# 2025-01-29-15-22-42 :::{.remark} Newlander-Nirenberg theorem: $(X, I)$ is a complex manifold iff $[\T_X^{1, 0}, \T_X^{1, 0}] \subseteq \T_X^{1, 0}$. ::: :::{.lemma} $(X, I)$ is integrable iff $\forall \alpha\in A_\CC^{1, 0}(X)$, one has $(d\alpha)^{0, 2}=0$. ::: :::{.proof} If $\alpha$ is a 1-form and $\chi,\psi$ are vector fields, \[ d\alpha(\chi, \psi) = \chi(\alpha(\psi)) - \psi(\alpha(\chi)) - \alpha([\chi, \psi]) .\] Note that $(d\alpha)^{0, 2} = 0\iff d\alpha(\chi, \psi) = 0$ for all $\chi, \psi\in \T_X^{0, 1}$. Since $\alpha$ is a $(1, 0)$ form, $\alpha(\psi) = 0$ and $\alpha(\chi) = 0$. Here we write \begin{align*} \alpha &= \sum_i \alpha_i \dx_i \\ \chi &= \sum_i \chi_i \dd{}{x_i} \\ \psi &= \sum_i \psi_i \dd{}{x_i} \\ d\alpha(\chi, \psi) &= \sum_{i, j} \dd{\alpha_i}{x_j}\qty{\chi_j\psi_i - \chi_i \psi_j} \end{align*} We also have $(d\alpha)^{0, 1} = 0 \iff \alpha([\chi,\psi]) = 0 \iff [\chi,\psi]$ is a $(0, 1)$ form. ::: :::{.remark} Note that if $n\da \dim_\CC X = 1$, then every almost complex structure $(X, I)$ is integrable. In any dimension, $(X, I)$ induces a canonical orientation on $X$ given by $\ts{e_1, Ie_1, e_2, Ie_2,\cdots, e_n, Ie_n}$. ::: :::{.theorem} If $X$ is an oriented 2-manifold, then there exists a complex structure on $X$ inducing its orientation. ::: :::{.lemma} For oriented 2-manifolds $X$, there is a bijection \[ \ts{\text{Almost complex structures on } X} \mapstofrom \ts{\text{Conformal structures on } X} = \ts{\text{Riemannian metrics on } X} / \sim \] where $m_1\sim m_2 \iff \exists f$ a positive function such that $m_1 = fm_2$. ::: :::{.remark} Why: let $I$ be rotation by an angle of $\pi/2$, and use the fact that $\U_1 = \SO_2$. ::: :::{.theorem} Let $X$ be a simply connected Riemann surface. Then either - $X = \CP^1 \cong S^2$, - $X = \CC$, or - $X = \DD \subseteq \CC = \ts{ z\in \CC \st \abs{z} < 1} \cong \HH = \ts{z\in \CC \st \Im(z) > 0 }$. :::