in subsection 3A,
the moduli space for Enriques surfaces with a polarization of degree 2 is given by
the locally symmetric space

E2 ∼= F (N,Γ) = Γ⧹Ω+
N .

Theorem 5.10 ([Ste91, §4.3]). The Baily–Borel compactification

E2
BB

:= Γ⧹Ω+
N

BB

has five 0-cusps and nine 1-cusps. The incidences between 0-cusps and 1-cusps are
represented in Figure 3.

p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245

E2
BB

Figure 3. Cusp diagram for degree 2 polarized Enriques surfaces

E2
BB

.

5C. Numerically polarized. [GH16]
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5D. The family of degree 2 polarized Enriques surfaces.

Remark 5.11. We review the construction of degree 2 polarized Enriques surfaces
following [Bar+04, Chapter V, § 23]. Let us consider the involution on P1 × P1

given by
ι : ([X0 : X1], [Y0 : Y1]) 7→ ([X0 : −X1], [Y0 : −Y1]).

We have that ι has precisely four isolated fixed points, namely

([0 : 1], [0 : 1]), ([0 : 1], [1 : 0]), ([1 : 0], [0 : 1]), ([1 : 0], [1 : 0]).

Let B ⊆ P1 ×P1 be a general ι-invariant curve of class (4, 4) not passing through
the fixed points of ι. Then, the bi-homogeneous polynomial giving B consists of
the following monomials:

(1)
X4

0Y
4
0 , X

4
0Y

2
0 Y

2
1 , X

4
0Y

4
1 , X

3
0X1Y

3
0 Y1, X

3
0X1Y0Y

3
1 , X

2
0X

2
1Y

4
0 ,

X2
0X

2
1Y

2
0 Y

2
1 , X

2
0X

2
1Y

4
0 , X0X

3
1Y

3
0 Y1, X0X

3
1Y0Y

3
1 , X

4
1Y

4
0 , X

4
1Y

2
0 Y

2
1 , X

4
1Y

4
1 .

The coefficients of X4
0Y

4
0 , X

4
0Y

4
1 , X

4
1Y

4
0 , X

4
1Y

4
1 must be nonzero to guarantee that

B does not pass through the torus fixed points of ι.

Remark 5.12. The double cover π : T → P1×P1 branched along B is a well known
to be a K3 surface: T is smooth and minimal, KT ∼ π∗ (KP1×P1 + 1

2B
)
∼ 0, and

π∗OT = OP1×P1 ⊕OP1×P1

(
− 1

2B
)
, which gives h1(OT ) = 0.

Remark 5.13. Let L⊗2 = OP1×P1(4, 4) and let p : L→ P1×P1 be the total space
of the line bundle L. Then the double cover T of P1 × P1 branched along B can
be viewed inside L as the vanishing locus of t2 − p∗s = 0, where B = V (s) and
t ∈ Γ(L, p∗L) is the tautological section. We have that then ι lifts to an involution
ι̃ of T with exactly eight fixed points: two over each fixed point of ι. If τ denotes
the deck transformation of the cover, i.e. t 7→ −t, then we have that ι̃ commutes
with τ and the composition σ = τ ◦ ι̃ is a fixed-point free involution of T . The
quotient q : T → T/σ = S is then an Enriques surface called Horikawa model, and
comes equipped with a degree 2 polarization induced by OP1×P1(1, 1).

Let R ⊆ T be the ramification locus, so that 2R = π∗B, define R = q(R), and
let 0 < ϵ≪ 1 rational. Then we have the two following covering equalities:

KT + ϵR ∼Q π∗
(
KP1×P1 +

1 + ϵ

2
B

)
,

KT + ϵR ∼Q q∗
(
KS +

ϵ

2
R
)
.

Lemma 5.14. With the notation introduced above, we have the following self-
intersection numbers:

•
(
KP1×P1 + 1+ϵ

2 B
)2

= 8ϵ2;

• (KT + ϵR)2 = 16ϵ2;

•
(
KS + ϵ

2R
)2

= 8ϵ2.

Remark 5.15. We now relativize the above construction. Let P12 be the space of
coefficients, up to scaling, for a bidegree (4, 4) polynomial in the monomials in (1).

So, if cijkℓ denotes the coefficient of Xi
0X

j
1Y

k
0 Y

ℓ
1 , then [. . . : cijkℓ : . . .] ∈ P12 with

(i, j, k, ℓ) within the following set:

M := {(i, j, k, ℓ) ∈ Z4
≥0

∣∣∣ i+ j = k + ℓ = 4, i+ k ≡ j + ℓ ≡ 0 mod 2}.
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Let U ⊆ P12 be the dense open subset of coefficients such that the corresponding
ι-invariant (4, 4) curve B ⊆ P1 × P1 is smooth and does not pass through the
torus fixed points of P1 ×P1. Define X := U× (P1 ×P1) and let X → U be the
projection. Let

B := V

 ∑
(i,j,k,ℓ)∈M

cijkℓX
i
0X

j
1Y

k
0 Y

ℓ
1

 ⊆ X .

Then
(
X , 1+ϵ2 B

)
→ U is a family of stable pairs with fibers given by

(
P1 ×P1, 1+ϵ2 B

)
as described above. Additionally, we observe that

(
X , 1+ϵ2 B

)
→ U is a KSBA-stable

as defined in [Kol23, p. 8.7].

Remark 5.16. The family
(
X , 1+ϵ2 B

)
→ U has isomorphic fibers. To eliminate

this redundancy, we consider the action of Aut(P1×P1) ∼= (PGL2×PGL2)⋊Z/2Z
(see [Dol12]) on H0(O(4, 4)). More precisely, we want to look at the subgroup G
which preserves ι-invariant (4, 4)-curves not passing through the torus fixed points.
Note that the Z2-action preserves the set of monomials M as (i, j, k, ℓ) ∈M if and
only if (k, ℓ, i, j) ∈ M . Now consider a generic

[
a b
c d

]
∈ PGL2 acting on [X0 : X1].

One can check directly that the action of this matrix preserves the monomials
in M if and only if b = c = 0, and the same holds if we consider the action of
the second copy of PGL2 which acts on [Y0 : Y1]. In particular, we have that
G ∼= G2

m ⋊ (Z/2Z). Therefore, we have an action G ↷ U which identifies the
isomorphic fibers of

(
X , 1+ϵ2 B

)
→ U.

Over U, we can also consider the cover (T , ϵR) →
(
X , 1+ϵ2 B

)
which gives the

family of isomorphism classes of pairs (T, ϵR) and the fiberwise quotient by the En-
riques involution (T , ϵR) →

(
S, ϵ2R

)
which gives the family of isomorphism classes

of Enriques surfaces
(
S, ϵ2R

)
. Summarizing, we have the following commutative

diagram:

(T , ϵR)
(
X , 1+ϵ2 B

)
(
S, ϵ2R

)
U

Definition 5.17. Following the notation in [Kol23, Theorem 8.1], consider the
moduli functors SP(a, d, ν) for

(a, d, ν) =

(
1 + ϵ

2
, 2, 8ϵ2

)
,
(
ϵ, 2, 16ϵ2

)
,
( ϵ
2
, 2, 8ϵ2

)
.

and the corresponding coarse moduli spaces SP(a, d, ν). We now define the following
stacks:

Consider the KSBA-stable family
(
X , 1+ϵ2 B

)
→ U. Therefore there is an induced

morphism U → SP
(
1+ϵ
2 , 2, 8ϵ2

)
and denote by P ′ the closure of its image. Let P

′

be the coarse moduli space corresponding to P ′
, and denote by P its normalization.

We have that P provides a projective compactification of U/G. By using the
families (T , ϵR) → U and

(
S, ϵ2R

)
→ U instead, we obtain the compactifications

K and E of U/G respectively, which instead parameterize generically the K3 and
Enriques surfaces.
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Remark 5.18. It is a standard observation that the compactifications P,K,E
are isomorphic to each other (see [MS21, § 3] for an analogous situation). We will
mostly focus on P as it parameterized the simplest objects.

6. Morphisms of moduli and cusps

6A. Mapping the boundaries: matching cusp diagrams.

Remark 6.1. Let F2d be the moduli space of polarized K3 surfaces of degree
2d. How do we match the cusp diagram for the Baily–Borel compactification for
the moduli of degree 2 Enriques surfaces with the Baily–Borel compactification for
degree 4 hyperelliptic K3 surfaces? This is actually quite subtle, and it works as
follows:

• [Ste91, § 5] matches cusps for degree 2 Enriques surfaces and degree 4 K3
surfaces,

E2
BB
⇌ F4

BB
.

• Using Scattone’s method in [Sca87a, § 6], we can match the cusps for degree
4 hyperelliptic K3 surfaces and degree 4 K3 surfaces,

F4,h.e.
BB
⇌ F4

BB
.

• The above two points imply the matching we need.

Remark 6.2. What is Scattone’s method uses the following observations:

• 1-cusps of F4
BB

are in one-to-one correspondence with the orthogonal com-
plements of D8 in the Niemeier lattices, and

• The 1-cusps of F4,h.e.
BB

are in one-to-one correspondence with the orthog-
onal complements of D7 in the Niemeier lattices.

E2
BB

E∅
BB

F4,h.e.
BB

Finite Finite-to-one

As a result, there are two cusp incidence diagrams to match:

• Polarized {Xi, pi} to unpolarized {Yi, qi}:
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p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245

q1 q2 Y2Y12

E2
BB

E∅
BB

• Polarized {Xi, pi} to hyperelliptic {Zi, ri}:
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p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245
E2

BB

F4,h.e.
BB

r1 r2

Z1
12

Z2
12

Z1
2

Z2
2

Z3
2

Z4
2

Z5
2

Z6
2

6B. Type III KPP model at the (18,2,0) odd 0-cusp.

Remark 6.3. At the (18, 2, 0) odd 0-cusp the Type III stable models are of
pumpkin type

Stable models vs KPP models, write down the definition and the differences.
Let X be a K3 surface with a nonsymplectic involution ι with induced involution

i∗ on H2(X;Z). We define S to be the (+1)-eigenspace ι∗; it is a hyperbolic lattice
2-elementary lattice, and all the possibilities for such lattices were classified by
Nikulin. We denote by T the orthogonal complement of S in H2(X;Z).

Definition 6.4. What makes an odd 0-cusp different from an even 0-cusp?

Definition 6.5. We define two types of stable models X0 = ∪V i:
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(1) Pumpkin. Each surface V i has two sides Di = Di,left + Di,right, they are
glued in a circle, all of Di meeting at the north and south poles.

(2) Smashed pumpkins. Starting with a surface of the pumpkin type, one short
side is contracted to a point, so that the north and south poles are identified.

If the surface Vi, say to the left, is (F1, D1+D2), where D1 ∼ f is the short side
being contracted, D2 ∼ 2s+ 2f is the other side, and Cg ∼ f on V contract Vi by
the P1-fibration Vi → P1. Then on the next surface Vi−1 to the left the long side
will fold 2 : 1 to itself, creating a non-normal singularity along that side.

If on Vi the divisor Cg has degree C2
g ≥ 2, then only the short side is contracted

and the resulting surface V i is normal in codimension 1, with only two points in
the normalization glued together (the poles).

Theorem 6.6 ([AE22, Theorem 9.9]). Let (X0,∪V i, ϵCg) be the stable model of
a pair (X0 = ∪Vi, ϵCg), where X0 is the KPP model of a Type III Kulikov surface
and Cg is the component of genus g ≥ 2 in the ramification divisor R. Then

the normalization of each V i is an ADE surface with an involution from [AT21,
Table 2]. Moreover,

• If T is an odd 0-cusp of FS, then X0 is of pumpkin type.
• If T is an even 0-cusp of FS, then X0 is of smashed pumpkin type. The
surfaces Vi of the last type in definition Definition˜9.8, on which Vi → V i
contracts one side are surfaces of [AT21, Table 2] for which one of the sides
has length 0, i.e. those with a double prime or a “+”.

6C. ADE surfaces.

Definition 6.7. An ADE surface is a pair (Y,C), where Y is a normal surface.
(Y,C) has log canonical singularities and the divisor −2(KY + C) is Cartier and
ample. L := −2(KY + C) is referred to as the polarization of the ADE surface
(Y,C).

Remark 6.8. Let B ∈ |L| effective divisor such that (Y,C+ 1+ϵ
2 B) is log canonical

for 0 < ϵ ≪ 1, then (Y,C + 1+ϵ
2 ) is called an ADE pair. We can take the double

cover X → Y branched along B and I guess possibly along C. It can happen that
Y is toric and C is part of the toric boundary.

ADE surfaces admit a combinatorial classification. The classes of ADE surfaces
are called shapes. A shape can be pure or primed. Surfaces of pure shape are
fundamental. Surfaces of primed shape are secondary and can be obtained from
surfaces of pure shape using an operation called priming.

The ADE surfaces of pure shape are all toric. To construct these we start from
a polarized toric surface (Y,L), where L = −2(KY + C). This corresponds to a
lattice polytope P inM⊗ZR. Given a surface (Y,C) of pure shape, the irreducible
components of C are called sides. There are two sides with a point in common
called left or right. They decompose C = C1 + C2. A side can be long or short
depending on whether a side C ′ satisfies C ′ · L = 2, 4 or C ′ · L = 1, 3 respectively.
The ADE surfaces of pure shape are listed in [AT21, Table 1] (see Figures1,2,˜3
therein). Here are some basic examples:

• The ADE surface (Y,C) corresponding to D4 is Y = P1 ×P1 and C is the
sum of two incident torus fixed curves.

• The ADE surface (Y,C) corresponding to A1 is Y = P2 and C is the sum
of two torus fixed curves. The polarization is O(2).
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Remark 6.9. The superscripts minus signs on the left or right denote the location
of the short side. Note both sides can be long or short. Do they correspond to the
visible length? Not at all! The ADE surface A3 has two long sides, but one edge
is shorter than the other. By the way, in this case, Y = F0

2. A
−
2 has a long side on

the left and a short side on the right.
Primed shapes. Priming is an operation that produces a new del Pezzo surface

(Y
′
, C

′
) from an old one (Y,C). The priming operation is basically a weighted

blow-up given by the composition of two ordinary blow-ups and the contraction of
a (−2)-curve making an A1 singularity. Weighted blow-ups of this form are the
basis of the priming operation. Weighted blow-up with respect to the idea (y, x2).
Priming has the meaning of disconnecting a curve from another. Given an ADE pair
(Y,C + 1+ϵ

2 ), then the priming operation is performed on the points of intersection
between C and B, which intersect transversely by [AT21, Remark 3.3]. Priming
may not exist, and there are some necessary and sufficient conditions for priming
to exist.

For an ADE shape, we add a prime symbol when priming on a long side. When
priming a short side, we change the minus into a plus. All the ADE surfaces, pure
or primed are in [AT21, Table 2].

7. Our new results

7A. Enriques strategy.

Remark 7.1. This story suggests the following approach to Enriques surfaces:

• Fully understand the cusps of the Enriques moduli space, possibly in terms
of what has been done for K3s already.

• For each cusp, find the Coxeter diagram.
• For each Coxeter diagram, cook up the right IAS pair of a manifold and a
divisor RIAS. For us, instead of an IAS2 it may be an IARP2, and may come
from some fusion of known IAS2s for K3s, maybe as simple as quotienting
the IAS2 by the antipodal map.

• Reverse-engineer the IARP2 so that it carries two commuting involutions,
and probably take RIAS to be the intersection of the two ramification divi-
sors on the IARP2.

• Describe all of the ways the IARP2 can degenerate, a la Valery’s pumpkin-
type models.

7B. Lemmas/theorems.

Lemma 7.2. If sig(L) = (p, q) and e ∈ L is isotropic, then sig(Ze) = (?, ?) and
sig(Ze⊥) = (?, ?).

Lemma 7.3. Let L be a lattice of signature (p, q) and let e ∈ L be an isotropic
vector. Then

sig(e⊥/e) = (p− 1, q − 1).

Proposition 7.4. Let II3,19 be the K3 lattice and let h be an ample class of degree
d. Then

L2d := h⊥II3,19 ∼= ⟨−2d⟩ ⊕ U⊕2 ⊕ E8
⊕2

and sigL2d = (2, 19). Thus F2d arises as the Hodge-theoretic moduli space associ-
ated with the period domain DL for the lattice L := L2d.
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Remark 7.5. The theorem below needs the following notations and conventions
(these will all be introduced before as needed).

II3,19 = U⊕3 ⊕ E⊕2
8 = (U ⊕ E8)

⊕2 ⊕ U and

I(m,m′, h) = (m,m′,−h).

L− = U ⊕ U(2)⊕ E8(2)

Ω− = {[v] ∈ P(L− ⊗ C)
∣∣∣ v2 = 0, v · v > 0}

Definition 7.6. Consider the following subgroup of O(II3,19):

Γ′ = {g ∈ O(II3,19)
∣∣∣ g ◦ I = I ◦ g, g(e+ f, e+ f, 0) = (e+ f, e+ f, 0)}

Note that we have a natural group homomorphism Γ′ → O(L−) given by g 7→ g|L− .
To prove that g|L− ∈ O(L−) it is enough to observe that g(L−) = L−. Let x ∈ L−.
We have that g(x) ∈ L− if I(g(x)) = −g(x). This holds because

I(g(x)) = g(I(x)) = g(−x) = −g(x).
We denote by Γ the image of Γ′ → O(L−).

Remark 7.7.
E2 = Ω−/Γ

Ω4,h = {[v] ∈ P(Λ18 ⊗ C)
∣∣∣ v2 = 0, v · v > 0}

Λ18 = U⊕2 ⊕D16, Γ4,h = O(Λ18).

α2

α1 α3 α4 α5 α6 α7 α8

Figure 4. The E8 lattice (Sterk’s convention).

Theorem 7.8. There exists an injective morphism

E2 → F4,h

which extends to a morphism of the Baily–Borel compactifications

E
bb

2 → F
bb

4,h.

Proof. Consider the inclusion of U(2) into U(2) ⊕ E8(2) as direct summand. By
considering the orthogonal complements in II3,19 we obtain that

L− ⊆ Λ18.

From this follows from the definitions of Ω− and Ω4,h that we have an inclusion

Ω− ↪→ Ω4,h.

Let us show that this descends to a morphism

Ω−/Γ2 → Ω4,h/Γ4,h.
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Let [v], [w] ∈ Ω2 and assume there exists g ∈ Γ such that g([v]) = [w]. We show that
there exists h ∈ Γ4,h such that h([v]) = [w]. By the definition of Γ, g = g̃|L− , there
exists g̃ ∈ O(II3,19) such that g̃◦I = I◦g̃ and f(e+f, e+f, 0) = (e+f, e+f, 0). Then,
by the proof of [Ste91, Proposition 2.7], we have that g̃ preserves e + f and e − f
in L+ = U(2)⊕E8(2). In particular, g̃ preserves the summand U(2) ⊆ U(2)⊕E8.
This implies that g̃ preserves U(2)⊥ = Λ18. In particular, by setting h = g̃|Λ18

we
obtain what we needed.

We now prove that the morphism φ : Ω−/Γ → Ω4,h/Γ4,h is injective. Let
x1, x2 ∈ Ω−/Γ and assume that φ(x1) = φ(x2). Let Si be the Enriques surface
corresponding to xi. Then Si is the quotient of a K3 surface Ti which is the double
cover πi : Ti → P1 × P1 branched along a (4, 4) curve Bi which is invariant with
respect to the involution ι : (x, y) 7→ (−x,−y). Because of the assumption that
φ(x1) = φ(x2), we must have that

T1 T2

P1 × P1 P1 × P1

∼=

π1
∼=

π2

where the bottom isomorphism commutes with ι and the top map commutes with
ι̃. Let τi be the deck transformation of the cover πi, so that we have the two Enriques
involutions σi = τi◦ ι̃. Then we have an isomorphism between S1 = T1/σ1 ∼= T2/σ2,
which implies that the period points x1, x2 are equal.

The morphism Ω−/Γ → Ω4,h/Γ4,h extends to a morphism of the Baily–Borel
compactifications by [KK72, Theorem 2], and sends boundary components to bound-
ary components.

Next, we describe the cusp correspondence. Recall, E
bb

2 has five 0-cusps p1, . . . , p5
corresponding to the following isotropic vectors in

L− = U ⊕ U(2)⊕ E8(2) = ⟨e, f⟩ ⊕ ⟨e′, f ′⟩ ⊕ ⟨α1, . . . , α8⟩.

1. δ1 = e;
2. δ2 = e′;
3. δ3 = e′ + f ′ + α8;
4. δ4 = 2e′ + f ′ + α1;
5. δ5 = 2e+ 2f + α1.

Note that e′ · f ′ = 2 and αi · αj = δij . We have that δ⊥1 /δ1
∼= U(2)⊕ E8(2) and

δ⊥i /δi
∼= U ⊕ E8(2) for i = 2, . . . , 5.

On the other hand, F
bb

4,h has two 0-cusps q1, q2 for which the corresponding

isotropic vectors η1, η2 ∈ Λ18 satisfy η⊥1 /η1
∼= U ⊕ E⊕2

8 and η⊥2 /η2
∼= U(2)⊕ E⊕2

8 .
To understand whether p1 7→ q1 or p1 7→ q2, it is enough to compute

δ⊥Λ18
1 /δ1.

But this is clear after realizing that Λ18
∼= U ⊕U(2)⊕E⊕2

8 , and there is the explicit
embedding

L− = U ⊕ U(2)⊕ E8(2) ⊆ U ⊕ U(2)⊕ E⊕2
8

(u, v, w) 7→ (u, v, w,w).
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So that it is clear that

δ⊥Λ18
1 /δ1 = U(2)⊕ E8(2).

□

Lemma 7.9. Cusp correspondence 1

We have a cusp correspondence from polarized {Xi, pi} in ∂E2
BB

to hyperelliptic

{Zi, ri} in ∂F4,h.e.
BB

:

p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245
E2

BB

F4,h.e.
BB

r1 r2

Z1
12

Z2
12

Z1
2

Z2
2

Z3
2

Z4
2

Z5
2

Z6
2

8. The Baily-Borel compactification

Remark 8.1. The Baily-Borel and toroidal compactifications are defined for quo-
tients of Hermitian symmetric spaces by actions of arithmetic subgroups of their



DISSERTATION 21

automorphism groups, i.e. those that can be written as Γ⧹Ω. BB compactifica-

tions are generally small, e.g. dimF2 = 19 but codim ∂F2
BB

= 18, and this often
precludes having a satisfactory modular interpretation of its boundary points. In
particular, given an arc in this compactification with endpoint in the boundary,
one can not generally construct a birationally unique limit. Toroidal compactifi-

cations Γ⧹Ω
Tor

are obtained as certain blowups of Γ⧹Ω
BB

, and e.g. for F2 some
boundary components become divisors (codimension 1). However these are highly
non-unique and depend on choices of fans. One might hope there are canonical such

choices. The semitoric compactifications of Looijenga interpolate between Γ⧹Ω
BB

and Γ⧹Ω
Tor

.

Definition 8.2. The group G acts transitively on the set of boundary components

F ⊆ ∂DL := D̃L \DL, and StabG(F ) ≤ G is a maximal parabolic subgroup. Taking
stabilizers establishes a bijection

{Boundary components F ⊆ ∂DL} → {Maximal parabolic subgroups P ≤ G}
F 7→ PF := StabG(F )

For G := SO(V ), parabolic subgroups P are stabilizers of flags of isotropic sub-
spaces in V , and since sig(V ) = (2, n), a flag has length at most 3 and a maximal
flag is of the form p ⊆ I ⊆ J where p is a point, I is an isotropic line, and J is an
isotropic plane. The only flags that define maximal parabolic subgroups of SO(V )
are of length 1, consisting of either a single line or a single plane. Thus we have
bijections

{Rational boundary components of (SO2,n(R),SO2(R)× SOn(R))}

⇌
{Maximal parabolic subgroups of SO(V )}

⇌
{Isotropic lines I ⊂ V } ∪ {Isotropic planes J ⊂ V }

where a boundary component F is rational if StabG(F ) is defined over Q. For an
arithmetic subgroup Γ ≤ G, letting ∂(DL)Q be the set of all rational boundary

components of DL ⊂ D̃L, we produce a compactification

Γ⧹DL = Γ⧹DL
⋃

F∈∂(DL)Q

(GF (Q) ∩ Γ)⧹F

Definition 8.3. Let L be a lattice of signature (2, n) for n ≥ 1, let ΩL be the
associated period domain, let O+(L) ≤ O(L) be the subgroup preserving ΩL and

let Ω̃L be the affine cone over ΩL. Let n ≥ 3, let k ∈ Z, and let Γ ≤ O+(L) be
a finite-index subgroup with χ : Γ → C∗ a character. A holomorphic functional
f : ΩL → C is called a modular form of weight k and character χ for Γ if

• Factor of automorphy: f(λz) = λ−kf(z) for any λ ∈ C∗.
• Equivariance: f(γz) = χ(γ)f(z) for all γ ∈ Γ.
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Definition 8.4. Let ΩL as above and let Mk(Γ, χ) be the C-vector space of such
modular forms of weight k for Γ with character χ. The Baily-Borel compactifi-
cation can be defined as

Γ⧹ΩL
BB

:= Proj
⊕
k≥1

Mk(Γ, χtriv)

where χtriv is the trivial character.

Remark 8.5. ∂Γ⧹ΩL
BB

decomposes into points pi and curves Cj , which are in
bijection with Γ-orbits of isotropic lines i and isotropic planes j in LQ. Moreover

pi ∈ Cj ⇐⇒ one can choose representatives lines i and planes j such that i ⊆ j.

Remark 8.6. A theorem of Baily-Borel gives the existence of an ample automor-
phic line bundle L on DL giving it the structure of a normal projective variety
isomorphic to a canonical model Proj

⊕
k≥0H

0(Lk)??. We denote this compactifi-I don’t quite re-
member what this
graded ring is. cation Γ⧹DL

BB

.

8A. Toroidal and semitoroidal compactifications.

Definition 8.7. A toroidal compactification Γ⧹DL
Tor

is a certain blowup of

Γ⧹DL
BB

, so there is a birational map Γ⧹DL
Tor

99K Γ⧹DL
BB

. It is defined by a
collection of admissible fans {Fi}i∈I where I ranges over an index set for all cusps.

Definition 8.8. A semitoroidal compactification is a generalization due to
Looijenga for which the cones of Fi are not required to be finitely generated.

Remark 8.9. [AE21] shows that semitoroidal compactifications are characterized

as exactly the normal compactifications M
SemiTor

fitting into a tower

M
Tor

M
SemiTor

M
BB

where M
Tor

is some toroidal compactification of M .

Promising stuff here: https://dept.math.lsa.umich.edu/˜idolga/EnriquesOne.pdf#page=567&zoom=160,-
136,765

Remark 8.10. On the toroidal compactification associated with Γ⧹ΩL : for a
cusp Ci of the BB compactification, let F ⊂ LQ be the corresponding Γ-orbit of
an isotropic line or plane. Consider its stabilizer S(F ) := StabO+(LR)(F ), and its
unipotent radical U(F ). Then U(F ) is a vector space containing a lattice U(F )∩Γ
and an open convex cone C(F ). Let C(F )

rc
be the rational closure of the cone, so
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the union of C(F ) and rational rays in its closure. We then choose a fan Σ(F ) with
supp(Σ(F )) = C(F )

rc
which is invariant under S(F )∩Γ and produce an associated

toric variety XΣ(F ). If one does this for every F to produce a Γ-admissible collec-
tion of polyhedra Σ, their quotients by Γ glue to give a toroidal compactification

Γ⧹ΩL
Tor

, which has the structure of a (complex) algebraic space. There is a sur-

jection Γ⧹ΩL
Tor

↠ Γ⧹ΩL
BB

. Why e⊥/e shows up: if e is an isotropic line in L

corresponding to a cusp F , there is an isomorphism of lattices U(F )∩Õ
+
(L) ∼= e⊥/e

where Õ
+
:= ker

(
O+(L) → O(AL)

)
.

8B. Misc.

Definition 8.11 (Log CY pairs). A log Calabi-Yau (CY) pair is a pair (X,D)
with X a proper variety and D an effective Q-Cartier divisor such that the pair is
log canonical and KX +D ∼Q 0.

Definition 8.12. A degeneration π : X → ∆ is a CY degeneration if π is proper,
KX ∼Q 0, and (X ,X0) is dlt. This implies that Xt is a Calabi-Yau variety for t ̸= 0
and X0 is a union of log CY pairs (Vi, Di). If Xt is a strict CY of dimension n,
so π1Xt = 0 and hi(Xt,OXt) = 0 for 1 ≤ i ≤ n − 1, and dimΓ(X0) = n, we say
X is a large complex structure limit or equivalently a maximal unipotent or MUM
degeneration.

Remark 8.13. If n = 2, Kulikov shows that Γ(X0) is always isomorphic to a 2-
sphere S2. Whether Γ(X0) ∼= Sn or a quotient thereof for n ≥ 3 more generally is
an open question, posed by Kontsevich-Soibelman. It has recently been shown by
Kollár-Xu that in the case of degenerations of Calabi-Yau or hyperkähler manifolds,
the dual complex is always a rational homology sphere.

Remark 8.14. Why this is useful to us: one formulation of mirror symmetry is
the formulation due to Strominger-Yau-Zaslow, aptly called SYZ mirror symmetry.
Conjecturally, the general fiber Xt of a punctured family of CYs X ◦ → ∆◦ can
be given the structure of a special Lagrangian torus fibration Xt → B, one can

“dualize” the fibration to obtain a mirror CY X̂t → B over the same base. The This might have
something to do
with the discrete
Legendre trans-
form Phil men-
tions.

common base B of these two fibrations is conjecturally of the form Γ(X0), the dual
complex of a degeneration X → ∆ extending X ◦.

8C. Baily-Borel cusps and incidence diagrams.

8D. Other compactifications.

Remark 8.15. See https://arxiv.org/pdf/2010.06922.pdf#page=1&zoom=auto,-
17,32

Write F2d := Γ2d⧹D2d . A cusp pi of F2d
BB

determines a cone Ci. Toroidal and
semitoroidal compactifications are then determined by a collection of Γ2d-invariant
fans supported on Ci for i ranging over an index set for all cusps. If d = 1 (or
more generally if 2d is squarefree), there is a single 0-cusp p2d whose cone C2d has
a description as the positive light cone in the rational closure of C2d with respect
to a certain lattice M2d. This can be written Crc

2d := Conv(C2d ∩M2d ⊗Z R). A
semitoroidal compactification of F2d is then determined by a semitoric fan inM2d,R

supported on Crc
2d which is invariant for a particular subgroup Γ+

2d ≤ O(M2d). In Todo: can
spell out what
M2d,Γ,Γ

+ are.
this case, one can make a canonical choice for such a semitoric fan: the Coxeter fan
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ΣCox
2d whose cones are precisely the fundamental domains for a Weyl group action

on Crc
2d, see AET19.

9. Scattone’s Baily Borel compactifications

9A. Degree 2d compactifications.

Remark 9.1. The main reference for this section is [Sca87b], which describes the
Baily-Borel compactifications of F2d. The main result of this work is to describe

∂F2d
BB

using lattice-theoretic techniques, giving partial cusp diagrams for certain
arithmetically constrained values of d. In particular, it shows that the number of
1-cusps is asymptotic to d8, and the number of 0-cusps is 1 when d is squarefree,
and otherwise is given by the function ???. Complete details are given for the cases
d = 1, 2.

Remark 9.2. One first notes that by the global Torelli theorem for algebraic K3
surfaces [PS71b], F2d admits a coarse space of the form DLd

/ΓLd
for a certain

choice of lattice Ld. Note that DLd
is a 19-dimensional bounded symmetric do-

main of type IV and ΓLd
is an arithmetic group acting upon it. Recall that the

theory of automorphic forms realizes DLd
/ΓLd

BB
as a projective variety. If Ld is

the primitive cohomology of a polarized K3 surface, there is a correspondence be-
tween n-dimensional boundary cusps and ΓLd

-orbits of n+1-dimensional isotropic
subspaces in Ld. The boundary of the Baily-Borel compactification is “small” in
the sense that it has very high codimension, and thus the geometric information
it contains is insufficient to reconstruct a birationally unique family from a family
over the punctured disc.

Remark 9.3. A polarization of degree 2d on a K3 surface is a primitive divisor
H with H2 = 2d > 0 which is pseudoample, i.e. HD ≥ 0 for any effective D ∈
Div(X). A primitively polarized K3 surface is a pair (X,H). Choose a marking
ϕ : H2(X;Z) → II3,19 such that ϕ(H) = h where h is a fixed primitive vector
satisfying h2 = 2d. So O(II3,19) acts transitively on the set of primitive vectors
of a fixed square, such an isometry can always be found and the choice of h is
irrelevant. Note that (H,ωX) = 0, and thus the period of (X,H) lies in Ω2d := ΩS
for S := h⊥II3,19 . Set Γ2d := StabO(II3,19)(h); then Γ2d ↷ Ω2d discontinuously and
Ω2d/Γ2d is a normal complex analytic space which serves as a coarse space for F2d

by [PS71b; Fri84]. Because any two choices of h are equivalent modulo O(II3,19),
the isomorphism class of h⊥II3,19 depends only on d. Making an appropriate choice
of h, one can identify

L2d := h⊥II3,19 ∼= ⟨−2d⟩ ⊕ U⊕2 ⊕ E⊕2
8 .

One can now define the period domain as Ω2d := ΩL2d
. This consists of two

connected components interchanged by conjugation, so Ω2d = D2d ∪ D̃2d, and we
fix once and for all a choice of one component which we will denote D2d. It is well
known that

D2d
∼=

SO0
2,19

SO2 × SO19
.

We set Õ(L2d) to be the image of Γ2d under the injection Γ2d ↪→ O(L2d) induced by

restriction – note that this coincides with the general definition Õ(L) := ker(O(L) →
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O(qL)). We set O−(L2d) to be the index 2 subgroup that preserves the component

D2d, and Γ2d := Õ(L2d) ∩O−(L2d), we obtain identifications

F2d
∼= Ω2d/Õ(L2d) = D2d/Γ2d.

We focus our attention on the latter definition, F2d := D2d/Γ2d, and more generally
on compactifications of general D/Γ.

9B. General theory.

Remark 9.4. Let D be a symmetric bounded domain and Γ ≤ Aut(D) a discrete
arithmetic subgroup of automorphisms. Equivalently, we can write D = G(R)/K
for G a connected linear algebraic group defined over Q and K a maximal compact
subgroup of G(R). We then require that Γ ≤ G is arithmetic, i.e. Γ ⊆ G(Q)

and is commensurable with G(Z). We will generally define D/Γ as D∗/Γ where
D ⊆ D∗ ⊆ D∨ is a subset of the compact dual via the Borel embedding, comprised
of D and rational boundary components.

Remark 9.5. Regarding D ⊆ D∨, we have ∂D =
∐
Fi where each Fi is a boundary

component, i.e. a maximal connected complex analytic set. We set

NF :=
{
g ∈ G(R)

∣∣∣ gF = F
}
:= StabG(R)(F )

to be the stabilizer of a boundary component and note that the maximal parabolic
subgroups of G(R) are precisely those of the form NF . A boundary component is
rational when NF (C) is defined over Q. Let B(D) be the set of proper rational
boundary components of D. Then there is a bijection

B(D)⇌ {Proper maximal parabolic Q-subgroups of G(C)}
F ⇌ NF (C)

We can write

D∗ = D ∪ ⨿F∈B(D)F.

Then D/Γ := D∗/Γ can be written as

D/Γ ∪
∐

[F ]∈B(D)/Γ

VF

where VF are varieties and we index over orbits of rational boundary components
modulo Γ.

Remark 9.6. We can identify the VF explicitly: writeGF := StabG(R)(F )/FixG(R)(F )
and NΓ,F := StabΓ(F )/FixΓ(F ), then VF = F/NΓ(F ). Note that in applications to

K3 surfaces, we have G(R) = SO0
2,19. In this situation, we have a correspondence

∂DL ⇌ OGr(LR)

F ⇌ E

where E corresponds to F iff StabO(LR)(E) = StabG(R)(F ) := NF . Restricting to
rational boundary components corresponds to OGr(LQ), which are further iden-
tified with OGr(L), the primitive isotropic sublattices of L. For any subgroup
ΓL ≤ G(Z) we obtain a bijection

B(DL)/ΓL ⇌ OGr(L)/ΓL

which preserves incidence relations.
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Example 9.7. As an example, one can take the symplectic form on Z2g, which
yields G(R) = PSpg(R) and D is the Siegel upper half space Hg. Let Γ = G(Z) =
PSpg(Z) be the full Siegel modular group. Then maximal parabolic Q-subgroups
of GR correspond to stabilizers of rational isotropic subspaces of LR. Let Hn :=
Hn/Spn(Z), then D/Γ = Hg ∪ Hg−1 ∪ · · · ∪ H1 ∪ H0 coincides with the Satake
compactification.

Consider now the example of F2d. Recall that D is a component of Ω :={
z ∈ PLC

∣∣∣ z2 = 0, zz > 0
}
and D∨ =

{
z ∈ PLC

∣∣∣ z2 = 0
}
is a quadric. Stratify

∂D = ∂1D
∐
∂0D, noting that ∂0D = D∨ ∩ PLR. Then all points of ∂0D are of

the form P(⟨v⟩C) where v ∈ LR, v
2 = 0 is isotropic. All components in ∂1D are of

the form P(⟨v, w⟩C) ∩ ∂1D where ⟨v, w⟩R varies in OGr2(LR). Restricting to ra-
tional components, one considers OGr2(L) instead, i.e. subspaces ER arising from
sublattices E ≤ L. We thus obtain bijections

B0(D)⇌ OGr1(L)

P ⟨v⟩C ⇌ ⟨v⟩Z
and

B1(D)⇌ OGr2(L)

P ⟨v, w⟩C ∩ ∂1D ⇌ ⟨v, w⟩Z
One can then write

D/Γ = D/Γ ∪
∐

[⟨v⟩Z]∈OGr1(L)/Γ

pv ∪
∐

[⟨v,w⟩Z]∈OGr2(L)/Γ

P ⟨v, w⟩C ∩ ∂1D
NΓ(⟨v, w⟩Z)

where NΓ(E) = StabΓ(E)/FixΓ(E) can be identified with the image of StabΓ(E)
in SL(E) ∼= SL2(Z).

10. Moduli of polarized K3 surfaces of degree 2d

Remark 10.1 (K3 surfaces). A K3 surface is a smooth projective surface with
trivial canonical bundle ωX ∼= OX and h1(OX) = 0. Prototypical examples include
double branched covers of sextic curves in P2 and smooth quartic hypersurfaces in
P3. All K3 surfaces are diffeomorphic, and thus have the Hodge diamond shown in
fig. 5.

h2,2 1

h2,1 h1,2 0 0

h2,0 h1,1 h0,2 = 1 20 1

h1,0 h0,1 0 0

h0,0 1

Figure 5. The Hodge diamond of a K3 surface.
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Remark 10.2 (Lattice theory in moduli). The cup product endows the singular
cohomology H2(X,Z) with the structure of a lattice, where by a lattice we mean a
finitely generated free Z-module with a nondegenerate Z-valued symmetric bilinear
form. It is isometric to the K3 lattice:

H2(X;Z) ∼= II3,19 := U ⊕ U ⊕ U ⊕ E8 ⊕ E8,

where U is the hyperbolic lattice, the unique even unimodular lattice of rank 2
with Gram matrix

(
0 1
1 0

)
and E8 is the negative-definite lattice associated to the

E8 Dynkin diagram.
By the weak Torelli theorem for K3 surfaces [Bar+04, Cor. 8.1.1.2], the moduli

theory of K3 surfaces is regulated by this lattice structure. Of particular importance
is the Néron-Severi lattice NS(X) := H1,1(X)∩H2(X,Z) of integral (1, 1) forms,
and its orthogonal complement in H2(X,Z), the transcendental lattice. We
refer to these as SX and TX respectively. By the Lefcshetz (1, 1) theorem [Bar+04,
Thm. 4.2.13], the first Chern class c1 : Pic(X) → NS(X) induces an isometry.
Because the naive construction of a coarse moduli space of projective K3 surfaces
yields a non-Hausdorff space, we restrict our attention to polarized K3 surfaces
of degree 2d – pairs (X,L) where X is a K3 surface and L is an ample line bundle
on X satisfying L2 = 2d > 0.

Remark 10.3 (Lattice polarized K3 surfaces). Let S be a non-degenerate lattice
of signature (1, n) which admits a primitive embedding into II3,19 (which is of
signature (3, 19)) and T := S⊥II3,19 which is of signature (2, 19−n). We then define
the period domain associated to S as a connected component DS of

ΩS :=
{
[σ] ∈ P (T ⊗C)

∣∣∣ σ2 = 0, σσ > 0
}
,

yielding a Hermitian symmetric domain of Type IV. Let ΓS := Õ(T ) where

Õ(T ) := ker(O(T ) → O(AT ))

and AT := T∨/T is the discriminant group of T . It can be shown that

FS := ΓS⧹DS

is a coarse moduli space of S-polarized K3 surfaces. Taking S := ⟨h⟩ the sublattice
generated by an ample class h satisfying h2 = 2d recovers F2d := F⟨h⟩, noting that

⟨h⟩⊥II3,19 ∼= ⟨−2d⟩⊕U⊕2⊕E⊕2
8 . By [PS71a], F2d constructed in this way is a coarse

moduli space of degree 2d primitively polarized K3 surfaces.
To such surfaces, by [BB66] there is a canonically defined quasiprojective com-

pactification ΓS⧹DS ↪→ ΓS⧹DS

BB

whose boundary consists of 0-cusps (points)
and 1-cusps (curves). The 0-cusps are in bijection with ΓS-orbits of isotropic lines
I ⊆ T , and the 1-cusps are in bijection with orbits of isotropic planes J ⊆ T . By

[Ash+75], there exists a class of compactifications ΓS⧹DS ↪→ ΓS⧹DS

F
defined by

the combinatorial data of a fan F := {FI} where I ranges over Γ-orbits of isotropic

lines in T , equivalently as I ranges over the 0-cusps of ∂ΓS⧹DS

BB

. These are
referred to as toroidal compactifications. Noting that sig(I⊥T /I) = (1, 18), we ob-
tain a hyperbolic lattice and can construct a model of hyperbolic space H18 as a
projectivization of the positive cone

C+ :=
{
v ∈ I⊥/I ⊗R

∣∣∣ v2 > 0
}
.
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Letting ΓS,I := StabΓS
(I), the data of FI is specified by a ΓS,I -invariant rational

polyhedral tiling of H18. The combinatorics of such a tiling determines a union of

toric varieties which are adjoined as the boundary strata of ΓS⧹DS at the 0-cusp
corresponding to I. This produces a divisorial boundary with mild singularities.
The work of [Loo86] introduces semitoroidal compactifications, allowing for the
tiling to be locally rationally polyhedral, which simultaneously generalizes the Baily-
Borel and toroidal compactifications described above.

Remark 10.4. A modular alternative to these compactifications was introduced
in [KS88], denoted the space of stable slc pairs, which is proper. A pair (X,R) of
a projective variety X with a Q-divisor D is stable if KX + R is ample and Q-
Cartier and (X,R) has slc singularities. These strictly generalize the stable curves
that appear in Mg,n, and naturally generalize these notions to all dimensions. For
an appropriately universal choice of polarizing divisor R on the generic K3 surface

in F2d, one can define a compactification F2d
R

as the closure of the space of pairs
(X, εR) in a Zariski open subset of F2d in the space of stable slc pairs. For example,
consider a degree 2 polarized K3 surface (X,L). The linear system |L| induces a
branched 2-to-1 cover X → P2, and one can choose R to be the ramification divisor
of the covering involution. By ???, when R is a recognizable divisor, there is a unique

semifan FR such that the normalization of F2d
R

is isomorphic to the semitoroidal

compactification F2d
FR

.

Remark 10.5 (Kulikov models). Any degeneration of K3 surfaces is birational to
a Kulikov model: after a birational modification and a ramified base change, it
may be put in the form of a degeneration π : X → D over the complex disc such
that π is semistable with trivial canonical ωX ∼= OX .

By ?, the central fiber of a type III Kulikov model is encoded in an integral affine
2-sphere, abbreviated IAS2.

11. Boundary

Goal for this section: describe how Coxeter-Vinberg diagrams are used to get
models at BB cusps.

11A. The case of abelian varieties. Let us consider the setup first for moduli
of principally polarized abelian varieties. We have the following:

Theorem 11.1. There is an isomorphism

η : Ag
F ∼−→ (Ag

KSBA
)ν

for F the second Voronoi fan.Is there always a
natural morphism
from toric com-
pactifications to
KSBA? Not in
general! We can
talk about it when
we meet.

Corollary 11.2. As a result, any punctured 1-parameter family X ◦ → ∆◦ has
a unique limit X0 which can combinatorially be described as a tropically polarized
abelian variety (Xtrop,Θtrop) with a tropical Θ divisor Θtrop.

More is true: the fan F is itself a moduli space for such tropical abelian varieties.

Remark 11.3 (Motivation from abelian varieties). To see how this works, consider
a 1-parameter family of abelian varieties. These are tori of the form

Xt := coker(ϕt : Z
g ↪→ (C∗)g),
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where ϕt are embeddings that vary in the family. Write this embedding as a matrix
M ; this is a matrix of periods. Then for t ≈ 0 one exponentiates Mij to get a
symmetric positive-definite g × g matrix B. There is a cone C ⊆ {B = Bt > 0} in
GLg(Z) and a Coxeter fan F supported on its rational closure Crc which corresponds

to affine Dynkin diagram Ã2:

Ã2 :

This corresponds to a triangular fundamental domain for a reflection group that acts
on C. For a cartoon picture, think of a hyperbolic disc D and let the fundamental
domain be a triangle with ideal vertices:

Figure 6. Tessellating a hyperbolic disc by triangles

Note that the straight lines forming the edges should “really” be curved hy-
perbolic geodesics. One continues reflecting in order to tessellate the hyperbolic
disc, then puts this disc in R3 at height one and cones it to the origin to get an
infinite-type fan F :
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Figure 7. Coning off the hyperbolic disc to form a fan.

Note that the entire fan F admits an SL2(Z) action. Now if one rewrites B
as a form B(x, y) = ax2 + by2 + c(x + y)2 with a, b, c ∈ Z≥0, the coordinate
vector v⃗ := (a, b, c) defines a point in some chamber of Crc. In turn, v⃗ defines a
1-parameter degeneration of abelian varieties, and thus a pair (Xtrop,Θtrop). When
B is integral it defines an embedding B : Λ ↪→ Λ∨ and thus one can construct aWhat is Λ?
torus T := Λ∨

R/Λ
∼= R2/Z2 which has finitely many integral points defined by Λ.

Recall that for any lattice L there is an associated Voronoi tessellation by poly-
topes Pi, one such Pi centered around each lattice point ℓi. Let VorB be the Voronoi
tessellation of Λ; this can be identified with a hexagonal honeycomb tessellation of
R2:
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Figure 8. The Voronoi tesselation associated to Ã2, the triangu-
lar lattice.

One then defines Θtrop := B(VorB)/Λ, a quotient of the image of the hexagonal
tessellation. Although the blue vertices in VorB generally have vertices with frac-
tional coordinates, the vertices in the image have integral coordinate vertices with
respect to Λ∨. The image of a regular hexagon is now a hexagon with side lengths
a, b, c, and since we’ve quotiented by Λ, Θtrop is determined by two hexagons with
side lengths determined by v⃗ = (a, b, c) which are glued together:
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Figure 9. A picture of two relevant polytopes in the image of the
Voronoi tessellation, which tessellates the entire dual lattice. After
quotienting, these will be the only two relevant polygons.

The claim is that this picture describes an entire degeneration X of abelian
varieties. To see the central fiber: every vertex wi in this new tessellation defines
an honest fan via Star(wi); here there are 2 vertices of valence 3 and 3 edges in the
quotient, so the central fiber X0 is two copies of P2 corresponding to w1, w2 glued
together along three curves corresponding to a, b, c. To see the entire family: put
this entire picture at height 1, cone to the origin to get a fan, and quotient that fan
by a Z2 action to get X .

Note that in the K3 case, things are harder because the combinatorics only
describes X0 and not the entire family X , so one has to appeal to abstract smoothing
results to obtain the existence of a family X extending X0.

Moreover, the original fan F is a moduli of these polyhedral pictures. One can
degenerate Θtrop by sending some coordinates a, b, c to zero. This degenerates the
honeycomb 6-gons into 4-gons if just one side goes to zero. For example, if a→ 0,
this corresponds to being on a wall in Figure 7. If two coordinates degenerate,
say a, b → 0, this corresponds to being on a ray. This can be read off by recalling
B(x, y) = ax2 + by2 + c(x + y)2 and labeling the ideal vertices with monomials
x2, y2, (x+ y)2 as in Figure 6. Thus varying v⃗ = (a, b, c) corresponds to varying the
side lengths of hexagons and correspondingly moving through Crc. Staying in the
fundamental chamber doesn’t change the overall combinatorial type of Figure 9,
but passing through a wall will flip the hexagonal tiling in various ways.
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11B. To the K3 case. The claim is that a similar story more or less goes through
for K3s: the Coxeter diagram is much more complicated, and the relevant combi-
natorial device is an IAS2 with 24 singularities instead of a tropical variety. We
have the following:

Theorem 11.4. There is a morphism

η : F2
F → (F2

KSBA
)ν

where F is fan of a Coxeter diagram associated to a cusp of F2, and the Stein
factorization of η is through a semitoroidal compactification.

Corollary 11.5. Any punctured 1-parameter family X ◦ → ∆◦ has a unique limit
X0 which can be combinatorially described as a singular integral-affine sphere with
an integral-affine divisor (IAS2, RIAS).

Remark 11.6. This is a much harder theorem than the Ag case: periods of K3
surfaces are highly transcendental, and the period map is not well-understood.
Also note that the relevant Coxeter diagram for Ag was relatively simple, while the
diagram for F2 is the following:

1

2

3

4

5

6

7

8

9

10

11

12

131415161718

19

20

21

22 23

24

Figure 10. The Coxeter diagram for type (19, 1, 1).

Nodes in Figure 10 correspond to roots spanning a hyperbolic lattice

N := U ⊕ E8(−1)⊕2 ⊕A1(−1), sig(N) = (1, 18)

which is the Picard lattice of the Dolgachev-Nikulin mirror K3. Decorated nodes
vi record self-intersection numbers v2i , and edges between vi and vj record the
intersection numbers vi.vj . Note that the Coxeter diagram also captures the data
of all (−2) curves on the mirror K3 surface and their intersections.
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This diagram again describes the fundamental chamber of a reflection group, and
the cone in this case C =

{
v2 > 0

}
. Toroidal compactifications of F2 correspond

to fans whose support is Crc (i.e. the interior, plus rational rays on the boundary).

There is a natural fundamental chamber defined by
{
v
∣∣∣ v.ri ≥ 0

}
where {ri} are

roots, the difference is that now some vertices of the fundamental chamber may be
ideal vertices:

Figure 11. A fundamental chamber F for a reflection group. Re-
flecting over walls of F successively generates a tiling of the hyper-
bolic disc by copies of F . Note that one vertex is an ideal vertex,
i.e. it is in ∂Hn.

Proceeding similarly to take the cone over this picture and allow rational bound-
ary points yields the cone Crc and a corresponding infinite-type fan F – this is a fan
since the faces are rationally generated, F is a fundamental chamber for the reflec-
tion group W (N), the fan is W -invariant by construction and moreover invariant
under O(N). Since there is a short exact sequence

0 →W (N) → O(N) → S3 → 0

the index of W (N) is finite and thus F is finite volume.
Points in this fan can naturally be interpreted as period points, so a choice of a

point in the fan yields a degenerating family of K3 surfaces by the Torelli theorem.
Let v ∈ F be a point in the fundamental chamber, we will next consider how this
corresponds to a combinatorial object, the same way v⃗ = (a, b, c) did in the case of
Ag.

First consider a fan with 18 rays, corresponding to a toric surface Σ with 18
curves. Note that the rays alternative between long and short vectors:



DISSERTATION 35

Figure 12. The starting point: a toric surface with 18 rays.

This corresponds to a polytope PΣ which is an 18-gon (not necessarily regular)
which is the moment polytope for XΣ where Σ is the fan in Figure 12 and has edge
lengths ℓ0, · · · , ℓ17 ∈ R, which determines a polarization L for XΣ. Although not
shown in the picture here, we can call each edge “long” if it was dual to a long
vector, and similarly “short” if dual to a short vector.

Note also that each edge can be written as ℓivi for vi some unit vectors, and

it is a nontrivial condition on ℓ⃗ that this polygon closes. In particular, one needs∑17
i=0 ℓivi = 0.
Now cut triangles out of sides 0, 6, 12 and call the resulting polygon non-convex

polygon P . Each triangle cut corresponds to a non-toric blowup of XΣ, i.e. a
blowup at a point p which is not T -invariant. This introduces three new length
parameters ℓ18, ℓ20, ℓ20 corresponding to the heights of these three triangles. Each
will introduce an I1 singularity to the moment polytope.
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Figure 13. The Symington polytope: an 18-gon, before and after
a nontoric blowup corresponding to cutting out triangles.

Regarding such polytopes as the Symington polytopes, which are bases of La-
grangian torus fibrations, these are in particular elliptic fibrations and these sin-
gularities precisely correspond to introducing singular type I1 fibers in Kodaira’s
classification.

Take two copies of P , say P and P op, and glue them together along the outer
edges and call the result B. This is topolologically the gluing of two discs, and thus
B is homeomorphic to S2. Each gluing along the outer edges introduces a new I1
singularity, yielding 3 + 3 = 6 singularities in the hemispheres and 18 singularities
along the equator for a total of 24 singularities of type I1 and thus an IAS2 with
charge 24.

Note that there are now 24 length parameters: ℓ0, · · · , ℓ17 along the equator,
ℓ18, ℓ19, ℓ20 in the northern hemisphere, and ℓ21, ℓ22, ℓ23 in the southern hemisphere.

The tuple ℓ⃗ = (ℓ1, · · · , ℓ23) turns out to correspond to 24 vectors in a 19 dimensional
space, and there are enough conditions to ensure the polygons actually close.

This produces the tropical sphere IAS2, so one also needs to describe its tropical
divisor RIAS. The above construction works for any K3 with a nonsymplectic
involution, e.g. an elliptic K3, and the IAS2 is naturally equipped with an involution
ι that swaps P and P op. The ramification divisor of ι is the equator, highlighted
in blue in the following cartoon picture of B, and one takes RIAS to be the sum of
the blue edges with coefficient 2 for even (short?) sides and coefficient 1 for odd
(long?) sides:
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Figure 14. Caption

We now describe how one obtains a degeneration X of K3 surfaces from this
combinatorial picture. One must first extend this IAS2 to a complete triangulation
by basis triangles. This triangulation should be done on P first, before the doubling
construction, so that the vertices and edges in the northern hemisphere are perfectly
matched with those in the southern. Here is a cartoon of what this might look like
on one copy of P , before gluing:
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Figure 15. The IAS on P extended to a complete triangulation
by basis triangles.

This is again a cartoon picture, meant to show how vertices and triangles in the
hemispheres should match in pairs exchanged by the involution ι. Here e.g. the
blue triangles are meant to match, as well as Star(w̃1) and Star(w̃op

1 ):
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Figure 16. A completely triangulated IAS2 defined by B := P ∪
P op.

This final picture describes the central fiber X0 of a Kulikov degeneration of K3
surfaces in the following way: there are many non-singular vertices pi, and exactly
24 singular vertices wi and w̃i, w̃

op
i . For the pi, there is a fan defined by Star(pi)

which defines a toric surface Vi. For the 24 singular vertices, there is a modified
recipe to cook up a semi-toric surface – since the singularity is type I1, this will
be a charge 1 surface, and thus realizable as a toric surface with a single non-toric
blowup, a semitoric surface. How to make this blowup is uniquely determined by
an additional omitted decoration called the monodromy ray at the singular vertex.
Roughly, this is a preferred ray cooked up from the Picard-Lefschetz monodromy
operator around the singular vertex. One can think of this as a “singular fan”.
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Figure 17. Star(w̃2) in Figure 15 with the extra data of a mon-
odromy vector.

So

X0 =
⋃
i

Vi ∪
24⋃
j=1

Wj

where the Vi are all toric surfaces and the Wj are all semitoric surfaces of charge 1,
and the triangulation determines how they are all glued together. To see how this
gluing is done, consider the following local picture in the triangulation:
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Figure 18. Local gluing in the IAS2 of two toric surfaces Σ7 and
P2

At the orange vertex, taking the star we see three rays and thus a copy of P2. At
the green vertex, we see 7 rays, and thus some toric surface Σ7 which is probably
something like a Hirzebruch surface Fn with 3 toric blowups. Since the orange and
green vertices are adjacent by exactly one edge, this means we glue P2 to Σ7 along
the the curves determined by rays pointing along that edge. Moreover, whenever
there is a triangle, this corresponds to three surfaces glued together along a triple
point.

The general case is that the IAS2 has 24 copies of I1 singularities; these singu-
larities can collide to produce semitoric surfaces with multiple nontoric blowups.

Remark 11.7. Note that this only describes X0 and not an entire family X .
Friedman solved this problem: there is a technical condition called d-semistability,
and if this is satisfied then X0 is smoothable. Moreover the smoothing will have
the correct period and/or monodromy vector λ. Haven’t discussed

λ here yet!To obtain all degenerations, one considers all of the ways this combinatorial
object can degenerate. Sending some ℓi → 0 causes the 18-gon to collapse into
a small polygon, or causes some hemispherical singularities to descend into the
equator. This corresponds to moving an interior point of original fundamental
chamber F onto a wall, and wall-crossing mutates the IAS2 in some other ways.

Remark 11.8. Some miscellaneous remarks:

• The Kulikov models are highly non-unique, differing by flops. Adding the
divisor RIAS fixes this and pins down X uniquely.

• It seems one can read off the stable model from the IAS2. For the honey-
combs in the Ag case, everything was contracted down to two P2s glued
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along their 3 boundary curves in a Θ-graph. In the F2 case, one contracts
everything in the IAS2 except for the equator, i.e. the interiors of the hemi-
spheres are contracted. The most general degeneration is 18 copies of P2

glued in a cycle; one can then send some ℓi → 0 to collide the vertices and
get fewer than 18 surfaces.

• It seems one can also read off Type II degenerations from the IAS2. Here
there are 4 Type II cusps, 3 correspond to collapsing the 18-gon in the
IAS2 in the equatorial plane to an interval. The 4th involves collapsing the
18-gon to a point with bits sticking out. Type I degenerations correspond
to collapsing everything to a point.

• Why everything works simply here: there is only one relevant cusp in F2,
and the involution propagates to everything including the IAS2. The Cox-
eter diagram is also highly symmetric, hinting at how to make the right
toric and IAS construction.

11C. Notes from Phil’s talk.

Remark 11.9. For Σg a compact complex curve of genus g, choose a symplectic
basis {αi, βi}i≤g of H1(ΣG;Z), then there is a unique basis (ω1, · · · , ωg) of H0(ΩΣg )

such that
∫
αi
ωj = δij . In this basis, form the period matrix τ = (

∫
βi
ωj)

g
i,j=1.

This satisfies τ t = τ and ℑ(τ) > 0 is positive-definite, and is thus an element in
The Siegel upper half-space

Hg :=
{
τ ∈ Symg×g(C)

∣∣∣ ℑ(τ) > 0
}
.

The Jacobian of Σ is defined as Jac(Σ) := Cg/(Zg ⊕ τZg). Note that we made
a choice of “marking” by choosing the symplectic basis {αi, βi}, and any two such

choices are related by

[
A B
C D

]
∈ Sp2g(Z), the isometry group of Z2g with the stan-

dard symplectic form, where the action is

[
A B
C D

][
Ig
τ

]
=

[
A+Bτ
C +Dτ

]
, the analogue

of a linear fractional transformation. To renormalize the 1-forms, we change ba-

sis to get a similar matrix

[
Ig

(A+Bτ)−1(C +Dτ)

]
. Thus to get an invariant, we

consider

[τ ] ∈ Sp2g(Z)⧹Hg := Ag,

the moduli space of PPAVs. Here one can realize the polarization on A as a symplec-
tic form on H1(A;Z) which is represented by a holomorphic line bundle L ∈ Pic(A),
i.e. identifying a symplectic form on H1(A;Z) as an element of H2(A;Z) which we
want to be a (1, 1) form.

Remark 11.10. Now Ag is not compact, so we consider degenerations over X ◦ →
∆◦ and let ∆◦ → Ag be the associated period mapping – how does the period map
degenerate as t→ 0? The answer is that a certain isotropic subspace I ≤ (Z2g, ωstd)
becomes distinguished by the fact that periods against I⊥ remain finite.

Example 11.11. Let y2 = x3 + x2 + t be a family of elliptic curves over A1 \ 0.
At t = 0 this degenerates to a nodal cubic. There is a vanishing cycle α, and
the distinguished isotropic subspace is precisely I := Zα. One shows I⊥ = Zα as
well. In this case, to be in I⊥ means to be a curve that does not pass through
the thinning neck of the torus that degenerates; any curve that does pass through
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should intuitively have a period that blows up. We normalize by picking a ct such
that

∫
α
ct
dx
y = 1, then

∫
β
ωt = τt ∈ C. However, this isn’t well-defined: one can

parallel-transport β around t = 0 and the monodromy action will be a Dehn twist,
so integrals against β are only well-defined up to Zp where p are periods against α,
here p is normalized to 1. So

∫
β
ωt ∈ τh + Z ∈ C/Z. As t→ 0, one was τt → +i∞

if α, β are oriented properly. We can fix this ambiguity by exponentiation, getting
a well-defined invariant exp(2πi

∫
β
ωt) ∈ C∗.

Remark 11.12. How this works for g ≥ 1: assume I is Lagrangian, so I⊥ = I,
corresponding to a maximally unipotent degeneration. If this were a genus g curve,
we could pinch ≤ g disjoint cycles simultaneously, and a maximal degeneration
will pinch exactly g. Since Sp2g(Z) acts transitively on Lagrangian subspaces in
LGr(V ), we can assume I =

⊕
i Zαi is generated by the α curves. Generalizing the

C∗ embedding in the previous case, we obtain a torus embedding

E : Hg ↪→ (C∗)(
g
2)

τ 7→

exp(2πiτ11) · · ·
...

. . .
...

· · · exp(2πiτgg)


Since τ is symmetric, the image E(τ) is again symmetric. Note that the βi cycles
are well-defined up to translation in I, but because the 1-form was normalized so
that integrals of αj along βi were 1 or 0, the entries in this matrix are well-defined
up to integers. Thus we can exponentiate every entry in the period matrix to get
a well-defined symmetric matrix. The unipotent orbit theorem of Schmid gives an
asymptotic estimate

E(τt) ∼t→0

c11t
n11 c12t

n12 · · ·
...

. . .
...

· · · cggt
ngg

 ∈ Matn×n(C
∗)

which is a cocharacter of (C∗)(
g
2), i.e. an inclusion C∗ ↪→ (C∗)(

g
2) which is a compo-

sition of a group morphism and a translation. Here the cij are the translation parts,
and if cij = 1 for all i, j this yields an honest group morphism. Such a cocharacter
is called a unipotent orbit. This asymptotic estimate is quantified, so there is a
precise speed at which the period matrix approaches the cocharacter.

Setting N := (nij), we have N ∈ Symg×g(Z) and N > 0. These entries capture
the relative speeds at which the various cycles are collapsing. Since the cij are
ultimately just translations, we’ll omit them from here onward.

Remark 11.13. Define a cone

Pg :=
{
N ∈ Symg×g(Z)

∣∣∣ N > 0
}
⊆ Z(

g
2)

and consider the family

(C∗)g

⟨(tn11 , tn12 , · · · , tn1g ), (tn21 , tn22 , · · · , tn2g ), · · · , (tng1 , tng2 , · · · , tngg )⟩
over ∆◦. How does one extend this family over t = 0? If N has full rank, this entire
expression is isomorphic to (Cg/Zg)/τZg. There are two answers, one by fans and
one by polytopes.
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Remark 11.14. The following is the fan construction due to Mumford, which most
easily generalizes to K3 surfaces.

Consider the example

N =

[
2 1
1 3

]
⇝

(C∗)2

⟨(t2, t), (t, t3)⟩
Note N > 0, since detN > 0,TraceN > 0, and N(Zg) is generated by the vector

(2, 1) and (1, 3). First quotient R2 by this lattice to get a flat real 2-torus, then
take a polyhedral tiling whose vertices are integer points. Here we take a tiling of
the fundamental domain and translate it everywhere. This gives a tiling F0 on the

universal cover Rg. Now put this picture at height 1 in Rg+1 to get a tiling F̃0 of

Rg × {1} ⊆ Rg+1, and let F̃ := Cone(F̃0) ⊂ Rg+1 be its cone. Taking the toric

variety X(F̃), and define X(F) := X(F̃)/N(Zg), where the quotient makes sense
precisely because N(Zg) acts on Rg × {1} by translation, and this extends to a

linear action on Rg, which moreover preserves F̃ and thus acts on the toric variety.
There is a morphism ϕ : X(F) → A1 induced by the morphism of fans given by
the height function: projection in Rg+1 onto the last coordinate, whose image is
in R≥0. This map descends to the quotient since the linear action preserves the
height function.

This produces a degenerating fan of abelian varieties. A fiber ϕ−1(t) of X(F̃ )
for t ̸= 0 yields (C∗)g, and the action N(Zg) acts by translations of the form
(tni1 , tni2 , · · · , tnig ) in the original family. Thus we recover the original family as
an infinite quotient of a toric variety. But the toric variety has a toric boundary,
encoded in the tiling. The fiber ϕ−1(0) has dual complex Γ(X0(F)) = F0 equal to
the original tiling, and X0(F) is a union of toric varieties.

In the original lattice, in the quotient there are precisely 3 0-cells, and we inter-
pret the star of each 0-cell as the fan of a toric surface. They are glued according
to the tiling.

Remark 11.15. The polytope construction, which builds the projective coordinate
ring instead. One defines Q to be the hull of certain points, constructs a theta
function, and takes Proj of a certain graded algebra generated by such functions
with an explicit multiplication rule and structure constants. These define a certain
PL function with a “bending locus” which gives a polyhedral decomposition of
Rg/Zg. For any N ∈ Pg one can define the Delaunay decomposition Del(N), and
the central fiber X0 of the family will have intersection complex Del(N) – the loci
where the PL function is linear will be polytopes which are the cells of the Delaunay
decomposition. The second Voronoi fan FVor is a decomposition of Pg into loci

where Del(N) is constant. One then takes Symg×g(Z)⧹Hg ↪→ (C∗)(
g
2) → X(FVor).

One the quotients by conjugation in GLg(Z) to get X(FVor)/GLg(Z) ↪→ Ag
Vor

.
Correspondingly, for any X ◦ in Ag, tracing through this construction gives a proper

family X in Ag
Vor

– note that we’ve only described what toric compactification to
take for the maximally unipotent degenerations, but one can carry out similar

constructions for the other cusps of Ag
BB

.

Remark 11.16. One should ask if Ag
Vor

actually solves a moduli problem, and the
answer is yes (up to normalization) by a theorem of Alexeev. The moduli problem

is the moduli of semi-abelic pairs. Define Ag
Θ

to be the closure of pairs (X, εR)
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where R is their theta divisors, then Alexeev shows

Ag
Vor

= (Ag
Θ
)ν

Remark 11.17. How do we do something similar for K3 surfaces? Fix v ∈ II3,19
primitive with v2 = 2d and define

ΩL :=
{
Cx ∈ Gr1(II3,19C)

∣∣∣ (x, x) = 0, (x, x) > 0
}

Ω2d := v⊥ΩII3,19 =
{
x ∈ II3,19C

∣∣∣ (x, v) = 0
}

Γ2d := StabO(II3,19)(v) =
{
γ ∈ O(II3,19)

∣∣∣ γ(v) = v
}

F2d := Γ2d⧹Ω2d

Here Ω2d plays the role of Hg in the abelian variety case, and is a Hermitian
symmetric domain of type IV or SO2,n, and F2d is an arithmetic quotient. Fixing
a marking ϕ : H2(X;Z) → II3,19, the period map for a family X ◦ → ∆◦ is given
by taking H2,0(X) = Cω and looking at [ω] := ϕ(ω) ∈ F2d, since [ω] ∈ Ω2d but is
ambiguous up to change of marking (elements of Γ). This is a map ∆◦ → F2d.

Given a degenerating family, there is a distinguished isotropic lattice I ≤ v⊥

where sig v⊥ = (2, 19). Note I can only have rank 1 or 2. The rank 1 case (Type
III degenerations) is a maximally unipotent degeneration; the central fiber is as
singular as possible, and X0 will always have 0-strata. In contrast, in the rank 2
case (Type II degenerations) there are models of the degeneration with no 0-strata.

In the rank 1/Type III case, there is a vanishing cycle δ associated to a 0-stratum
in X0 which is topologically a 2-torus. It turns out that δ is an isotropic vector that
spans the isotropic lattice, so we can write I = Zδ ⊆ v⊥. In the degeneration, the
2-torus collapses to a point.

In the rank 2/Type II case, there are two linearly independent isotropic vectors δ
and λ in v⊥ corresponding to 2-tori collapsing simultaneously not to isolated points
as in the previous case, but rather to circles in X0. They are in the singular locus
of X0, which is an elliptic curve.

Remark 11.18. We henceforth assume rankZ I = 1 and write I = Zδ for δ the
isotropic vanishing cycle. Normalize ωt so that

∫
δ
ωt = 1 for t ̸= 0. Let {γi}19i=1 be a

basis of δ⊥/δ. Since δ ∈ v⊥ was isotropic of signature (2, 19), we have sig(δ⊥/δ) =
(1, 18) and this gives us a hyperbolic lattice of rank 19. Consider the integral∫
γi
ωt ∈ C. For this to make sense, one needs to lift the δi from δ⊥/δ to δ⊥, and

the choice of lift is ambiguous up to a multiple of δ. By the normalization of the
integral, we get a well-defined period∫

γi

ωt ∈ C/Z

As in the PPAV case, we use the exponential to get rid of the quotient by Z.
Letting Uδ ≤ Γ2d be the unipotent subgroup stabilizing δ, we get the following
torus embedding

Uδ⧹Ω2d
ψ−→ (C∗)19

C[ωt] 7→
(
exp

(
2πi

∫
γ1

ωt

)
, · · · , exp

(
2πi

∫
γ19

ωt

))
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and a nilpotent orbit theory yielding an asymptotic estimate

ψt ∼ (c1t
λ1 , · · · , c19tλ19)

with ci ∈ C∗, so the periods are approximated by a cocharacter where the λi
measure how fast the periods degenerate.

Remark 11.19. Degenerations: a theorem of KPP shows that after a finite base
change and birational modifications, any degeneration of K3s has a model where

• X is smooth
• X0 is RNC
• KX = OX

The most famous degeneration of K3s is the Fermat degeneration is a non-
example, since smoothness fails:

V (x0x1x2x3 = t(x40 + x41 + x42 + x43))

This threefold has precisely 24 conifold singular points. The central fiber at t = 0
is a tetrahedron, 4 planes P2 in P3, and the singular points come from intersecting
each edge of the tetrahedron with the residual quartic. One can get a smooth
threefold by taking a small resolution of the singular points. There are choices for
the resolutions, differing by flops, so here is a heuristic of a symmetric choice where
along each edge there are two resolutions extending into each component:

image
The result has four components Vi which are isomorphic to Bl6 P

2, 2 points on
each of 3 lines in P2.

An observation originally due to GHK: there is an IAS on Γ(X0), i.e. there are
charts to R2 up to post-composition with SL2(Z)⋊R2.

Here is an example of X0 = ∪Vi for a Kulikov degeneration (written as a decom-
position into irreducible components). Each unlabeled edge has an implicit label of
−1:

image
This forms a tiling of the sphere. Each tile corresponds to an irreducible com-

ponent Vi of X0. The edges correspond to components Vi, Vj glued along an anti-
canonical cycle of rational curves Vij . The edge numbers record the self-intersection
numbers of the cycles Vij regarded as a cycle in Vi and Vji = Vij regarded as a
cycle in j.

A general fact about degenerations of CYs: X0 is generally a union of log CY
varieties, i.e. there are meromorphic 2-forms on components and they are glued
along their poles so that the residues agree. The red lines in the image denotes the
pole locus of these forms. Each triple point is where 3 surfaces are glued. Since the
overall variety is a SNC surface, there are only double curves and triple points. Note
that this picture is the intersection complex of X0, and not the dual complex
Γ(X0). To obtain the dual complex, take the dual tiling, regard each integral 0-cell
in the result as a fan, and glue the fans.

Here are the fans:
image
Here is how this interacts with the original diagram:
image
This works fine at most vertices, but at most 24 components are non-toric. Note

that from toric geometry, if (V,D) is a toric pair then −D2
i vi = vi−1 + vi+1 and so
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one can enforce this formula on such components. For example, the following pair
has all −1 curves since v2 = v1 + v3:

image
Enforcing this formula locally, non-toric points force some SL2(Z) monodromy

in the IAS.

Remark 11.20. This is the analogue of the Mumford fan construction. Note that
in the PPAV case, the lattice didn’t specify a Kulikov degeneration since it was
not a complete triangulation. But completing this to a complete triangulation of
the corresponding real 2-torus does yield a Kulikov model. For K3s, instead of a
complete triangulation on T 2, we’re taking a complete triangulation of an IAS2.
Note that unlike the PPAV case, a triangulated IAS2 only gives X0 (glued from
ACPs) and not the entire family X . An abstract theorem of Friedman says it
smooth to a K3, but one does not get an explicit construction of the smoothing Xt.

There is also no polytope construction here whatsoever, only the fan construction
for the central fiber. GHK and Siebert have been working on the polytope side.
It’s hard: it’s not clear what the multiplication rule for theta functions should be.
We represent an IAS2 with the following data: Missing, see video.

This recovers X0 by taking fans at vertices.

Remark 11.21. Joint work with Valery: a polarizing divisor is a divisor R in the
generic K3 surface in F2d(C). This corresponds to a choice of ample divisor on a

Zariski open subset of F2d(C). For such a choice, we define F2d
R
to be the closure

of K3 pairs (X, εR) in the space of KSBA stable pairs. A generic K3 has Picard
rank 1, and it’s in the ample class, so any divisor on the generic K3 is automatically
ample. Thus KX + εR > 0 since KX = 0. The pair also has slc singularities. Note
that we’ve allowed all K3s to have ADE singularities, these are examples of slc, and
taking ε small enough resolves any problems. One needs R not to pass through
log canonical centers, and there are no log canonical centers on an ADE K3. Their
theorem gives an explicit description of such a moduli space.

Remark 11.22. We say R is recognizable if it extends to a unique divisor R0 on
any Kulikov surface. Idea: for X0 there are many different smoothing families Xi
and choices of divisors Ri. For any 1-parameter family, taking the Zariski closure
of Ri yields a flat limit Ri,0 on X0. If R is recognizable, these flat limits do not
vary, so the choice of divisor can be made on any K3, even a smooth K3. If R is a
recognizable polarizing divisor, there is a unique semifan FR such that

F2d
FR

= (F2d
R
)ν

This relates a Hodge-theoretic compactification on the left with a geometric com-
pactification on the right.

Remark 11.23. A semitoroidal compactification simultaneously generalizes toroidal
and BB compactifications.

Recall that assocaited to a degeneration of K3s we had λ⃗ := (λ1, · · · , λ19) ∈ δ⊥/δ,

a signature (1, 18) lattice. Friedman-Scattone show that λ⃗2 is the number of triple
points in X0. The semifan FR is a locally polyhedral Γδ := StabΓ(δ) invariant
decomposition of the positive cone C+ ⊂ δ⊥/δ. This is the future light cone in the

corresponding hyperbolic space. Roughly F2d
FR

is X(FR)/Γδ.
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Why this? We had a torus embedding of the first partial quotient Uδ⧹D →
(C∗)19 and the latter is canonically identified with δ⊥/δ ⊗ C∗. The monodromy

invariant λ⃗ was approximated by the cocharacter λ⊗C∗. We extend that torus by
a toric variety whose fan has support in δ⊥/δ.

Note that here semitoroidal corresponds to locally polyhedral. A globally poly-
hedral tiling condition would just yield a usual fan. For instance, the cones here
might have infinitely many rational polyhedral walls. On the other hand, the BB
compactification corresponds to the trivial compactification of C+ which is just the
entirety of C+.

Remark 11.24. AE prove that recognizable divisors Rrc :=
∑
C∈|L|,Cν∼=P1 C exist.

The rational curve divisor is always recognizable for any degree 2d, so this exhibits
some semitoroidal compactifications with geometric meaning.

AET give some explicit examples for F2. Degree 2 K3s are generically 2-to-1
covers π : X → P1 branched over a sextic, take L := π∗OP1(1). One takes the R
to be the ramification divisor R ∈ |3L|; it is a recognizable divisor. They construct
a semifan FR which is a coarsening of the Coxeter fan for the root system in δ⊥/δ;
one takes a subset of the root mirrors.

The construction of the singular K3 surface: start with the heart IAS2, trian-
gulate completely, double this construction, replace each vertex with the surface
defined by the star. Note the cuts introducing shears along the boundary. The cuts
introduce 3 singularities in each hemisphere, and angular defects of the polygonal
gluing introduce 18 singularities along the equator. This IAS2 has an involution,
and this X0 naturally has an involution. The ramification divisor of the IAS2 is
in blue, it’s a tropical ramification divisor. It is the dual complex of the limit of
ramification divisors.

Why is this recognizable? X0 admits an involution ι0. From this we can deter-
mine the limit of Fix(ι). Note that X0 alone determines R0, the limit of Rt, and
R0 = Fix(ι0). This implies recognizability since the choice of divisor R can be made
on any Kulikov surface.

Remark 11.25. On joint work with ABE for elliptic K3s. Take X → P1 an elliptic
fibration with fiber f and section s. This is not of the form F2d, since here one
takes H = Zs ⊕ Zf for the polarization. Generically the fibration has 24 singular
fibers. They show R := s + m

∑
fi for fi the singular fibers is recognizable for

any multiple m. The lattice II1,17 is reflective, and FR here refines the Coxeter
chamber into 9 subchambers. This is a fan which is strictly not a semifan. There
is a corresponding tropical elliptic K3 given by the following IAS2.

image
Here one glues the top too the bottom, identifying the segments by a vertical

shear. Note it has an S1 fibration which tropicalizes the elliptic fibration. The
blue vertical lines are limits of singular fibers, the blue horizontal is the limit of the
section.

12. Coxeter Theory

From https://math.ucr.edu/home/baez/twf dynkin.pdf#page=1&zoom=160,-
141,556

12A. Coxeter groups and diagrams.
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Remark 12.1. Main ideas:

• Elliptic subdiagrams of rank r correspond to codimension r faces of a poly-
tope P

• Parabolic subdiagrams (of rank n− 1) correspond to cusps of P

Remark 12.2 (A summary of hyperbolic Coxeter diagram conventions). Regarding
this as a group of reflections in hyperplanes, we have the following interpretations:

Description Diagram Notation mij ∠(Hi, Hj) wij

Labeled simple edge
mijH1 H2

Hi ⋔ Hj mij π/mij cos
(

π
mij

)
No Edge

H1 H2

Hi ⊥ Hj 2 π/2 0

Simple Edge
H1 H2

Hi ⋔ Hj 3 π/3 1
2

Double Edge
H1 H2

Hi ⋔ Hj 4 π/4
√
2
2

Triple Edge
H1 H2

Hi ⋔ Hj 5 π/5 1+
√
5

4

Thick/bold edge
H1 H2

Hi ∥ Hj ∞ 0 1

Dotted Edge
wijH1 H2

Hi Hj 0 ∞ cosh(ρ(Hi, Hj))

Simple vertex h2i = −1 1
Black vertex h2i = −2 2
Double-circled vertex h2i = −4 4

Table 1. A summary of conventions for Coxeter-Vinberg dia-
grams

Note that generally

• cos(∠(Hi, Hj)) = −(hi, hj) when |(hi, hj)| < 1 and
• cosh(ρ(Hi, Hj)) = −(hi, hj) when |(hi, hj)| > 1.

Here ρ(Hi, Hj) is the length of a common perpendicular to Hi and Hj .
Moreover,

• Hi ⋔ Hj ⇐⇒ |wij | = |(hi, hj)| < 1,
• Hi ∥ Hj ⇐⇒ |wij | = |(hi, hj)| = 1,

• Hi Hj ⇐⇒ |wij | = |(hi, hj)| > 1.

For a hyperbolic Coxeter polytope P bounded by hyperplanes {H1, · · · , Hn},
one constructs the Gram matrix G(P ) = (gij) ∈ Mat1≤i,j≤n defined by

gij =


1 i = j

− cos(π/mij) Hi ⋔ Hj ,∠(Hi, Hj) = π/mij

− cosh(ρ(Hi, Hj)) Hi Hj

−1 Hi ∥ Hj

.

Note that gij = (hi, hj) is the Gram matrix of the corresponding intersection form.
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Definition 12.3 (Coxeter groups). A group W is a Coxeter group if it has a
presentation of the following form:

W =
〈
r1, · · · , rn

∣∣∣ (rirj)mij ∀1 ≤ i, j ≤ n
〉

mij ∈ Z≥1 ∪ {∞}

where

• mii = 1 for all i,
• mij ≥ 2 for i ̸= j, and
• mi,j = ∞ means there is no relation imposed.

If S = {r1, · · · , rn} is a fixed generating set, we call the pair (W,S) a Coxeter
system.

Definition 12.4 (Coxeter diagrams). Given a Coxeter system (W,S), the the
pre-Coxeter diagram of (W,S) is weighted undirected graph with a single vertex
vi for each ri ∈ S, and for each pair i ̸= j, an edge eij of weight wij := mij

connecting vi to vj . Note that this yields a complete5 graph on |S| vertices. The
Coxeter diagram D(W ) of (W,S) is the partially weighted graph obtained from
the pre-Coxeter diagram by the following modifications:

• Edges eij of weight wij = 2 are deleted.
• Edges eij of weight wij ≥ 7 are labeled with their weights.
• Edges eij of wij = 3, 4, 5, 6 follow one of two conventions: they are either

replaced with an (wij − 2)-fold multi-edge, or are unmodified and retain
their label of wij .

• Edges eij of weight wij = ∞ are replaced by bold/thick edges.

Remark 12.5 (Facts about Coxeter diagrams). We summarize several facts about
the full Coxeter diagram:

• Vertices vi and vj are non-adjacent if and only if wij = 2,
• Vertices vi and vj are adjacent if and only if wij ≥ 3,
• Edge weights are suppressed for small weights wij ≤ 6, and explicitly in-
cluded for every wij ≥ 7.

Remark 12.6 (How to read a group presentation from a Coxeter diagram). One
can recover the presentation of a Coxeter group from any Coxeter diagram. Ex-
plicitly, given a diagram D, one constructs a group W such that D = D(W ) in
the following way: first one transforms the Coxeter diagram into a pre-Coxeter
diagram by adding weight 2 edges between every pair of non-adjacent vertices,
forming a complete graph. One then replaces double/triple/quadruple edges with
weight 4/5/6 edges respectively. Finally, reads the group presentation off of the
weighted adjacency matrix of the resulting graph. Explicitly, the group W will
have a generator for every vertex and a relation (rirj)

wij for each edge eij of weight
wij .d

Example 12.7 (Passing between Coxeter diagrams and Coxeter groups). Every
Coxeter diagram is naturally associated with a weighted graph whose edge weights
are all integers mij ≥ 2, and from this presentation, one can immediately read
off the group presentation. For example, consider the following diagram and the

5Recall that a graph is complete if every vertex is adjacent to every other vertex.
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associated weighted graph:

7

⇝

3

3

4
7

2

2

r1

r2 r3

r4

Reading generators and relations off of this graph, we obtain a group freely
generated by r1, r2, r3, r4 subject to the following relations:

W :=

〈
r1, r2, r3, r4

∣∣∣∣∣∣
r21 = r22 = r23 = r24 = 1
(r1r2)

3 = (r2r3)
7 = (r1r4)

4 = (r2r4)
3 = 1

(r1r3)
2 = (r3r4)

2 = 1

〉
.

Letting A be the weighted adjacency matrix of this weighted graph, we can read
this group presentation directly off of the following symmetric matrix:

A =


1 3 2 4
3 1 7 3
2 7 1 2
4 3 2 1


This matrix defines an exact sequence of Z-modules

0 → Z4 A−→ Z4 →W → 0,

realizing W ∼= cokerA as a presentation of W by generators and relations.

12B. Coxeter polytopes.

Remark 12.8. Recall the cosine formula for Euclidean inner product spaces: in
En, the norm is ∥x∥ :=

√
x2 :=

√
x.x, and we have

vw = ∥v∥∥w∥ cos(∠(v, w)) =
√
v2
√
w2 cos(∠(v, w)) =

√
v2w2 cos(∠(v, w))

For a general bilinear form, we can define

∠(v, w) := cos−1

(
vw√
v2w2

)
.

We can thus interpret the pairing as measuring angles in the following way:

vw =
cos(∠(v, w)√

v2w2
,

which moreover allows one to compute intersections vw from knowledge of v2, w2,
and angles ∠(v, w), which is precisely the data that is encoded in a Coxeter diagram.



52 D. ZACK GARZA

Definition 12.9 (Dihedral angles between hyperplanes). If Hi, Hj are intersecting
hyperplanes in En, we write Hi ⋔ Hj . We write hi := H⊥

i and hj := H⊥
j for unit

normal vectors spanning their orthogonal complements, and define the dihedral
angle between Hi and Hj as

∠(Hi, Hj) := ∠(hi, hj).

If Hi is parallel to Hj , we write Hi ∥ Hj and define ∠(Hi, Hj) = 0. We similarly
write Hi ⊥ Hj if ∠(Hi, Hj) = π/2.

Remark 12.10. Note that there is a common trick to get rid of the square root
in these formulas: one writes

(vw)2 = v2w2 cos2(∠(v, w))

For ∠(v, w) = π/mij , this gives a way to recover mij from the bilinear form.

Definition 12.11 (Coxeter polytopes). LetX := En,Sn,Hn be a Euclidean, spher-
ical, or hyperbolic geometry. A polytope P ⊆ X is Coxeter polytope if all dihe-
dral angles between pairs of intersecting facets Hi and Hj are of the form π/mij

for mij ∈ Z≥2, and any two non-intersecting facets are parallel.

Remark 12.12 (Coxeter group GP of a Coxeter polytope P ). Every Coxeter
polytope P defines a Coxeter group GP ≤ Isom(X) generated by reflections through
the supporting hyperplanes Hi of facets of P and a corresponding Coxeter diagram
DP . For X = En, one constructs GP in the following way:

• A generator ri for each facet Hi of P with relation r2i = 1, representing
reflection through the hyperplane Hi,

• For any facets Hi, Hj where Hi ⋔ Hj , there is a relation (rirj)
mij = 1

where mij is defined by ∠(Hi, Hj) = π/mij .
• For non-intersecting facets Hi ∥ Hj , we set mij = ∞ and take a relation
(rirj)

∞ = 1, i.e. no relation is imposed at all.

Remark 12.13. Note that P is a fundamental domain for the action of GP on
X. Moreover, if G ≤ Isom(X) is any discrete finitely generated reflection group,
then its fundamental domain is always a Coxeter polytope. If X = Sn or En,
Coxeter polytopes are classified and are either simplices or products of simplices
respectively, and full lists can be found. For X = Hn, the general classification is
an open problem. Poincaré classified them in H2. Vinberg showed that no compact
Coxeter polytopes exist in Hn for n ≥ 30, and no non-compact but finite volume
polytopes exist for n ≥ 996. These bounds are not sharp. Finding explicit examples
of high-dimensional compact Coxeter polytopes is interesting because these can be
used to explicitly construct high-dimensional hyperbolic manifolds.

Definition 12.14 (Volumes and covolumes of Coxeter groups/polytopes/diagrams).
We define the covolume of GP as the volume of P ∼= X/GP , where the metric on
the quotient is induced from the metric defining the geometry on X.

Remark 12.15. We collect some facts about the corresponding Coxeter diagram
D(P ):

• D(P ) has vertices vi corresponding to Hi, where vi, vj are non-adjacent if
and only if Hi ⊥ Hj

6,

6Recalling that edges with mij = 2 are deleted by convention.
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• Edges eij are plain if mij <∞ and mij ̸= 0, so Hi ⋔ Hj ,
• Edges eij are bold if mij = ∞, so Hi ∥ Hj and ∠(Hi, Hj) = π/∞ = 0.

Example 12.16 (Euclidean Coxeter polytopes). Consider the following Coxeter
diagram:

m

This corresponds to a non-compact polytope in E2 bounded by two hyperplanes
H1, H2 through the origin (i.e. lines), one corresponding to each node, intersecting
at an angle of π/m. Without loss of generality, we can take H1 to be the x-axis
and H2 to be a line of slope π/m:

Figure 19. Caption

One can note that if m = 2, then one deletes the edge by convention to get the
Coxeter diagram

This is the Dynkin diagram of A1 × A1, which indeed has fundamental chamber
the first quadrant. Similarly, if one takes m = 3 on recovers the standard Dynkin
diagram for A2:

We get a fundamental chamber with two walls at a dihedral angle of π/3, corre-
sponding to the dual hyperplanes of the two standard short rootsα and β with
∠(α, β) = 2π/3 in Lie theory:
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Figure 20. Caption

Example 12.17 (Affine examples).Todo: weighted

Ã2 as a simplex. Remark 12.18. Note that taking reflections of the fundamental domain C by the
Weyl group generates a tiling of the hyperbolic disc in these cases.

Remark 12.19 (Importance of tilings). Why this is important: given any tiling
of E2 or H the hyperbolic disc, we can place it at height one and take a cone to
get an infinite-type toric variety. Alternatively, given any tiling we can construct a
surface that is a union of toric pairs by interpreting every vertex of the tiling as a
fan and the edges of tiles as gluing instructions.

Finally, we can interpret an IAS2 has an irregular spherical tiling, i.e. a tiling S2
which is not necessarily generated by reflections, but one which has finitely many
tiles. We then regard the tiling as a union of toric surfaces as described above.

Definition 12.20 (The Gram matrix of a Euclidean Coxeter polytope). Let P ⊂
En be a Euclidean Coxeter polytope, not necessarily compact. One defines the
Gram matrix G(P ) of P as

G(P )ij =


1 i = j

− cos
(

π
mij

)
Hi ⋔ Hj , ∠(Hi, Hj) = π/mij

−1 Hi ∥ Hj , ∠(Hi, Hj) = π/∞ = 0

.

12C. Hyperbolic Coxeter polytopes. %https://hal.science/hal-03345221/file/Survey -
Discrete Cox Gp V3 arxiv.pdf#page=5&zoom=auto,-147,687

Remark 12.21. See the section on hyperbolic geometry for a description of Hn :={
x ∈ En,1

∣∣∣ x2 = −1, x0 > 0
}

and terminology (space/time/light-like vectors). As

a convention, Hn means the interior of Hn := Hn∪∂Hn where ∂Hn is the boundary
at infinity consisting of ideal points.
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Some unsorted notes:

• The distance ρ on Hn is defined such that ρ(v, w) := arccosh(vw).
• In Hn Vinberg defines the dihedral angle as ∠(fi, fj) := π − ∠(f⊥i , f⊥i ).
• The diagram E10 describes a polytope in H9.

Remark 12.22 (Hyperplane incidence relations in hyperbolic spaces). In hyper-
bolic geometry (H2 to simplify), there are two types of parallelism: asymptotically
parallel (converging) lines, or ultraparallel (diverging) lines. Both are characterized
by sharing a common orthogonal line, however, asymptotically parallel lines have a
common perpendicular in ∂H2 going through their ideal point of intersection, while
ultraparallel lines share a common perpendicular at a point in the interior H2. By
the ultraparallel theorem, Hi, Hj are ultraparallel if and only if Hi ∩Hj = ∅ in H2.

Figure 21. The two types of parallelism in hyperbolic space, vi-
sualized in the ball model and half-plane model respectively.

Thus given a pair of hyperplanes Hi and Hj , there are thus three possibilities
for their incidence relations:

• Hi, Hj are not parallel and thus intersect in Hn. We write Hi ⋔ Hj and
define ∠(Hi, Hj) as the usual dihedral angle.

• Hi, Hj are asymptotically parallel/converging and thus intersect in an ideal
point in ∂Hn. We write Hi ∥ Hj and define ∠(Hi, Hj) =

π
∞ = 0.

• Hi, Hj are ultraparallel/diverging and do not intersect in Hn. We write

Hi Hj .

Remark 12.23 (Hyperbolic distance between hyperplanes). Note that in the last
case above, ∠(Hi, Hj) is undefined but there is a minimal distance ρ(Hi, Hj) be-
tween the two hyperplanes. By geometric axioms, if Hi ∩ Hj = ∅ then there is a
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unique geodesic Lij that is simultaneously orthogonal to both Hi and Hj , inter-
secting them at points pi and pj . One then defines ρ(Hi, Hj) as the length of a
geodesic segment along Lij with endpoints at pi and pj .

Remark 12.24 (Extending Coxeter diagrams for hyperbolic polytopes). Following
Vinberg, one can extend the notion of a Coxeter diagram to a weighted graph
with positive weights wij > 0 where all wij ∈ (0, 1) can be written in the form

wij = cos
(

π
mij

)
for somemij ∈ Z≥2 and wij ∈ [1,∞] can be arbitrary real (possibly

infinite) numbers. In this convention,

• wij = cos
(

π
mij

)
∈ (0, 1) get simple edges of labeled weight mij (or multi-

edges) corresponding to Hi ⋔ Hj and ∠(Hi, Hj) =
(

π
mij

)
• wij = 1 get bold unlabeled edges of weight 1 corresponding to Hi ∥ Hj

and ∠(Hi, Hj) =
π
∞ = 0.

• wij ∈ (1,∞) get dotted labeled edges of weight wij (or unlabeled) corre-

sponding to Hi Hj and wij corresponds to ρ(Hi, Hj)

More generally, given a Coxeter-Vinberg diagram set

gij =
hihj√
h2ih

2
j

,

then one interprets

• gij < 1 =⇒ gij = cos (∠(hi, hj)) and Hi ⋔ Hj with ∠(hi, hj) = π/mij ,
• gij = 1 =⇒ Hi ∥ Hj with ∠(hi, hj) = 0,

• gij > 1 =⇒ Hi Hj .

Example 12.25 (Hyperbolic Coxeter polytopes).Todo: (∞,∞,∞).

Remark 12.26. As in the Euclidean case that taking reflections of the fundamental
domain C by the corresponding Weyl group naturally constructs a tiling of E2 in
all of these cases:

• A1 ×A1 tiles E2 with 4 non-compact quadrants,
• A2 tiles E2 with 6 non-compact sectors of angle π/3,
• In general, taking ◦ →m ◦ with m ∈ Z≥1 tiles E2 with 2m non-compact
sectors of angle π/m,

• Ã2 tiles E2 with infinitely many compact equilateral triangles of with in-
ternal angles π/3.

Definition 12.27 (The Gram matrix of a hyperbolic polytope). Let P ⊆ Hn be
a Coxeter polytope, possibly with ideal points. The Gram matrix of P is the
matrix

G(P )ij =


1 i = j

− cos
(

π
mij

)
Hi ⋔ Hj , ∠(Hi, Hj) = π/mij ,

−1 Hi ∥ Hj , ∠(Hi, Hj) = π/∞ = 0,

− cosh(ρ(Hi, Hj)) Hi Hj , ∠(Hi, Hj) = π/0 = ∞,

.

Remark 12.28. When labeling the Coxeter graph, one often putsmij or cosh(ρ(Hi, Hj))
as the labels, mixing conventions slightly. Edges of weight 2 are deleted, edges of
weight 3 are unlabeled simple edges.
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Remark 12.29. If P ⊆ Hn is a compact hyperbolic Coxeter polytope, the quotients
Hn/GP are hyperbolic orbifolds. The simplest examples of such polytopes are the
hyperbolic n-gons defined by integers p1, · · · , pk ≥ 2 satisfying

∑
p−1
i < k − 2.

Definition 12.30 (Simple systems). We say ∆ = {ri} is a simple system of
generators for a polytope P if rirj ≥ 0 for all i and j, and P has a facet presentation
by the mirrors Hri . This allows one to write

P =
{
v ∈ LR

∣∣∣ v2 = 0, riv ≥ 0
}
.

We call P a Weyl chamber7. The closure P is a fundamental domain for the
action ofW (L) and the Weyl group acts simply transitively on the set of chambers.

Remark 12.31 (Decomposing the future orthogonal group into a Weyl and sym-
metry group). Let W (L) be the reflections in all negative norm vectors. There is
an identification

O+(L) ∼=W (L)⋊ S(C), S(C) := StabO+(L)(C)

where C ⊂ Bn be a fundamental chamber of W (L) with respect to some choice of The semidirect
might be in the
wrong direction
here, which one is
normal?

a simple set of generators.

Definition 12.32 (Reflective lattices). We say L is reflective if W (L) ≤ O+(L)
is finite-index. More generally, if we define O+(L)k as the subgroup generated by
all k-reflections, i.e. reflections in roots v with v2 = k, we say L is k-reflective if
W (L) is finite index in O+(L).

Remark 12.33. If L as above is reflective, it is well-known C is a hyperbolic
Coxeter polytope of finite volume.

Definition 12.34 (Vinberg-Coxeter diagrams). A Vinberg-Coxeter diagram is
an extension of a Coxeter diagram with adds the following decorations:

• Black edges
• Double-circled edges
• Dotted edges
• Thick edges

It is a weighted graph with positive edge weights wij > 0 where we require that

any wij ∈ (0, 1) is of form wij = cos
(

π
mij

)
for some mij ∈ Z≥2, but we explicitly

allow some wij ∈ [1,∞] to be real (possibly infinite) numbers. We additionally
specify vertex weights ri for each vertex vi. In this convention,

• wij = cos
(

π
mij

)
∈ (0, 1) get simple edges of labeled weight mij (or

unlabeled multi-edges of multiplicity mij − 2 for mij = 3, 4, 5, 6),
• wij = 1 get bold unlabeled edges of weight 1
• wij ∈ (1,∞) get dotted labeled edges of weight wij .

12D. Elliptic and Parabolic subdiagrams.

Remark 12.35. Given these weights, one can construct the weighted adjacency
matrix A with aij = wij if vi, vj are adjacent and zero otherwise.

A matrix A is a direct sum of matrices Ai if A is similar via permutations of
rows and columns to the block diagonal matrix whose blocks are the Ai. If A can not

7This is also sometimes notated C.
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be written as a direct sum of two matrices, we say A is indecomposable. Every
matrix has a unique representation as a sum of indecomposable components. We say
a Coxeter polytope is indecomposable if its Gram matrix GP is indecomposable.
Any matrix GP arising from an irreducible Coxeter polytope is either positive-
definite, positive-semidefinite, or indefinite. We say a diagram DP is elliptic if GP
is PD, parabolic if every subdiagram is elliptic and it has at least one degenerate
irreducible component.

Connected components of the diagram correspond to indecomposable sub-block
matrices of A. A diagram is elliptic of A is positive-definite, and is parabolic if any
indecomposable component of A is degenerate and positive-semidefinite. There are
finitely many indecomposable elliptic and parabolic diagrams. If a Coxeter diagram
describes a Coxeter polytope P , elliptic subdiagrams of codimension 1 correspond
to facets of P . Moreover, P has finite volume iff every such elliptic subdiagram
can be extended in exactly 2 ways to either an elliptic subdiagram of rank n or a
parabolic subdiagram of rank n − 1, corresponding to every facet of the polytope
meeting each of its adjacent facets at either an interior point or an ideal point of
Hn respectively.

Remark 12.36. Idea: a subdiagram is elliptic if the Gram matrix is negative
definite of full rank, and parabolic if negative semidefinite of corank equal to the
number of components of the diagram. Elliptic diagrams of rank r biject with
codimension r faces of C. Parabolic diagrams of corank 1 correspond to ideal points
of C. Vinberg’s algorithm produces a simple system ∆ of generators forW (L) which
determines a hyperbolic polytope C via the corresponding Weyl chamber. If the
algorithm terminates, C is of finite volume.

Definition 12.37 (Ranks of subdiagrams). The rank of a subdiagram is its num-
ber of vertices minus its number of connected components.

Definition 12.38 (Elliptic and parabolic Coxeter subdiagrams). A Coxeter dia-
gram G is called elliptic (resp. parabolic) if every connected component of G
is a Coxeter diagram underlying classical (resp. affine) Dynkin diagram. This is
summarized in the following table; note that the classical diagrams Bn and Cn
become identified when the arrow is omitted:

A possible reference that mostly agrees with this: http://webdoc.sub.gwdg.de/ebook/serien/e/mpi -
mathematik/2005/8.pdf#page=3&zoom=180,-91,721

Another reference, although they seem to include a mysterious G -
2ˆm. . . % https://www.maths.dur.ac.uk/users/anna.felikson/talks/HypCoxPoly17.pdf#page=8&zoom=80,48,172
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Elliptic Parabolic

An
1 2 n− 1 n

Ã1 = I∞
∞

0 1
=

0 1

Ãn

0

1 2 n− 1 n

Bn = Cn
1 2 n− 1 n

B̃n

0

1

2 3 n− 2 n− 1 n

C̃n
0 1 n− 1 n

Dn
1 2

n− 1

n

D̃n

0

1

2 3

n− 1

n

E6
1

2

3 4 5 6
Ẽ6

1

2

3 4 5 6

0

E7
1

2

3 4 5 6 7
Ẽ7

1

2

3 4 5 6 70

E8
1

2

3 4 5 6 7 8
Ẽ8

1

2

3 4 5 6 7 8 0

F4
1 2 3 4

= 4

1 2 3 4
F̃4

1 2 3 40
= 4

1 2 3 40

G2
1 2

= 6

1 2
G̃2

0 1 2
= 6

1 20

H3
1 2 3

= 5

1 2 3

H4
1 2 3 4

= 5

1 2 3 4

Table 2. Classification of elliptic and parabolic subdiagrams of a
Coxeter diagram

12E. Some discrepancies. Note the following discrepancies when comparing the
classification of diagrams of Coxeter diagrams to the usual notions of Dynkin dia-
grams:

• These are not Dynkin diagrams: we forget the arrows on double, triple, etc
edges.
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• Warning: in aCoxeter diagram, an edge of labelm always corresponds to
an (m−2)-fold edge. In a Dynkin diagram, a 3-fold edge corresponds
to m = 6. We do not use this convention in the table above!
Compare G2, G̃2 in the table, which have 4-fold edges corresponding tom =

6 to the following classical diagrams for G2 and G̃2 which still correspond
to m = 6:

G2 :
1 2

G̃2 :
1 20

The reason for this discrepancy: in a Dynkin diagram, the edge labels
m must satisfy a crystallographic condition and thus m = 2, 3, 4, 6. Since
m = 5 is not possible, this makes the interpretation in that special case
unambiguous.

• This discrepancy also occurs for Hi; here a triple edge truly corresponds to
m = 5.

• In the affine case, we do not distinguish the “new” node, usually denoted

by a white dot labeled 0. Compare to the usual diagram e.g. for Ãn:

1 2 3 4

0

Remark 12.39. Elliptic subdiagrams are a disjoint union of classical Dynkin dia-
grams, while parabolic subdiagrams are a disjoint union of affine Dynkin diagrams.

Why these matter: we are working with Coxeter polytopes P in a hyperbolic
space, i.e. hyperbolic Coxeter polytopes. Vinberg has a general theory which says
the Coxeter diagram D records the combinatorics of P :

• Facets of P ⇌ nodes of D,
• Dihedral angles between two facets of P ⇌ edges of D,
• k-faces of P ⇌ elliptic subdiagrams of P of co-rank k,
• Ideal vertices of P ⇌ parabolic subdiagrams of rank k.

Idea: in F2, Type II strata are classified by maximal parabolic subdiagrams of the
single Coxeter diagram, and Type III strata by elliptic subdiagrams. Dimensions
of strata correspond to number of vertices in these subdiagrams, and inclusion
of diagrams corresponds to degenerations (smaller diagrams correspond to “more
degenerate”).

12F. Edge conventions for Coxeter diagrams. The interpretation of these
Coxeter diagrams in terms of root systems:

Needs some notation from [AN06]:
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V (M) the light cone V (M) =
{
x ∈M ⊗ R

∣∣∣ x2 > 0
}

of a hyperbolic lattice M

V +(X) the half containing polarization of the light cone V (SX)
L(S) = V + (SX) /R+ the hyperbolic space of a surface S
W (2)(M) the group generated by reflections in all f ∈M with f2 = −2
W (4)(M) the group generated by reflections in all (−4) roots of M
W (2,4)(M) the group generated by reflections in all (−2) and (−4) roots of M
M(2) a fundamental chamber of W (2)(S) in L(S)
M(2,4) a fundamental chamber of W (2,4)(S) in L(S)
P (2)

(
M(2,4)

)
all (−2)-roots orthogonal to M(2,4)

P (4)
(
M(2,4)

)
all (−4)-roots orthogonal to M(2,4)

(X, θ) a K3 with involution θ
Xθ the fixed locus of an involution
P (X)+I the subset of exceptional classes of (X, θ) of type I

Description Symbol

Black vertices: f ∈ P (4)
(
M(2,4)

)
, i.e. f2 = −4

f

White vertices: f ∈ P (2)
(
M(2,4)

)
, i.e. f2 = −2

f

Double-circled vertices: f ∈ P (X)+I , i.e. the class of a rational component of Xθ.
f

No edge: f1 ̸= f2 ∈ P
(
M(2,4)

)
with f1 · f2 = 0, so ∠(f1f2) = π/2

f1 f2

Simple edges of weight m, or m− 2 simple edges when m is small: 2f1f2√
f2
1 f

2
2

= 2 cos π
m , so ∠(f1f2) = π/m

mf1 f2

Thick edges: 2f1·f2√
f2
1 f

2
2

= 2
f1 f2

Broken edges of weight t: ?
tf1 f2

Table 3. Edge conventions for Coxeter diagrams

Edge conventions for Coxeter polytopes: nodes correspond to facets fi, fj of P
and edges record relations in GP .
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Description Diagram

∠(fifj) = π/2
f1 f2

∠(fifj) = π/m
mf1 f2

∠(fifj) = π/3
f1 f2

∠(fifj) = π/4
f1 f2

∠(fifj) = π/5
f1 f2

fi, fj do not intersect
f1 f2

fi, fj intersect in ∂Hn
f1 f2

Table 4

12G. Surfaces associated with Coxeter diagrams.

Remark 12.40. As described in [AE22, Prop. 4.6], % https://arxiv.org/pdf/2208.10383.pdf#page=18&zoom=180,-
45,169 for the Halphen case S := (10, 10, 1), there exists a K3 surface with S+

X = S
with π : X → Y := X/ι where Nef(Y ) can be identified with the Coxeter chamber
for the full reflection group Wr.

Moreover, [AE23, Cor. 4.8] % https://arxiv.org/pdf/2208.10383.pdf#page=18&zoom=160,134,179
shows that the Coxeter diagram of S can be used to write the dual graph of excep-
tional curves on Y under the following modifications:



DISSERTATION 63

Description Symbol Description

A single-circled white vertex
F

F ∼= P1 with F 2 = −1

A double-circled white vertex
F

F ∼= P1 with F 2 = −4

A black vertex
F

F ∼= P1 with F 2 = −2.

Any single, plain edge
Fi Fj

Fi, Fj ∼= P1 with FiFj = 1

Any bold edge
Fi Fj

Fi, Fj ∼= P1 with FiFj = 2

Any double edge
Fi Fj

??

Table 5. How to read a surface off of a Coxeter diagram

Unclear what
double edges are,
need to read fur-
ther.

12H. Incidence diagrams/dual complexes.

12I. Dual complexes.

Definition 12.41 (Dual complex). LetD be an RSNC divisor. The dual complex
Γ(D) of D is the PL-homeomorphism type of the simplicial complex whose d-cells
correspond with codimension d strata in D, i.e. irreducible components of d-fold
intersections Vi0 ∩ · · · ∩ Vid .

Example 12.42. Let X → ∆ be a semistable degeneration and let X0 = V1∪· · ·∪Vn
be the smooth surfaces forming the irreducible components of the central fiber.
Writing Cij := Vi ∩ Vj and pijk := Vi ∩ Vj ∩ Vk for their intersections along curves
and points, we call each irreducible component of Cij a double curve and the
points pijk triple points.

Semistability ensures that the dual complex has dimension at most 3, i.e. there
are at worst triple points. Thus concretely the dual complex has

• a vertex for each component Vi,
• an edge from Vi to Vj for each double curve Cij , and
• a 2-simplex spanning Vi, Vj , Vk for each triple point pijk.

Remark 12.43. For a double curve C = Cij = Cji regarded as a curve in Vi and
Vj respectively, Persson’s triple point formula holds:

C2
ij + C2

ji = −TC
where TC is the number of triple points on C.
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Example 12.44. Let Hi ⊂ P3 for 0 ≤ i ≤ 3 be the four standard coordinate

hyperplanes, i.e. Hi =
{
[z1 : z2 : z3 : z4]

∣∣∣ zi = 0
}
and let D =

∑
Hi. Any 2 planes

intersect in a line and any 3 planes intersect in a point, so there are
(
4
2

)
= 6 double

curves Cij := Hi ∩ Hj and
(
4
3

)
= 4 triple points pijk := Hi ∩ Hj ∩ Hk. The dual

complex is the standard tetrahedron:

Definition 12.45 (Incidence complex). Let (X,D) be a RNC compactification.
The incidence complex I(D) of D is the simplicial complex built in the following
way: let D =

∑
iDi be a decomposition into prime divisors, and take a complex

I(D) whose k-dimensional cells are in bijection with irreducible components of
k-fold intersections of the Di. The colored incidence complex is I(D) with an
integer weight (or a coloring) attached to each 0-cell indicating the dimension of
the corresponding stratum.

Remark 12.46. In our case of interest, (X,D) will be a Baily-Borel compactifi-
cation of a moduli space where D := ∂X is a union of boundary strata of various
dimensions. Because we primarily work with hyperbolic lattices, D will only con-
tain strata of dimensions 0 and 1, i.e. points and curves. Thus I(D) will reduce
to a graph whose vertices are in bijection with points and curves in D and whose
edges record when a point pj is contained in the closure of a curve Ci. We can thus
form the colored incidence complex I(D) with two colors, taking points to be black
and curves to be white.

Definition 12.47 (Cusp incidence diagrams). Let ΩN be the period domain associ-
ated with a lattice N and let Γ ⊆ O(N) be a finite-index subgroup. The Baily-Borel

compactification ΩS/Γ
BB

is a projective variety with a boundary stratification

ΩS/Γ
BB

= (ΩS/Γ) ∪ I ∪ J , ∂ΩS/Γ
BB

= I ∪ J

where
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• I is a set of points referred to as 0-cusps, which are in bijective correspon-
dence with Γ-orbits of primitive isotropic 2-dimensional sublattices of N ,
and

• J is a set of modular curves referred to as 1-cusps, which are in bijective
correspondence with Γ-orbits of primitive isotropic 1-dimensional sublat-
tices of N .

We summarize below what information the colored incidence complex I(∂ΩS/Γ
BB

)
captures:

Cusp Type Type II, J Type III, I
Boundary Strata 1-cusps/curves Ci 0-cusps/points pj
Vertex type Ci pj

Sublattice Type Isotropic lines [Ze] ∈ Griso1 (L)/Γ Isotropic planes [Ze⊕ Zf ] ∈ Griso2 (L)/Γ
Subdiagram Type Maximal parabolic Elliptic

Table 6. Cusp types

Moreover, we draw an edge between a black and white node to denote a point
pi contained in the closure of a curve Cj :

Cj pi

Example 12.48. Consider the following colored incidence diagram:

C12

p2

C2

p1

Figure 22. A colored incidence diagram I(D) for D = I ∪ J .

This represents the boundary stratification of a Baily-Borel compactification for
which I = {p1, p2} consists of two points, J = {C12, C2} is two curves, where
p1, p2 ∈ C12, p2 ∈ C2, and p1 ̸∈ C2. This can be represented by the following
configuration of curves and points:
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C12

C2

p2

p1

Figure 23. A configuration of curves and points representing
I(D) in Figure 23.

Remark 12.49. Each 0-cusp pi has an associated Vinberg diagram D(pi) whoseSpell out which
root system this is
attached to? Yes,
that would be a
good idea.

maximal parabolic subdiagrams enumerate the 1-cusps Cij adjacent to pi in the
incidence diagram.

Example 12.50. The following figure shows the Vinberg diagram for the 0-cusp
???? associated to the lattice N := (18, 0, 0):

This has the following two maximal parabolic subdiagrams:

Vinberg1Parabolic1 Vinberg1Parabolic2

That there are exactly 2 such subdiagrams is reflected in the fact that the vertex
??? in the incidence diagram has valence 2.

\end{document}

4 =
1 2 3 4

Conventions on Coxeter diagrams: https://file.notion.so/f/s/962e72a3-
fa3a-45ec-84a3-2bb0e7699a7b/Alexeev-Nikulin Del Pezzo and K3 -
Surfaces.pdf?id=7e4996b4-08e6-4bd2-ac49-8d23080f7577&table=block&spaceId=7cb2f7c7-
7373-4d11-91ab-284625335dc8&expirationTimestamp=1683905929597&signature=fMZC5iiiI0MbbvXkvnI4JyGwzN6JjCSDIU7Z6itmcUE&downloadName=AN06.pdf#page=64&zoom=auto,-
155,146

The interpretation of these Coxeter diagrams in terms of root systems:
Needs some notation from [AN06]:
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Figure 24. Coxeter-Vinberg diagram

V (M) the light cone V (M) =
{
x ∈M ⊗ R

∣∣∣ x2 > 0
}

of a hyperbolic lattice M

V +(X) the half containing polarization of the light cone V (SX)
L(S) = V + (SX) /R+ the hyperbolic space of a surface S
W (2)(M) the group generated by reflections in all f ∈M with f2 = −2
W (4)(M) the group generated by reflections in all (−4) roots of M
W (2,4)(M) the group generated by reflections in all (−2) and (−4) roots of M
M(2) a fundamental chamber of W (2)(S) in L(S)
M(2,4) a fundamental chamber of W (2,4)(S) in L(S)
P (2)

(
M(2,4)

)
all (−2)-roots orthogonal to M(2,4)

P (4)
(
M(2,4)

)
all (−4)-roots orthogonal to M(2,4)

(X, θ) a K3 with involution θ
Xθ the fixed locus of an involution
P (X)+I the subset of exceptional classes of (X, θ) of type I

12J. Edge notation.
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Figure 25. Caption

• Vertices corresponding to different elements f1, f2 ∈ P
(
M(2,4)

)
are not

connected by any edge if f1 · f2 = 0.
• Simple edges of weight m (equivalently, by m− 2 simple edges if m > 2 is
small):

f1 f2m
=⇒ 2f1 · f2√

f21 f
2
2

= 2 cos
π

m
, m ∈ N

• Thick edges:

f1 f2
=⇒ 2f1 · f2√

f21 f
2
2

= 2

• Broken edges of weight t:

f1 f2t
=⇒ 2f1 · f2√

f21 f
2
2

= t > 2
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• A vertex corresponding to f ∈ P (4)
(
M(2,4)

)
is black:

f
=⇒ f2 = −4?

• It is white if f ∈ P (2)
(
M(2,4)

)
:

f
=⇒ f2 = −2?

• It is double-circled white if f ∈ P (X)+I (i.e. it corresponds to the class of
a rational component of Xθ

)
.

f
=⇒ ??

Interpreting this geometrically: consider the cycle of 2k white vertices cycling
between plain and double-circled:

Second to last paragraph here: https://arxiv.org/pdf/2208.10383.pdf#page=41&zoom=140,99,262

• See [AE23]
• Each edge on the outer cycle corresponds to P2

• Single circle vertices (with odd i) corresponds to a line in P2

• Double-circled vertices (with even i) correspond to conics on the P2

• Explicit example worked out in [AET23, §5].
% https://arxiv.org/pdf/1903.09742.pdf#page=28&zoom=170,-70,442

• It seems like that from the Coxeter diagram, you draw the fan of a toric
surface, you compute the charge, and then, if this is not 24, you fix it by
blowing up some non-torus fixed points along the toric boundary.

13. Hermitian Symmetric Domains

13A. Cusp correspondence for Hermitian symmetric domains.

Definition 13.1 (Symmetric spaces). A locally symmetric space is a connected
Riemannian manifold such that every x ∈ M is the fixed point of some involution
γx ∈ Isom(Ux), the real algebraic Lie group of holomorphic automorphisms of an
open subset Ux ⊆M , which acts by −1 on TxM . Equivalently, the covariant deriv-
ative of the curvature tensor vanishes, which is analogous to a constant curvature
condition. It is a symmetric space if γx extends from Isom(U) to Isom(M).

If M is a symmetric space, then M ∼= G/K where G = Isom(M) is its group
of isometries and K := StabG(x) is the stabilizer of any point x ∈ M . We say a
manifold M is homogeneous if M ∼= G/K for some G and K.

Remark 13.2. Idea: Hermitian symmetric manifolds are manifolds that are ho-
mogeneous spaces such that every point has an involution preserving the Hermitian
structure. These were first studied by Cartan in the context of Riemannian sym-
metric manifolds. They show up often as orbifold covers of moduli spaces, e.g. po-
larized abelian varieties (with or without level structure), polarized K3 surfaces,
polarized irreducible holomorphic symplectic manifolds, etc. There is a struc-
ture theorem: any Hermitian symmetric manifold M decomposes as a product
M ∼= Cn/Λ × Mc × Mnc where Λ is some lattice, Mc is an HSM of compact
type, and Mnc is an HSM of non-compact type. Every HSM of compact type is
a flag manifold G/P for G a semisimple complex Lie group and P is a parabolic
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subgroup. Every HSM of non-compact type admits a canonical so-called Harish-
Chandra embedding whose image is a bounded symmetric domain D ⊆ CN for
some N . Moreover, every HSM of non-compact type admits an associated Borel
embedding into an associated HSM of compact type called its compact dual. More-
over, there is a Lie-theoretic classification of HSMs of compact and non-compact
type – they are all of the form G/K for G a simple compact (resp. non-compact)
Lie group and K ≤ G is a maximal compact subgroup with center isomorphic to
S1 ∼= U1(C).

By the Harish-Chandra embedding, non-compact HSMs can be realized as bounded
domains D ⊆ CN and admit a compactification by taking the closure D ⊇ D in
CN . There is a partition of D by an equivalence relation related to being connected
through chains of holomorphic discs, and each equivalence class is called a bound-
ary component of D. Boundary components are in bijection with their normalizer
subgroups, which are precisely maximal parabolic subgroups of G := Aut(D).

A Hermitian symmetric domain is a Hermitian symmetric space of non-
compact type.

Example 13.3. Some very basic examples of Hermitian symmetric manifolds:

• Tori C/Λ with Hermitian structure g = dxdx + dydy induced from R2

(constant zero curvature).
• The upper half space H1 with Hermitian structure the hyperbolic metric
g = y−2dxdy (constant negative curvature)

• P1(C) with the Fubini-Study metric (constant positive curvature).

More advanced examples of symmetric spaces:

• En, Euclidean space Rn.
• Sn, the spherical geometry,
• Hn, hyperbolic space,
• Sym>0

n×n(R) ≤ SLn(R) the Riemannian manifold of positive-definite sym-
metric matrices with real entries

• X defined in the following way: let V be a Hermitian C-module with Her-
mitian form h of signature (p, q) and let X ⊆ Grp(V ) be the Grassmannian
of p-dimensional subspaces W such that h|W is positive definite.

We first record their isometry groups:

• Isom(En) = Rn ⋊On(R).
• Isom(Sn) = On+1(R)
• Isom(Hn) = O+

n+1(R) the index 2 subgroup of On+1(R) which preserves

the upper sheet (Hn)+.8
• Isom(Sym>0

n×n(R)) = SLn(R).
• Isom(X) = SUp,q(C)?

8Note that for n = 1, we can take the upper half-plane model which has isometry group

PSL2(R) or the disc model which has isometry group PSU1,1(C). These are actually isomorphic

as Lie groups.
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Computing stabilizers of points, one can show

Rn ∼=
Rn ⋊On(R)

On(R)

Sn ∼=
On+1(R)

On(R)

Hn ∼=
O+
n+1(R)

On(R)

Sym>0
n×n(R) ∼=

SLn(R)

SOn(R)

X ∼=
SUp,q(C)

SUp(C)× SUq(C)

Note that taking (p, q) = (1, 1) yields H2.

Definition 13.4. %Probably need to cite:https://dept.math.lsa.umich.edu/˜idolga/EnriquesOne.pdf#page=556&zoom=160,-
136,697

A Hermitian symmetric space is a locally symmetric space M which is addi-
tionally equipped with an integrable almost-complex structure whose Riemannian
metric is Hermitian.

We say M is irreducible if it is not the cartesian product of two symmetric
Hermitian spaces; every irreducible such space is either Rn for some n or a homo-
geneous space G/K for G a real Lie group and K a maximal subgroup. We say M
is of compact type if G is compact and K is a maximal proper subgroup, and of
non-compact type if G is non-compact. If M is an irreducible Hermitian sym-
metric domain of non-compact type, there is an open embedding M ↪→ DL ⊆ Cn

onto a bounded subset D of complex n-space, in which case we call D a bounded
Hermitian symmetric domain.

The simplest example is the upper half plane H := G/K for G = SL2(R) and
K = SO2(R), which is biholomorphic to the bounded domain ∆ via the Cayley
transformation, which is a homogeneous space for (G,K) = (SU1,1, B) where B is
the subgroup of diagonal matrices. Note that H ∼= H1 is the Siegel upper half space
of genus 1.

If (V, q) is a real quadratic space where V := LR for L a lattice, we can define a
corresponding domain

D±
L :=

{
Cz ∈ P(VC)

∣∣∣ z2 = 0, |z| > 0
}
,

the set of lines spanned by isotropic vectors of positive Hermitian norm |z| := zz
in VC. If sig(L) = (2, n), so L is hyperbolic, this has an irreducible component
decomposition into two parts D±

L = D+
L

∐
D−
L interchanged by conjugation z 7→ z.

Each component is an irreducible Hermitian symmetric domain of type

(G,K) = (SO(V ) := SO2,n(R),SO2(R)× SOn(R)).,

i.e. a Type IV domain for SO2,n. We let DL := D+
L be a choice of one component

and write O+(L) ≤ O(L) for the subgroup which preserves DL setwise. There is a
distinguished divisor attached to DL, the discriminant divisor:

HL :=
⋃

v∈R2(L)

Hv ∩ DL,
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the hyperplane configuration defined by mirrors of roots. When Global Torelli is
satisfied, there is a period map ϕ whose image is typically the complement of some
hyperplane arrangement H. In good cases, the relevant arrangement is precisely
HL.

Note that DL is isomorphic to a flag variety GC/P for P some parabolic sub-

group, and thus the compact form D̃L is a projective algebraic variety containing
DL.

We say DL as above is a Hermitian symmetric domain of orthogonal
type or a type IV Hermitian symmetric domain in Cartan’s classification.
The period domains of K3 and Enriques surfaces are examples of such Type IV
domains for 1 ≤ n ≤ 19.

Definition 13.5. Let G be a simple linear algebraic group defined over Q. We
define

G(Z) := GLn(Z) ∩G(Q)

where we use the natural embedding of algebraic groups G ↪→ GLn over Q. A
subgroup Γ ≤ G(Q) is arithmetic if Γ∩G(Z) has finite index in both Γ and G(Z).

Definition 13.6 (Parabolic subgroups). Let G be a linear algebraic group over Q.
We say P ≤ G is a parabolic subgroup if G/P is a projective variety.

Remark 13.7. As the notation suggests, there are other types of irreducible Her-
mitian symmetric domains. The following are some typical examples of the form
Γ\Ω for various definitions of Ω:

• Type III: Siegel modular varieties corresponding to Γ ≤ Sp(Λ), the isometry
group of a symplectic lattice, of rank n ≥ 3.

• Type IV: Orthogonal modular varieties corresponding to Γ ≤ O+(Λ), a
connected component of the isometry group of a lattice of signature (2, n)
for n ≥ 3,

• Type In,n: Hermitian modular varieties/Hermitian upper half spaces. These
are attached to Γ ≤ U(Λ) for Λ a Hermitian form q of signature (n, n) with
n ≥ 2. The compact dual is the Grassmannian Grn,2n.

• Type II2n: Quaternionic modular varieties/quaternionic upper half spaces.
These are attached to Γ ≤ Sp2n(H) for H Hamilton’s quaternions, attached
to a skew-Hermitian space of dimension 2n with n ≥ 2. The compact dual
is the orthogonal Grassmannian OGr2n,4nWhere do Hg and

Γ\Hn fit in?
Remark 13.8. For Λ a lattice of signature (2, n), the Hermitian symmetric domain
attached to Λ is the following: define Q ⊆ P(ΛC) be the quadric cut out by
(ω, ω) = 0, then ΩΛ is a choice of one of the two connected components of the open
set Q defined by (ω, ω) > 0. Letting O+(Λ) ≤ O(Λ) be the subgroup preserving
the component ΩΛ and Γ ≤ O+(Λ) be any finite index subgroup, we obtain

XΛ(Γ) := Γ\ΩΛ.

Embedding ΩΛ in its compact dual, it has 0 and 1-dimensional boundary strata,
corresponding to 1 and 2-dimensional isotropic subspaces of ΛQ. The BB com-

pactification XΛ(Γ)
BB

is the union of ΩΛ and these rational boundary components,
quotiented by the action of Γ, equipped with the Satake topology.

A toroidal compactificationXΛ(Γ)
Tor

is specificed by a finite collection of suitable
fans {FI}, one for each 0-cusp (i.e. each Γ-orbit of isotropic lines I in ΛQ).
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For each I there is a tube domain realization given by taking the linear projection
from the boundary point, which defines an isomorphism

ΩΛ/U(I)Z ∼= U ⊆ TI := U(I)C/U(I)Z

The partial compactifications for the 1-cusps are completely canonical, so the
overall compactification is defined by gluing onto the boundary of XΛ(Γ) certain

natural quotients of all of these partial compactifications to obtain XΛ(Γ)
Tor

. This
yields a compact algebraic space which is proper over SpecC, and there is a natural

morphism XΛ(Γ)
Tor

→ XΛ(Γ)
BB

. :::

Example 13.9. Let $G \da \SL_2$ defined over $\QQ$ and let $\Gamma \leq \SL_2(\QQ)$ be an arithmetic subgroup. The (noncompact) modular curve attached to $\Gamma$ is

\[

Y(\Gamma) \da \Gamma\backslash \HH^1

.\]

In this case, rational boundary components are given by $\PP^1(\QQ) = \QQ\union \ts{\infty}\subseteq \PP^1(\CC)$, and a cusp of $Y(\Gamma)$ is a $\Gamma\dash$orbit in $\Gamma \backslash \PP^1(\QQ)$, of which there are finitely many. Adding them yields a compactification

\[

X(\Gamma) \da \overline{Y(\Gamma)} \da Y(\Gamma) \union \ts{\text{cusps}}

\]

topologized appropriately, where e.g. $\ts{\infty}$ is one such cusp.

Note that one typically takes the following groups for moduli of elliptic curves with level structure:

• Y (N) := Y (Γ(N)) where

Γ(N) := ker (ϕN : SL2(Z) → SL2(Z/NZ)) .

The level structure is a basis for E[n].

• Y0(N) := Y (Γ0(N)) where Γ0(N) ⊇ Γ(N) is the pullback ϕ−1
N

([
a b
0 d

])
.

The level structure is an identification µN ↪→ Etors.
• Y1(N) := Y (Γ1(N)) where Γ1(N) is the pullback ϕ−1

N (1b01). The level
structure is a point p ∈ E of order N in the group structure.

How parabolic subgroups appear here: for G := SL2, parabolic sub-
groups are all conjugate to the subgroup P of upper-triangular matrices,
and G(Q)/P (Q) ∼= P1(Q) parameterizes all such parabolic subgroups.

Why automorphic forms matter: consider Γ := SL2(Z). The graded
ring of modular forms

⊕
kMk is graded-isomorphic to C[x, y] where |x| =

4, |y| = 6, and ProjC[x, y] ∼= P1(C). Letting {f0, · · · , fN} be a basis of
Mk, we can write down a map

ϕk : Y (SL2(Z)) → Pn(C)

z 7→ [f0(z) : · · · : fN (z)]

For k = 12 this separates points and tangent directions, giving a projective
embedding. Explicitly, the morphism is

ϕ12(z) = [E4(z) : E4(z)
3 − E6(z)

2] ≈ j(z)

modulo some missing constants. In general, finding enough automorphic
forms yields a projective embedding. Would like to spell

this out in terms
of line bundles
and linear systems
too, in this easy
case.
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13B. Misc.

Remark 13.10. Let L be a lattice of signature (2, n) and the associated period
domain Ω±

L = Ω+
L

∐
Ω−
L . Let O(L)+ ≤ O(L) be the finite index subgroup fixing

Ω+
L , equivalently the subgroup of elements of spinor norm one. A modular variety

of orthogonal type is a homogeneous space of the form FL(Γ) := Γ\Ω+
L for an

arithmetic subgroup Γ ≤ O(LQ)+.

By general theory, such spaces admit BB compactifications FL(Γ)
BB

where ra-
tional maximal parabolic subgroups correspond to stabilizers of isotropic subspaces
of LQ; since sig(L) = (2, n) these are always isotropic lines or planes.

For period spaces of K3 surfaces, one takes Γ := O(L2d) ∩ ker (O(L) → O(AL)).
Boundary strata correspond to central fibers of KPP models of Type II and Type
III.

Remark 13.11. Let L be a symplectic lattice of rank 2g, ie.e. a free Z-module
with a nondegenerate alternating form (−,−). Define the associated period space

DL :=
{
V ∈ Grg(LC)

∣∣∣ (V, V ) = 0, i(V, V ) > 0
}
∼= Sp2g(R)/Ug(C) ∼= Hg

which is a Hermitian symmetric domain of type III that can be identified with the
Siegel upper half-space of dimension g. We can form the moduli space of PPAV as

Ag := Sp2g(Z)\Hg ∼= Sp2g(Z)\Sp2g(R)/Ug(C)

Rational boundary components ofAg
BB

correspond to Γ := Sp2g(Z) orbits of totally
isotropic subspaces in LQ. Since Γ acts transitively, such spaces are indexed by their
dimension i = 0, 1, · · · , g and there is a stratification

Ag
BB

=
∐g
k=0Ak =⇒ ∂Ag

BB
=
∐g−1
k=0Ak

Remark 13.12. The BB compactification of a locally symmetric domain D: write
D = H/K as a homogeneous space where H := Hol(D)+ and K ≤ H is a maximal

compact subgroup. Then cusps in ∂Γ\D
BB

correspond to rational maximal par-
abolic subgroups of H. To get boundary components: apply the Harish-Chandra
embedding to D to embed HC : D ↪→ Dcd and let FP ∈ HC(D) be a boundary

component. Its normalizer N(FP ) :=
{
g ∈ H

∣∣∣ g(FP ) = FP

}
≤ H is a maximal

parabolic in H. We say FP is rational if N(FP ) can be defined over Q. Since Γ
preserves such rational FP , we can set ∂D := the disjoint union of all rational FP

and set Γ\D
BB

=
D
∐
∂D

Γ .

13B.1. Explicit realizations of symmetric spaces.

Remark 13.13. The symmetric space associated with a Lie group G is in some
sense the most natural space G acts on. For G = Op,q(R), the symmetric space

is Gr+(Rp,q), the Grassmannian of maximal positive-definite subspaces of Rp,q.
The right choice of maximal compact subgroup here is K := Op(R) × Oq(R),
the subgroup fixing Rm,0. When (p, q) = (2, n), these symmetric spaces admitTypo maybe.
special descriptions. Note that On+1(R) is the group of isometries of Sn, so its
projectivization POn+1(R) is the isometry group of an elliptic geometry. One can
similarly obtain isometries of hyperbolic geometry:

• Start with R1,n
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• Take the norm 1 vectors H± :=
{
v ∈ R1,n

∣∣∣ v2 = 1
}
= H+

∐
H− to get a

2-sheeted hyperboloid; the pseudo-Riemannian metric on R1,n restricts to
a Riemannian metric on H.

• Take one sheet H+; this is a model of Hn Indexing might be
off here

The group of isometries of H+ is now PO1,n(R). Note that in O1,n(R) there is
an index 2 subgroup9

O1,n(R)± =
{
γ ∈ O1,n(R)

∣∣∣ γ(H+) = H+, γ(H−) = H−
}
.

Remark 13.14. Forming the symmetric spaces for O2,n(R): the maximal compact
is K = O2(R) × On(R) and O2(R) is similar enough to U1(C) that we should
expect the associated symmetric space to be Hermitian. It will be an open subset
of a certain quadric:

• Start with P(C2,n).

• Take the quadric of isotropic vectors Y =
{
z ∈ P(C2,n)

∣∣∣ z2 = 0
}
.

• Take the open subset U :=
{
z ∈ Y

∣∣∣ (z, z) > 0
}
.

Why this matches the previous description: write z = x+ iy, then x2 = y2 > 0
and (x, y) = 0, so V := Rx ⊕ Ry are an orthogonal basis for a positive definite
subspace of R2,n. Multiplying by a scalar only changes basis, so we essentially get
a map P(U) → Gr+(R2,n) naturally. This symmetric space can also be identified
with points z ∈ C1,n−1 with ℑ(z) ∈ C+, one of two cones of R1,n−1, realizing this
as a tube domain generalizing H.

14. Hyperbolic Geometry

14A. Hyperbolic lattices. Note: some of this
mixes conventions,
need to fix later.Warning 14.1. There is a significant gap in the AG literature vs the physics liter-

ature for the terminology for hyperbolic spaces, and the traditional AG terminology
can be “wrong” in some senses. For example, the AG literature will typically call{
v ∈ LR

∣∣∣ v2 > 0
}

a “light cone”, but this is not quite correct: the actual light

cone in general relativity is
{
v ∈ LR

∣∣∣ v2 = 0
}
. The following picture is the usual

mnemonic:

9Apparently, these are elements whose spinor norm equals their determinant.
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Figure 26.
{
v2 = 0

}
is the light cone, its interior is timelike and

exterior spacelike.

Definition 14.2 (Hyperbolic lattices). An indefinite lattice L is a hyperbolic
lattice 10 if sig(L) = (1, n−) or (n+, 1) for some n−, n+ ≥ 1. By convention, by
twisting L to L(−1) if necessary, we assume hyperbolic lattices have signature (1, n).
In this convention, the single positive-definite direction is referred to as timelike,
and the remaining directions are spacelike.

Definition 14.3 (Time/light/spacelike vectors). Let L be a hyperbolic lattice of
signature (1, n). We say a vector v ∈ LR is

• timelike if v2 < 0,
• lightlike or isotropic if v2 = 0.
• spacelike if v2 > 0, More generally, a subspace W ⊆ E1,n with the re-
stricted form (−,−)W is

• timelike if (−,−)W is negative-definite, or is indefinite and non-degenerate,
• lightlike or isotropic if (−,−)W is degenerate, or
• spacelike if (−,−)W is positive-definite.

Define

L<0 :=
{
v ∈ LR

∣∣∣ v2 < 0
}

The timelike regime

L=0 :=
{
v ∈ LR

∣∣∣ v2 = 0
}

The lightlike regime

L>0 :=
{
v ∈ LR

∣∣∣ v2 > 0
}

The spacelike regime

Remark 14.4. [AE22] refers to the non-spacelike regime L≥0 :=
{
v ∈ LR

∣∣∣ v2 ≥ 0
}

as the round cone; this is used for a model over Hn with ideal points included,
and is often used as the support of a semifan for a semitoroidal compactification.

Definition 14.5 (Past and future light cones). Let L be a hyperbolic lattice of
signature (1, n). The spacelike regime L>0 of L has an irreducible component

10Also called a **Lorentzian lattice**.
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decomposition

L>0 :=
{
v ∈ LR

∣∣∣ v2 > 0
}
= C+

L ⨿ C−
L ,

whose components we refer to as the future light cone and past light cone
of L respectively, and can be distinguished by the sign of the coordinate in the
negative-definite direction:

C+
L :=

{
v ∈ L>0

∣∣∣ v0 > 0
}
, C−

L :=
{
v ∈ L>0

∣∣∣ v0 < 0
}
.

We write their closures in LR as C+
L and C−

L respectively, and write CL := C+
L for

a fixed choice of a future light cone and CL for its closure.

14B. Models of hyperbolic space.

Definition 14.6 (Euclidean upper-half space). The upper-half space in En is

En+ :=
{
(x1, · · · , xn) ∈ En

∣∣∣ x1 > 0
}
.

Definition 14.7 (Minkowski space). The n-dimensional Minkowski space E1,n

is the real vector space Rn+1 equipped with a bilinear form of signature (1, n) which
can be explicitly written as

vw := −v0w0 +

n∑
i=1

viwi

with the associated quadratic form

v2 := Q(v) := −v20 +
n∑
i=1

v2i .

This induces a metric

ρ(v, w) := arccosh(−vw).

Remark 14.8. If L is hyperbolic of signature (1, n) then LR
∼= E1,n is a Minkowski

space of dimension n+ 1 = rankZ L.

14B.1. Half-plane models.

https://arxiv.org/pdf/1908.01710.pdf#page=40&zoom=auto,-95,626

Definition 14.9 (de Sitter space and light cone of a lattice). Let L be a hyperbolic
lattice and consider the squaring functional

fL : LR → R

v 7→ v2.

One can show that ±1 are regular values of fL and thus define two canonical
“hyperbolic unit spheres” which are regular surfaces. We define the de Sitter
space of L as

dSL := f−1
L (1) =

{
v ∈ LR

∣∣∣ v2 = 1
}
⊆ L>0

in the spacelike regime and the unit hyperboloid of L as the two-sheeted hyper-
boloid

HL := f−1
L (−1) =

{
v ∈ LR

∣∣∣ v2 = −1
}
⊆ L<0

in the timelike regime.
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Example 14.10. Figure 27 shows the de Sitter space and unit hyperboloid for a
lattice L of signature (2, 1) in E2,1, visualized in R3.

Figure 27. The hyperbolic unit spheres: the de Sitter space and
light cone for E2,1.

Definition 14.11 (Half-plane model/Lobachevsky space of a lattice). Let L be a
hyperbolic lattice. The half-plane model of Hn associated to L or Lobachevsky
space of L is the unit hyperboloid of L intersected with its future light cone,

LnL := HL ∩ CL :=
{
v ∈ LR

∣∣∣ v2 = −1, v0 > 0
}
,

given the metric restricted from LR
∼= En,1. This more simply be described as the

future sheet of the unit hyperboloid HL, using the irreducible component decom-
position

HL = H+
L ⨿H−

L =
{
v ∈ HL

∣∣∣ v0 > 0
}
⨿
{
v ∈ HL

∣∣∣ v0 < 0
}

and setting LnL := H+
L .

Remark 14.12. Note that H+
L is in the timelike regime. This gives a model of

the hyperbolic space Hn which we often denote HL when we do not fix a specific
choice of model, or simply by Hn when the dependence on L is not important.

Remark 14.13 (The isometry group of hyperbolic spaces). It can be shown that
the isometries of the timelike regime L<0 are restrictions of isometries of the ambient
Minkowski space E1,n, and thus

Isom(L<0) ∼= Isom(E1,n) ∼= O1,n(R).

Using the half-plane model, we can thus naturally identify

Isom(Ln) ∼= O+
1,n(R) := StabO1,n(R)(CL),

the index 2 subgroup which stabilizes the future light cone C+
L of L. These are

precisely the isometries of E1,n of positive spinor norm.
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14B.2. Ball models.

Definition 14.14 (The Poincar’e ball model). Let L be a hyperbolic lattice. The
Poincar'e ball model of Hn associated to L is defined as

Bn
L := P(L<0),

the projectivization of the timelike regime of L, where

P(−) : E1,n \ {xn ̸= 0} → En

(x0, · · · , xn−1, xn) 7→
(
x0
xn
, · · · , xn−1

xn

)
.

In this model, there is a natural compactification Hn in P(Sn) such that the interior
is given by Bn

L as above and the boundary by ∂Hn = P(L=0), i.e. ideal points
correspond to (the projectivization of) the lightlike regime.

Remark 14.15 (An alternative construction). It can be explicitly constructed by
considering the future light cone CL described in Theorem 14.5. Letting R>0 act
on LR

∼= E1,n by scaling along the timelike direction (i.e. in the coordinate v0), the
ball model can be formed as the quotient

BnL ∼= CL/R>0 ⊂ P(Sn).

Remark 14.16. The advantage ofBn
L over LnL is that the former provides a natural

compactification in P(Sn). Moreover, it can be easier to work with hyperplanes
in the ball model: let π : E1,n → P(Sn) be the natural projection, then every
hyperplane Hv := v⊥ for v ∈ Bn

L is of the form

Hv =
{
π(x)

∣∣∣ x ∈ CL, xv = 0
}

One can also concretely interpret the bilinear form geometrically in the ball model
in the following way:

Hv ⋔ Hw =⇒ |vw| < 1 =⇒ −vw = cos(∠(Hv, Hw))

Hv ∥ Hw =⇒ |vw| = 1 =⇒ −vw = cos(∠(Hv, Hw))

Hv Hw =⇒ |vw| > 1 =⇒ −vw = cosh(ρ(Hv, Hw)),

where ρ is the hyperbolic metric described in Definition 14.7.

Remark 14.17. Isom(Bn) = PO1,n(R).

14B.3. Ideal points.

Remark 14.18. Let HL
∼= Hn be a model of hyperbolic space associated to a

hyperbolic lattice L of signature (1, n). Boundary points ∂HL correspond to ideal
points in Hn, i.e. points “at infinity”, which in turn correspond to 1-dimensional
isotropic subspaces of L.
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In this model, points in Hn are points in the interior of the cone and on the
hyperboloid. Moreover points on ∂Hn correspond to points on the surface of the
cone:

∂Hn ∼=
{
v = (v0, · · · , vn+1) ∈ LR

∣∣∣ v0 > 0
}
∩
{
v ∈ LR

∣∣∣ v2 = 0
}
.

We interpret uv = − cos(∠(HuHv)), so uv = −1 means Hu ∩Hv ∈ ∂Hn, i.e. they
are “parallel” planes. Hyperplanes in Hn correspond to branches of hyperbolas
obtained by slicing the hyperboloid by a plane in LR.

Remark 14.19. Define Minkowski space as E1,n, which is Rn with the form
vw = v0w0 −

∑
viwi. Define Lobachevsky space Ln as the hyperboloid model

of hyperbolic space, a certain “hyperbolic unit sphere”:

Ln :=
{
v ∈ E1,n

∣∣∣ v2 = 1, v0 > 1
}
.

The geodesic curves are precisely intersections of the form H2 ∩ Ln where H2 ∈
Gr2(R

n+1) is a standard 2-plane passing through the origin in the ambient space.
The hyperbolic metric on Ln is gotten by computing the length in the standard
metric in Rn+1 of any geodesic curve between two points. The associated Poincare
ball model is contained in the standard Euclidean ball Bn ⊂ Rn+1 and is the
projection of Ln onto the hyperplane {x0 = 0} ⊂ Rn+1 using rays passing through
(−1, 0, 0, · · · , 0). Explicitly, the projection is

ϕ : Ln → Bn

(v0, · · · , vn) 7→
1

1 + v0
(v1, · · · , vn)
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Geodesics are now straight lines through the origin or arcs of Euclidean circles
intersecting ∂Bn orthogonally. Define the hyperbolic upper-half-space as

Hn :=
{
x = (x1, · · · , xn) ∈ Rn

∣∣∣ x1 > 0
}

which is obtained by taking inversions through certain spheres centered on ∂Bn.
Geodesics are now straight lines orthogonal to ∂Hn or half-circles centered on ∂Hn.

14C. Root Systems.

Definition 14.20 (Primitive vectors). Let $L$ be any lattice. A finite set $S \da \ts{s_1,\cdots, s_n}\subseteq L$ of elements in $L$ is **primitive** if $S$ is $\RR\dash$linearly independent and $L\intersect \RR S = \bigoplus_{i=1}^n L s_i$, i.e. no $s_i$ can be replaced with a small vector in the same 1-dimensional subspace which is also in $L$. A primitive set of size one is called a **primitive element**, and we write $L_{\prim}$ for the set of such.

Definition 14.21 (Roots and k-roots in lattices). Let L be any lattice. For k ∈
Z>0, define the set of k-roots in L as

ΦkL :=
{
v ∈ Lprim

∣∣∣ v2 = k, 2(v, L) ⊆ kZ
}

A root is by definition a 2-root. We write the set of roots in L as Φ(L), and the
complete set of roots as

Φ∞L :=
⋃
k≥1

ΦkL.

Remark 14.22. In the theory of 2-elementary lattices, the roots consist of all
(−2)-vectors along with any (−4)-vector v with div(v) = 2.

Definition 14.23 (Reflections). Let L be any lattice and LR its associatedR-module.
An element s ∈ GL(LR) is a reflection if there exists a vector v ∈ LR and an
R-linear functional f ∈ HomR(LR,R), both depending on s,

s(x) = x− f(x)v ∀x ∈ LR, f(v) = 2.

Concretely, s is an isometry of LR which pointwise fixes a hyperplane and is an
involution satisfying det(s) = −1. Every reflection can be written in the form

s(u) = sv(u) = u− uv

v2/2
v

for some v2 ̸= 0 in LR determined up to scaling. The reflection in v is only well-
defined when 2 div(v) ∈ v2Z where div(v) is the divisibility of v defined in ??. The
reflection hyperplane associated to s is the fixed subspace

Hv := ker(f) = ker(id−s) ∼= v⊥.

:::{.remark} Alternatively: s ∈ GLn(C) is a quasi-reflection if it 1 eigenvalue
λ ̸= 1 with an eigenspace of dimension 1 and the remaining eigenvalues all 1. It is
a reflection if λ = −1. \end{remark}

Definition 14.24 (Mirrors in hyperbolic lattices). Any root v ∈ Φ(L) defines a
reflection sv through the mirror

Hv := v⊥ :=
{
x ∈ C+

L

∣∣∣ xv = 0
}
.

If Hv is the reflection hyperplane of a root, we say it is a mirror in L. Note that
Hv is nonempty if and only if v2 < 0.

Definition 14.25 (Weyl group). Let L be any lattice. The Weyl group of L is
defined as the group generated by reflections in 2-roots,

WL :=
{
sv

∣∣∣ v ∈ Φ(L)
}
≤ OL(R)
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Definition 14.26 (The discriminant locus). For L a hyperbolic lattice, define the
discriminant locus of L as the union of all mirrors of 2-roots,

∆(L) :=
⋃

v∈Φ(L)

v⊥ :=
⋃

v∈Φ(L)

Hv.

Definition 14.27 (Weyl chambers). The chamber decomposition of CL is de-Forgot to write
down what is CL. fined as

C◦
L := CL \∆(L) = CL \

 ⋃
δ∈Φ(L)

δ⊥

 ,

the complement of all mirrors. This further decomposes into connected components
called Weyl chambers: fixing a chamber P , there is a decomposition into orbits

C◦
L = ⨿sv∈WL

sv(P ).

Remark 14.28. Any Weyl chamber P is a simplicial cone, so the orbit decompo-
sition yields a decomposition of C◦

L into simplicial cones. Since W acts on the set

of Weyl chambers π0C
◦
L simply transitively and the closure P of any chamber is a

fundamental domain for this action, there is a homeomorphism P ∼= C◦
L/W .

https://www.ms.u-tokyo.ac.jp/preprint/pdf/2007-12.pdf#page=7&zoom=100,88,601

Definition 14.29 (Fundamental chamber). Let P be a Weyl chamber of L, define

Φ(L)+ :=
{
v ∈ Φ(L)

∣∣∣ (v, P ) > 0
}

Φ(L)− :=
{
v ∈ Φ(L)

∣∣∣ (v, P ) < 0
}
= −Φ(L)+

which induces a decomposition

Φ(L) = Φ(L)+ ⨿ Φ(L)−.

Remark 14.30. Thus P can be written as

P =
{
v ∈ CL

∣∣∣ (v,Φ(L)+) > 0
}
= {} .

This realizes P as an intersection of positive half-spaces and thus as a polytope.

Definition 14.31 (Walls). Let P be the closure in LR of P . We say a mirror
Hv ⊆ LR for v ∈ Φ(L)+ is a wall of P if codimLR

(Hv ∩ P ) = 1.

Definition 14.32 (Simple systems). Let P be a Weyl chamber of P and let

Π(L,P ) :=
{
v ∈ Φ(L)

∣∣∣ Hv is a wall of P
}

be the set of walls of P . We can more economically define P by

P =
{
v ∈ CL

∣∣∣ (v,Π(L,P )) > 0
}
,

where no inequality is redundant. Moreover, (P,Π(L,P )) forms a Coxeter system,Todo, messed up
notation here a
bit.

and P is a fundamental domain for W (L) ↷ LR.

Definition 14.33 (Chambers and O+(L)). The connected components of

V +
L :=

{
x ∈ L±

∣∣∣ (Φ(L), x) ̸= 0
}
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are called chambers of L. Any positive isometry preserves L+ and L− set-wise,
motivating the definition of the group of positive isometries of L

O+(L) :=
{
γ ∈ O(L)

∣∣∣ γ(L+) = L+, γ(L−) = L−
}

Definition 14.34 (Positive isometries). We say an isometry $\gamma \in \Orth(L)$ is **positive** if it preserves a chamber (i.e. a connected component of $V^+_L$)

Definition 14.35 (Roots, root systems, root lattices). A vector v ∈ L is a root
if v2 = −211, and we write Φ(L) for the set of roots in L. If L is negative definite
and L = ZΦ(L)12, we say L is a root lattice. Any root lattice decomposes as a
direct sum of root lattices of ADE type.

Definition 14.36 (Weyl group). The Weyl group of L is the maximal subgroup
of the orthogonal group of L generated by hyperplane reflections in roots,

W 2
L :=

〈
sv

∣∣∣ v ∈ Φ(L)
〉
Z
≤ O(L).

One can similarly define the group of reflections in all vectors,

WL :=
〈
sv

∣∣∣ v ∈ L
〉
Z
⊴O(L).

Since conjugating a reflection by any automorphism is again a reflection, this is
a normal subgroup. If L is a hyperbolic lattice, we replace O(L) in the above
definition by O+(L), the isometries that preserve the future light cone.

Definition 14.37 (Mirrors/walls and chambers). The mirror or wall associated
with a root v ∈ Φ(L) is the hyperplane Hv := v⊥. As v ranges over Φ(L), these par-
tition LR into subsets called chambers. The Weyl group acts on LR by isometries
and acts simply transitively on chambers, and we often distinguish a fundamental
domain for this action called the fundamental chamber. We write DL for the
closure in LR of a fundamental chamber. A cusp of L is a primitive isotropic lattice
vector e ∈ DL ∩ L.

14D. General Period Domains.

Remark 14.38. Define GL := GL⊥ for G any algebraic group determined by L. Very useful con-
vention: ΩS in-
volves S⊥, while
ΩS involves just
S.

Let L ≤ II3,19 be a sublattice of signature (1, r− 1) so sig(L⊥) = (2, 19− r+1).
One can always form the period domain corresponding to L-polarized K3 surfaces
as

ΩL := ΩL⊥ :=
{
x ∈ (L⊥)C

∣∣∣ x2 = 0, xx > 0
}
,

The period domain can be described as a Hermitian symmetric space:

ΩL ∼=
SOL(R)

SO2(R)× SO20−r(R)

> http://content.algebraicgeometry.nl/2020-5/2020-5-021.pdf#page=10&zoom=auto,-
85,607

For any arithmetic subgroup Γ ≤ OL(R) there is a complex-analytic isomor-
phism

Γ\ΩL ∼=
(
Γ ∩ SOL(R)

)
\ΩL.

11One occasionally calls any time-like vector v2 < 0 a ”root”, in which case distinguishes

between e.g. (−2)-roots Φ2(L) and (−4)-roots Φ4(L).
12i.e. if the roots form a Z-generating set for L
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In particular, for L a primitive sublattice of II3,19, letting FL be the stack of
L-polarized K3 surfaces, the period map τL yields an open immersion

τL : FL(C) ↪→ S̃OL(Z)\ΩL

where S̃OL are isometries of L which extend to an isometry of II3,19 which fixes L.
For sigL = (2, n) let GL := SOLQ

be its associated rational isometry group and
let X := ΩL the associated Hermitian symmetric space as above, forming a Shimura
datum (X, G) := (ΩL,SOLQ

). We can then realize

ShL(C) := ShKL
[GL,XL](C) ∼= S̃OL(Z)\XL

where KL := ker (GL → Aut(AL)) (Ẑ), the admissible morphism in GL(Af ); the
stack ShK[G,X] is a certain well-known quotient stack attached to a Shimura datum
(G,X) and a choice of a compact open subgroup K ≤ G(Af ) of the finite adeles.

Defining the compact dual:

ΩL,cd :=
{
x ∈ (L⊥)C

∣∣∣ x2 = 0
}
.

15. Appendix

15A. Dynkin Diagram.

Remark 15.1. The following is a table of the classical and affine Dynkin diagrams:
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Classical Type Affine Type

An
1 2 n− 1 n

Ãn

0

1 2 n− 1 n

Bn
1 2 n− 1 n

B̃n

0

1

2 3 n− 2 n− 1 n

Cn
1 2 n− 1 n

C̃n
0 1 2 n− 2 n− 1 n

Dn
1 2

n− 1

n

D̃n

0

1

2 3

n− 1

n

E6
1

2

3 4 5 6
Ẽ6

1

2

3 4 5 6

0

E7
1

2

3 4 5 6 7
Ẽ7

1

2

3 4 5 6 70

E8
1

2

3 4 5 6 7 8
Ẽ8

1

2

3 4 5 6 7 8 0

F4
1 2 3 4

F̃4
1 2 3 40

G2
1 2

G̃2
1 20

Table 7. Classical and Affine Dynkin Diagrams

15B. Images.

15B.1. Tikz. 1 3 4

2

5 6 7 8 9

B̃7(2) ⊂ G(9,9,1)1
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E10(2)

(10, 10, 0)1

RP2,div = 1

E8(2)

(8, 8, 0)0

U ⊕ E8(2)

(10, 8, 0)1

D2,div = 2

A⊕8
1 ∗

(8, 6, 0)0

⟨2⟩ ⊕ E8(2)

(9, 9, 1)1

D2,div = 2

A⊕7
1

(7, 7, 1)0

1 3 4

2

5 6 7 8 9 10

1 3 4

2

5 6 7 8

1 3 4

2

5 6 7 8 9 10

Ẽ8(2) ⊂ (10, 10, 0)1 1 3 4

2

5 6 7 8 9 10

Ẽ8(2) ⊂ (10, 8, 0)1

1 3 4

2

5 6 7 8 9 10

B̃8(2) ⊂ (10, 8, 0)1

1 3 4

2

5 6 7 8 9 10 1 3 4

2

5 6 7 8 9 10
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E10(2)

RP2

E8(2) U ⊕ E8(2)

D2

A⊕8
1 ∗

div ⟨e⟩ = 1

(10, 10, 0)1

div ⟨e, e′⟩ = (1, 2)

(8, 8, 0)0

div ⟨e′⟩ = 2

(10, 8, 0)1

div ⟨e′, 2e+ 2f + 2ᾱ1⟩ = (2, 2)

(8, 6, 0)0

(11, 11, 1)1

(11, 11, 1)2

(9, 11, 1)1 (9, 9, 1)1 (9, 9, 0)1

• • • (7, 9, 1)0 (7, 7, 1)0 (7, 7, 0)0 • • •

U U(2)

U(2) U

U(2)

S T T̄ ¯̄T

(10, 10, 0)1 (12, 10, 0)2

(10, 10, 0)1

(10, 8, 0)1

(8, 8, 0)0

(8, 6, 0)0
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

Figure 28. Nikulin’s table of 2-elementary lattices.
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22

2

2 16
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15B.2. SVG.
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0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

-2 -2

-2

-2 -2

-2
-2

-2

-2 -2

-2-2

-2

-2 -2

-2

-2 -2

0

0
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