\newcommand{\TableLabeledSimpleEdge}[0]{ \begin{tikzpicture} \begin{pgfonlayer}{nodelayer} \node [style=white node, label=$H_1$] (0) at (0, 0) {}; \node [style=white node, label=$H_2$] (1) at (3, 0) {}; \end{pgfonlayer} \begin{pgfonlayer}{edgelayer} \draw[style=plain edge] (0) edge["$m_{ij}$"] (1); \end{pgfonlayer} \end{tikzpicture} } \newcommand{\TableNoEdge}[0]{ \begin{tikzpicture} \begin{pgfonlayer}{nodelayer} \node [style=white node, label=$H_1$] (0) at (0, 0) {}; \node [style=white node, label=$H_2$] (1) at (3, 0) {}; \end{pgfonlayer} \end{tikzpicture} } \newcommand{\TableSimpleEdge}[0]{ \begin{tikzpicture} \begin{pgfonlayer}{nodelayer} \node [style=white node, label=$H_1$] (0) at (0, 0) {}; \node [style=white node, label=$H_2$] (1) at (3, 0) {}; \end{pgfonlayer} \begin{pgfonlayer}{edgelayer} \draw[style=plain edge] (0) to (1); \end{pgfonlayer} \end{tikzpicture} } \newcommand{\TableDoubleEdge}[0]{ \begin{tikzpicture} \begin{pgfonlayer}{nodelayer} \node [style=white node, label=$H_1$] (0) at (0, 0) {}; \node [style=white node, label=$H_2$] (1) at (3, 0) {}; \end{pgfonlayer} \begin{pgfonlayer}{edgelayer} \draw[style=double edge] (0) to (1); \end{pgfonlayer} \end{tikzpicture} } \newcommand{\TableTripleEdge}[0]{ \begin{tikzpicture} \begin{pgfonlayer}{nodelayer} \node [style=white node, label=$H_1$] (0) at (0, 0) {}; \node [style=white node, label=$H_2$] (1) at (3, 0) {}; \end{pgfonlayer} \begin{pgfonlayer}{edgelayer} \draw[style=triple edge] (0) to (1); \end{pgfonlayer} \end{tikzpicture} } \newcommand{\TableBoldEdge}[0]{ \begin{tikzpicture} \begin{pgfonlayer}{nodelayer} \node [style=white node, label=$H_1$] (0) at (0, 0) {}; \node [style=white node, label=$H_2$] (1) at (3, 0) {}; \end{pgfonlayer} \begin{pgfonlayer}{edgelayer} \draw[style=thick edge] (0) to (1); \end{pgfonlayer} \end{tikzpicture} } \newcommand{\TableDottedEdge}[0]{ \begin{tikzpicture} \begin{pgfonlayer}{nodelayer} \node [style=white node, label=$H_1$] (0) at (0, 0) {}; \node [style=white node, label=$H_2$] (1) at (3, 0) {}; \end{pgfonlayer} \begin{pgfonlayer}{edgelayer} \draw[style=dashed edge] (0) edge["$w_{ij}$"] (1); \end{pgfonlayer} \end{tikzpicture} } \newcommand{\TableSimpleVertex}[0]{ \tikz[baseline]{\node [style=white node] (0) at (0, 0) {};} } \newcommand{\TableBlackVertex}[0]{ \tikz[baseline]{\node [style=black node] (0) at (0, 0) {};} } \newcommand{\TableDoubleVertex}[0]{ \tikz[baseline]{\node [style=doubled node] (0) at (0, 0) {};} } \begin{table}[H] \centering \resizebox{\textwidth}{!}{% \begin{tabular}{@{}llllll@{}} \toprule Description & Diagram & Notation & $m_{ij}$ & $\angle(H_i, H_j)$ & $w_{ij}$ \\ \midrule Labeled simple edge & \TableLabeledSimpleEdge & $H_i \transverse H_j$ & $m_{ij}$ & $\pi/m_{ij}$ & $\cos\qty{\pi \over m_{ij}}$ \\ No Edge & \TableNoEdge & $H_i \perp H_j$ & $2$ & $\pi/2$ & 0 \\ Simple Edge & \TableSimpleEdge & $H_i \transverse H_j$ & $3$ & $\pi/3$ & $1\over 2$ \\ Double Edge & \TableDoubleEdge & $H_i \transverse H_j$ & $4$ & $\pi/4$ & $\sqrt{2} \over 2$ \\ Triple Edge & \TableTripleEdge & $H_i \transverse H_j$ & $5$ & $\pi/5$ & ${1 + \sqrt{5} \over 4}$ \\ Thick/bold edge & \TableBoldEdge & $H_i \parallel H_j$ & $\infty$ & $0$ & 1 \\ Dotted Edge & \TableDottedEdge & $H_i \diverge H_j$ & $0$ & $\infty$ & $\cosh(\rho(H_i, H_j))$ \\\cmidrule{0-5} Simple vertex & \TableSimpleVertex & $h_i^2 = -1$ & & & $1$ \\ Black vertex & \TableBlackVertex & $h_i^2 = -2$ & & & $2$ \\ Double-circled vertex & \TableDoubleVertex & $h_i^2 = -4$ & & & $4$ \\ \bottomrule \end{tabular}% } \caption{A summary of conventions for Coxeter-Vinberg diagrams} \label{tab:coxeter-vinberg-conventions} \end{table}