# 2025-01-29-10-23-36 :::{.remark} Let $X$ be a manifold of dimension $n$, $\T_X$ its tangent bundle, $\Omega_X$ its cotangent bundle (both of rank $n$), and let $A^1(X)$ be the space of sections of $\Omega_X$. Write $x_1,\cdots, x_n$ for local coordinates, and let $\alpha = f_1 \dx_1 + \cdots + f_n \dx_n$. Write $\Omega^k(X) = \wedge^k \Omega_X$, which is a vector bundle of rank $n$, and let $A^k(X)$ be its space of sections. Such a form can be written as \[ \alpha = \sum_{1\leq i_1\leq \cdots \leq i_k \leq n} \dx_{i_1}\wedge\cdots\wedge \dx_{i_k} = \sum_{I \subseteq [1, n]} f_I \dx_I .\] There is a differential \begin{align*} d: A^k(X) &\to A^{k+1}(X) \\ \alpha = \sum_I f_I \dx_I &\mapsto d\alpha = \sum_I df_I \wedge \dx_I = \sum_I \sum_{1\leq i \leq n} \dd{f_I}{x_i}\dx_i \wedge \dx_I \end{align*} Recall Stokes theorem: \[ \int_M d\alpha = \int_{\boundary M} \alpha .\] ::: :::{.remark} Now let $X$ be a complex manifold of complex dimension $n$ with local coordinates $z_1,\cdots, z_n$. An almost complex structure is an endomorphism $I: \T_X\to\T_X$ with $I^2 = -\id$ -- this is locally multiplication by $i$. Write $\T_{X, \CC} \da \T_X \tensor_\RR \CC$, which is of complex rank $2n$, then $I: \T_{X, \CC}\selfmap$ becomes a $\CC\dash$linear endomorphism. We get an eigenspace decomposition $\T_{X, \CC} = \T_X^{1, 0} \oplus \T_X^{0, 1}$, the $i$ and $-i$ eigenspaces respectively. We saw that $\T_X^{1, 0}$ is a holomorphic vector bundle of rank $n$. There is a dual decomposition $\Omega_{X, \CC} \da \Omega_X \tensor_\RR \CC = \Omega_X^{1, 0} \oplus \Omega_X^{0, 1}$. A $(1, 0)$ form is of the form $\alpha = \sum_{j\leq n} f_j \dz_j$, and a $(0, 1)$ form is of the form $\alpha = \sum_{j\leq n} f_j \dzbar_j$ where $f_j$ is a $\CC\dash$valued smooth function. We have \[ \Omega^k_{X, \CC} = \wedge^k \Omega_{X, \CC} = \wedge^k (\Omega_X^{1, 0} \oplus \Omega_X^{0, 1}) = \bigoplus _{k=p+q} \wedge^p \Omega_X^{1, 0} \tensor \wedge^q \Omega_X^{0, 1} \da \bigoplus _{k=p+q} \Omega_X^{p, q} .\] We can write a $(p, q)$ form as \[ \alpha = \sum_{I = 1\leq i_1 < \cdots < i_p\leq n, J = 1\leq j_1 < \cdots < j_q \leq n } f_{IJ} \dz_I \wedge \dzbar_J .\] where $\dz_I = \dz_{i_1} \wedge \cdots \wedge \dz_{i_p}$ and $\dzbar_J = \dzbar_{j_1}\wedge \cdots \wedge \dzbar_{j_q}$. Write $A^{p, q}(X)$ for the space of sections, and $A^k_\CC(X) \da \bigoplus _{p+q=k} A^{p, q}(X)$. There is a differential $d: A^k_\CC(X)\to A^{k+1}_\CC(X)$ where $\alpha = \sum_{I, J} f_{IJ} \dz_I \wedge \dzbar_J$ is sent to \begin{align*} d\alpha = \sum_{I, J} df_{I, J} \wedge \dz_I \wedge \dzbar_J \\ = \sum_{I, J} (df_{IJ})^{1, 0} \wedge \dz_I \wedge \dzbar_J + \sum_{I, J} (df_{IJ})^{0, 1} \wedge \dz_I \wedge \dzbar_J \\ \da \sum_{i\leq n} \dd{f_{IJ}}{z_i}\dz_i + \sum_{i\leq n} \dd{f_{IJ}}{\zbar_i}\dzbar_i \\ \da \del \alpha + \delbar \alpha, \end{align*} a $(p+1, q)$ form plus a $(p, q+1)$ form. We have $d = \del + \delbar$ where $\del: A^{p, q}(X) \to A^{p+1, q}(X)$ and $\delbar: A^{p, q}(X) \to A^{p, q+1}(X)$. For any manifold, we have $d^2 = 0$, which implies that \[ 0 = d^2 = (\del + \delbar)^2 = \del^2 + (\del\delbar + \delbar\del) + \delbar^2 \in A^{p+2, q} \oplus A^{p+1, q+1} \oplus A^{p, q+2} ,\] and so $\del^2 = 0, \delbar^2 = 0$, and $\del\delbar + \delbar\del = 0$ by degree considerations in the direct sum. :::