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Remark 1.1. Textbook: Hodge Theory and Complex Algebraic Geometry I: Vol-
ume 1 (Cambridge Studies in Advanced Mathematics) by Voisin.

Remark 1.2. Recall that for a topological space X, we can assign invariants
Hi(X;Z) which are abelian groups. More generally, we can attach Hi(X;F ) :=
Hi(X;Z) ⊗ F for a field F , and with reasonable finiteness assumptions on X
(e.g. compact manifolds), these will be finite-dimensional F -vector spaces.

Example 1.3. For X a genus g Riemann surface,

• H0(X;Z) = Z,
• H1(X;Z) = Z2g,
• H2(X;Z) = Z, and
• Hi(X;Z) = 0 for i ≥ 3.

This detects the fact that there are g holes in X.

Remark 1.4. Note that H∗ is functorial: for f : X → Y a continuous map, there
is a pullback in cohomology f∗ : Hi(Y ;Z) → Hi(X;Z) which is a morphism of
abelian groups. Over fields, this instead yields a linear map, which is generally
easier to study.

A general theme: extra structure on X, which can include

• a complex structure,
• a symplectic structure,
• a Kähler structure,
• a C-algebraic structure,

will induce extra structure on H∗(X;C), i.e. a Hodge structure. We will look in
particular at complex manifolds X, i.e. those locally identifiable with Cn for some
n, which allows for a notion of holomorphic functions on X.
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Remark 1.5. Recall that a torus X can be written as R2/Z2, i.e. a quotient
of the plane by the standard square lattice. We have g = 1 and H∗(X;C) =
C ⊕ C2[1] ⊕ C[2]. Putting a complex structure on X amounts to replacing R2

with C and yields a complex manifold of complex dimension 1. One can replace
X with Xτ = C/(Z ⊕ τZ) for any τ ∈ C. It is a theorem that Xτ

∼= Xτ ′ as
complex manifolds iff ∃a, b, c, d ∈ Z with ad − bc = 1 such that τ ′ = aτ+b

cτ+d . Thus
these complex manifolds vary in continuous families, despite being identified as real
manifolds.

Remark 1.6. We will examine the Hodge decomposition for compact Kähler man-
ifold, which is a complex manifold with additional technical assumptions. This
decomposition is of the form Hi(X;C) = ⊕p+q=iH

p,q(X), which implies βi(X) =∑
p+q=i h

p,q(X). The Hodge numbers hp,q thus refine the Betti numbers, and may
contain more information.

Example 1.7. For X a genus g Riemann surface, one has

H1(X;C) = H1,0(X)⊕H0,1(X)

where h1,0(X) = h0,1(X) = g. Thus the Hodge numbers alone don’t see the complex
structure, since they are always g. However, what will keep track of differences will
be the interplay between the Hodge decomposition (as decompositions of vector
spaces) as the integral structure of Hi(X;Z) ⊆ Hi(X;C).

Remark 1.8. Hodge structures will be related to period integrals
∫
γ
α, which is

where calculus enters the picture. The proof of the Hodge decomposition uses real
analysis, in particular elliptic PDEs, in a crucial way.

Remark 1.9. Next time: a word about complex analysis, complex/Kähler mani-
folds, the Hodge decomposition.
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