# 2025-01-08-15-02-42 ## Holomorphic functions of one variable :::{.remark} For $U \subseteq \CC$ open, let $f: U\to \CC$ be of class $C^1$. Then $df = \dd{f}{x} dx + \dd{f}{y} dy$. Writing $dz = dx + idy$ and $d\bar{z} = dx - idy$, one has \[ dx = {1\over 2}(\dz + \dzbar) \quad dy = {1\over 2i}(\dz - \dzbar) \] and \[ df = {1\over 2}(\dd{f}{x} - i \dd{f}{y})\dz + {1\over 2}(\dd{f}{x} + i\dd{f}{y})\dzbar = \dd{f}{z}\dz + \dd{f}{\bar z}\dzbar .\] We define $f$ to be holomorphic if $\dd{f}{\zbar}=0$. ::: :::{.lemma} $f$ is holomorphic on $U$ iff $df$ is $\CC\dash$linear at every point in $U$. ::: :::{.proof} For $u\in U$, write $df_u = \dd{f}{x}(u)dx + \dd{f}{y}(u)dy$ as a map $\RR^2\cong \CC\to \CC$. Note that $\dd{}{y} = i \dd{}{x}$. Moreover, $df_u$ is $\CC\dash$linear if $df_u(\dd{}{y}) = i df_u(\dd{}{x})$, or equivalently $\dd{f}{y} = i \dd{f}{x}$. One can rearrange this to $\dd{f}{x} - i \dd{f}{y} = 0$. ::: :::{.lemma} $f: U\to \CC$ is holomorphic iff $f\dz$ is a closed 1-form. ::: :::{.proof} One computes \[ 0 =d(f\dz) = df\wedge \dz = (\dd{f}{z}\dz + \dd{f}{\zbar}\dzbar)\wedge \dz = \dd{f}{\zbar} \dzbar \wedge \dz ,\] where we note \[ \dzbar \wedge \dz = (dx-idy)\wedge (dx+idy) = i dx\wedge dy - idy\wedge dx = 2i dx\wedge dy \neq 0 .\] So $\dd{f}{\zbar} \dzbar \wedge \dz = 0 \iff \dd{f}{\zbar} = 0$. ::: :::{.remark} Recall Stokes' theorem: \[ \int_M d\alpha = \int_{\bd M} \alpha .\] If $\alpha$ is a closed 1-form on $U \subseteq \CC$, then $\int_{\gamma} \alpha$ is independent of deformations of $\gamma$ since \[ \int_ \gamma \alpha - \int _{\gamma'} \alpha = \int_U d \alpha = 0 .\] where $U$ is an annulus with boundary \( \gamma\union \gamma' \). ::: :::{.theorem} If $f: U\to \CC$ is holomorphic and $\gamma$ is a simple closed curve bounding a domain $D$ in $U$, then $\forall z_0\in D^\circ$, \[ f(z_0) = {1\over 2i\pi} \int_ \gamma {f(z) \over z-z_0}\dz .\] ::: :::{.proof} $g(z) \da f(z)\over z-z_0$ is holomorphic on $U\smts{z_0}$, so $g(z)\dz$ is a closed 1-form. Thus the path of integration can be deformed to a small loop around $z_0$, say one parameterized by \[ z \da z_0 + \eps e^{i\theta} \implies \dz = \eps ie^{i \theta}d\theta .\] One can now compute \[ {1\over 2i\pi}\int_ \gamma {f(z) \over z-z_0}\dz = {1\over 2i\pi}\int_{\theta = 0}^{2\pi} { f(z_0 + \eps e^{i \theta}) \over \eps e^{i \theta} } \eps i e^{i \theta}d\theta = {1\over 2\pi} \int_0^{2\pi} f(z_0 + \eps e^{i \theta}) d\theta \convergesto{\eps\to 0} f(z_0) .\] ::: :::{.corollary} If $f: U\to \CC$ is holomorphic, then $f$ is $C^\infty$. Moreover, $f$ is complex analytic, i.e. $\forall z_0\in U, \exists R > 0$ such that $f(z_0 + z) = \sum_{n\geq 0} {f^{(n)}(z_0) \over n! } z^n$ for all $\abs{z} < R$. ::: :::{.proof} Write \[ f(z_0 + z) = {1\over 2i\pi}\int_ \gamma {f( \zeta) \over \zeta - z_0 - z} d\zeta = {1\over 2i\pi}\int_ \gamma {1\over \zeta - z_0} {1\over 1 - {z\over \zeta-z_0}} f(\zeta)d\zeta = {1\over 2i\pi}\int_ \gamma {1\over \zeta - z_0} \sum_{n\geq 0} {z^n \over (\zeta-z_0)^n} f(\zeta)d\zeta = \sum_{n\geq 0}{1\over 2i\pi}\qty{ \int_ \gamma {f(\zeta)\over (\zeta-z_0)^{n+1}} d\zeta }z^n .\] ::: ## Many complex variables :::{.remark} For $U \subseteq \CC^n$ is open and $f: U\to \CC$, write $\CC^n \cong \RR^{2n}$ with coordinates $x_1,\cdots, x_n, y_1, \cdots, y_n$ and $z_i = x_i + i y_i$. Then $f = f(x_1, y_1, \cdots, x_n, y_n) = f(z_1, \bar z_1, \cdots, z_n, \bar z_n)$ is a function of $z_i$ and $\bar z_i$ and thus $\dd{f}{z_i}, \dd{f}{\bar z_i}$ make sense. We say $f$ is holomorphic if $\dd{f}{\bar z_i} = 0$ for all $i$. ::: :::{.lemma} $f$ is holomorphic iff $f dz_1\wedge \cdots \wedge dz_n$ is closed. ::: :::{.theorem} For $z = (z_1,\cdots, z_n)\in U \subseteq \CC^n$, \[ f(z) = {1\over (2i\pi)^n} \int_{\prod_{i=1}^n \ts{ \abs{\zeta_i - z_i} = a_i}} f(\zeta) {d\zeta_1\over\zeta_1 - z_1 } \wedge \cdots \wedge {d\zeta_n \over \zeta_n - z_n} .\] ::: :::{.theorem} Let $f: U\to \CC^n$ be holomorphic on an open set. If $\abs{f}$ admits a maximum at a point $u\in U$, then $f$ is constant in a neighborhood of $u$. ::: :::{.theorem} If $f$ is holomorphic on a hyperplane complement $U \smts{z \st z_1 = 0}$ and $f$ is locally bounded near $\ts{z\st z_1=0}$ then $f$ extends to a holomorphic function on $U$. ::: :::{.theorem} Let $n\geq 2$. If $f$ is holomorphic on $U\smts{z\st z_1 = z_2 = 0}$, then $f$ extends to a holomorphic function on $U$. ::: :::{.remark} Note that in the $n=2$ case, this says that a holomorphic function on $\CC^2\smz$ extends to a holomorphic function on $\CC^2$. ::: :::{.proof} Consider the $n=2$ case where $U$ contains the origin. If $f$ were holomorphic, Cauchy's formula would hold: \[ f(z) = {1\over (2i\pi)^2}\int_{\abs{\zeta_i}=r_i}f(\zeta) {d\zeta_1\over \zeta_1-z_1}\wedge {d\zeta_2\over \zeta_2-z_2} .\] Replace this with \[ f(z) = {1\over (2i\pi)^2}\int_{\abs{\zeta_i-z_i}=\eps_i} f(\zeta) {d\zeta_1\over \zeta_1-z_1}\wedge {d\zeta_2\over \zeta_2-z_2} ,\] which amounts to replacing the curve around the origin with a curve around... :::