\[ \dynkin[Coxeter]{F}{4} = \dynkin[label, arrows=false, edge length=.75cm,o/.style=black]F4 \] > Conventions on Coxeter diagrams: > https://file.notion.so/f/s/962e72a3-fa3a-45ec-84a3-2bb0e7699a7b/Alexeev-Nikulin_Del_Pezzo_and_K3_Surfaces.pdf?id=7e4996b4-08e6-4bd2-ac49-8d23080f7577&table=block&spaceId=7cb2f7c7-7373-4d11-91ab-284625335dc8&expirationTimestamp=1683905929597&signature=fMZC5iiiI0MbbvXkvnI4JyGwzN6JjCSDIU7Z6itmcUE&downloadName=AN06.pdf#page=64&zoom=auto,-155,146 The interpretation of these Coxeter diagrams in terms of root systems: Needs some notation from \cite{AN06}: \[ \begin{array}{ll} V(M) &\text {the light cone } V(M)=\left\{x \in M \otimes \mathbb{R} \mid x^2>0\right\} \text { of a hyperbolic lattice } M \\ V^{+}(X) &\text {the half containing polarization of the light cone } V\left(S_X\right) \\ \mathcal{L}(S)=V^{+}\left(S_X\right) / \mathbb{R}^{+} & \text {the hyperbolic space of a surface } S \\ W^{(2)}(M) & \text{the group generated by reflections in all $f \in M$ with $f^2=-2$} \\ W^{(4)}(M) & \text{the group generated by reflections in all $(-4)$ roots of $M$} \\ W^{(2,4)}(M) & \text{the group generated by reflections in all $(-2)$ and $(-4)$ roots of $M$} \\ \mathcal{M}^{(2)} & \text {a fundamental chamber of } W^{(2)}(S) \text { in } \mathcal{L}(S) \\ \mathcal{M}^{(2,4)} & \text {a fundamental chamber of } W^{(2,4)}(S) \text { in } \mathcal{L}(S) \\ P^{(2)}\left(\mathcal{M}^{(2,4)}\right) & \text {all }(-2) \text {-roots orthogonal to } \mathcal{M}^{(2,4)} \\ P^{(4)}\left(\mathcal{M}^{(2,4)}\right) & \text {all }(-4) \text {-roots orthogonal to } \mathcal{M}^{(2,4)} \\ (X, \theta) &\text{a $\Kthree$ with involution $\theta$} \\ X^\theta &\text{the fixed locus of an involution} \\ P(X)_{+I} & \text {the subset of exceptional classes of }(X, \theta) \text{ of type } \rm{I} \end{array} \] ## Edge notation - Vertices corresponding to different elements $f_1, f_2 \in P\left(\mathcal{M}^{(2,4)}\right)$ are not connected by any edge if $f_1 \cdot f_2=0$. - Simple edges of weight $m$ (equivalently, by $m-2$ simple edges if $m>2$ is small): \[ \tikz{ \node [style=white node] (0) at (0, 0) {}; \node [style=white node] (1) at (3, 0) {}; \node [style=none] (2) at (0, 0.4) {$f_1$}; \node [style=none] (5) at (3, 0.4) {$f_2$}; \draw (0) to (1); \node [style=none] at (1.5, 0.4) {$m$}; } \qquad \implies \qquad \frac{2 f_1 \cdot f_2}{\sqrt{f_1^2 f_2^2}}=2 \cos \frac{\pi}{m}, \quad m \in \mathbb{N} \] - Thick edges: \[ \tikz{ \node [style=white node] (0) at (0, 0) {}; \node [style=white node] (1) at (3, 0) {}; \node [style=none] (2) at (0, 0.4) {$f_1$}; \node [style=none] (5) at (3, 0.4) {$f_2$}; \draw [line width=2pt] (0) to (1); } \qquad \implies \qquad \frac{2 f_1 \cdot f_2}{\sqrt{f_1^2 f_2^2}}=2 \] - Broken edges of weight $t$: \[ \tikz{ \node [style=white node] (0) at (0, 0) {}; \node [style=white node] (1) at (3, 0) {}; \node [style=none] (2) at (0, 0.4) {$f_1$}; \node [style=none] (5) at (3, 0.4) {$f_2$}; \node [style=none] at (1.5, 0.4) {$t$}; \draw [dashed] (0) to (1); } \qquad \implies \qquad \frac{2 f_1 \cdot f_2}{\sqrt{f_1^2 f_2^2}}=t>2 \] - A vertex corresponding to $f \in P^{(4)}\left(\mathcal{M}^{(2,4)}\right)$ is black: \[ \tikz{ \node [style=black node] (0) at (0, 0) {}; \node [style=none] (2) at (0, 0.4) {$f$}; } \qquad \implies \qquad f^2 = -4? \] - It is white if $f \in P^{(2)}\left(\mathcal{M}^{(2,4)}\right)$: \[ \tikz{ \node [style=white node] (0) at (0, 0) {}; \node [style=none] (2) at (0, 0.4) {$f$}; } \qquad \implies \qquad f^2 = -2? \] - It is double-circled white if $f \in P(X)_{+I}$ (i.e. it corresponds to the class of a rational component of $\left.X^\theta\right)$. \[ \tikz{ \node [style=white node, double] at (0, 0) {}; \node [style=none] (2) at (0, 0.4) {$f$}; } \qquad \implies \qquad ?? \] Interpreting this geometrically: consider the cycle of $2\bar{k}$ white vertices cycling between plain and double-circled: > Second to last paragraph here: https://arxiv.org/pdf/2208.10383.pdf#page=41&zoom=140,99,262 - See \cite{AE22} - Each edge on the outer cycle corresponds to $\mathbb{P}^2$ - Single circle vertices (with odd $i$) corresponds to a line in $\mathbb{P}^2$ - Double-circled vertices (with even $i$) correspond to conics on the $\mathbb{P}^2$ - Explicit example worked out in \cite[\S 5]{AET23}. > % https://arxiv.org/pdf/1903.09742.pdf#page=28&zoom=170,-70,442 - It seems like that from the Coxeter diagram, you draw the fan of a toric surface, you compute the charge, and then, if this is not 24, you fix it by blowing up some non-torus fixed points along the toric boundary.