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Abstract. The search for geometrically meaningful compactifications of mod-

uli spaces of algebraic varieties is a central problem in algebraic geometry. My

research focuses on explicitly and effectively classifying boundary strata of
stable pair compactifications of Enriques and Coble surfaces.
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1. Overview

My research is in algebraic geometry, particularly in explicit combinatorial tech-
niques for compactifying moduli spaces of algebraic surfaces over C and classifying
their boundaries. For a given moduli space, there are often many choices of com-
pactifications, leading to a need to study comparisons between them and their
relative advantages and disadvantages. In particular, a natural question to ask is
whether or not the boundaries have geometric and modular meanings, exhibited
as degenerating limits of smooth surfaces. Toward this end, we turn to the stable
pair compactifications of Kollár, Shepherd-Barron, and Alexeev [KS88; Ale96;
Kol23].

The KSBA compactification generalizes the Deligne-Mumford compactification
Mg,n [DM69] of Mg,n, the moduli space of genus g curves with n marked points,
to higher-dimensional varieties. By [Mum65; Nam76; AN99; Ale02], a similarly
modular compactificationAg of the moduli spaceAg of principally polarized abelian

varieties via stable pairs exists. The normalization of Ag coincides with a particular
choice of toroidal [Ash+75] compactification by the work of [KS88] and [Ale96].
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More recently, similar compactifications have been constructed for moduli spaces
of K3 surfaces. [AET23] addresses F2, the moduli space of degree 2 primitively po-
larized K3 surfaces, and [ABE22] studies Fell, the moduli space of elliptic K3 sur-
faces, which embeds into F2. [AE23a] addresses F2d, polarized K3 surfaces of degree
2d for d ≥ 1, developing the theory of recognizable divisors, which gives comparison
morphisms between KSBA and semitoroidal compactifications. [AEH22; AE23b]
extend the theory further to K3 surfaces with nonsymplectic automorphisms and
nonsymplectic involutions respectively.

In [Ale+23], we built upon these ideas to describe the stable pair compactification
of FEn,2, the moduli space of degree 2 numerically polarized Enriques surfaces,
leveraging the theory of ADE surfaces developed in [AT21]. In my current project,
I extend these ideas to FCo, the moduli space of Coble surfaces, regarded as a
divisor in FEn, the moduli space of unpolarized Enriques surfaces.

2. Compactifications

My work builds on the theory of compactifications of K3 surfaces. In com-
pactification problems, one allows smooth surfaces to degenerate into surfaces with
controllable and well-understood singularities. Our primary choices of compactifi-
cations include the following:

• The Baily-Borel compactification [BB66], which is amenable to lattice the-
ory. However, surfaces on the boundary lack clear interpretations as limits
of smooth surfaces. These compactifications are generally “small”, since
they involve adjoining finitely many components of dimension at most two,
and thus the boundary is comprised of points and modular curves with
various level structures. In favorable cases, the number of boundary cusps
and their incidence relations can be concretely computed, and thus the
boundary can be encoded in an incidence diagram.

• Toroidal compactifications, which can be studied using toric geometry.
These are determined by the data of a collection of fans ranging over the
Baily-Borel cusps. However, there are infinitely many choices of such data,
and it is often unclear which choices (if any) lead to modular compactifica-
tions. Again in favorable cases, these fans can be described explicitly.

• The semitoroidal compactifications of [Loo03] which simultaneously gen-
eralize both of the above. They are similarly specified by a collection of
infinite-type “semifans”, of which there is not an a priori distinguished
choice. However, the boundary strata can be studied using tools from
Hodge theory, Picard-Lefschetz theory, lattice-theoretic techniques, and the
rich combinatorial structures of Coxeter groups and integral affine geome-
try.

• The KSBA stable pair compactifications. An alternative from the log min-
imal model program, this yields a moduli space whose boundary strata
admit strong geometric interpretations as limiting surfaces with controlled
singularities. However, this comes at a cost – it is generally very difficult
to classify or describe the boundary.

A central theme in my research is to construct KSBA compactifications and
classify their boundary strata by relating them to particular choices of semitoroidal
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compactifications. In this way, one can construct compactifications that are simul-
taneously modular and amenable to explicit computations. In [Ale+23], we prove
the following:

Theorem 2.1 ([Ale+23], Thm. 1.1). There is an isomorphism(
FEn,2

)ν ∼= FEn,2
F

between the normalization of the KSBA compactification of FEn,2, the moduli space
of degree two numerically polarized Enriques surfaces, and a semitoroidal compact-
ification associated to an explicit collection of semifans F .

The semifan data F can be combinatorially described in terms of tilings of hy-
perbolic spaces by polytopes, Coxeter diagrams, and integral affine spheres with in-
volutions. There is a complete classification of KSBA stable limits of such Enriques
surfaces in terms of ADE+BC surfaces. Furthermore, the structure of ∂FEn,2 can
be read off of Coxeter diagrams in a straightforward manner.

3. Past Work

3A. Compact moduli spaces of Enriques surfaces. An Enriques surface
is a non-rational minimal algebraic surface Y of Kodaira dimension κ(Y ) = 0 for
which h1(OY ) = h2(OY ) = 0 and KY is nontrivial 2-torsion. [Enr06] originally
constructed such surfaces, motivated by relating the rationality of a surface to its
irregularity qY := h1(OY ). There has been a resurgence of interest in moduli spaces
of Enriques surfaces, c.f. [Vie95; Lie13; GH16; Cil+23; Knu20; CDL24; For20].

Away from characteristic 2, deformations of (numerically polarized) Enriques
surfaces are unobstructed by [Ill79; Lan83], yielding a quasi-separated 10-dimensional
Artin stack of finite type over C by [CDL24, Thm. 5.11.6]. By [Kon94], the coarse
moduli space is known to be rational. As for K3 surfaces, Enriques surfaces ad-
mit a global Torelli theorem and thus a coarse space FEn of unpolarized surfaces
birational to a Shimura variety D/Γ of orthogonal type, yielding a type IV Her-
mitian symmetric domain. Fixing a numerical polarization of degree 2d yields a
quasiprojective, non-proper moduli space FEn,2d.

Every Enriques surface can be obtained as a quotient X/ι of a K3 surface X by
a nonsymplectic fixed-point-free involution ι. Thus the moduli space of Enriques
surfaces can be related to moduli of K3 surfaces with nonsymplectic involutions,
allowing us to leverage the theory of [AE23b] to describe compactifications FEn and
FEn,2 and arrive at theorem 2.1. A key insight in this paper is that the Coxeter dia-
grams for FEn,2 can be obtained as quotients by involutions of the diagrams for K3
surfaces. Leveraging and extending the theory of ADE surfaces in [AT21] to Dynkin
diagrams of types B and C, we arrive at a description of the irreducible components
of KSBA degenerations which is largely in terms of explicit toric varieties.

4. Current Work

4A. Compact moduli spaces of Coble surfaces.

Remark 4.1. A Coble surface is a smooth projective rational surface S with
|−KS | = ∅ but |−2KX | ≠ ∅. Such surfaces arise from the work of [Cob19] and
[Cob29] on Cremona transformations of P2 preserving an irreducible rational sex-
tic C with ten nodal singularities. The blowup S of these nodes yields a Coble
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surface. Coble surfaces occur as degenerations of Enriques surfaces and were ulti-
mately classified in [DZ99]. As such, they are closely tied to the theory of algebraic
K3 surfaces with nonsymplectic involutions, which were classified by [Nik79]. For a
reduced sextic C, the double cover of S branched along the proper transform of C
is a K3 surface X which can be realized as a degeneration of the universal double
cover of an Enriques surface, where X is allowed to acquire an A1 singularity fixed
by the Enriques involution.

Denote by FCo,n the moduli space of Coble surfaces with n boundary compo-
nents. It is well-known that 1 ≤ n ≤ 10, and the case n = 1 corresponds to the
surfaces originally studied by Coble. By [DK13], the moduli space FCo := FCo,1

is known to be rational, but very little else is known about these moduli spaces.
In particular, compactifications of FCo,n have not yet appeared in the literature,
despite their close relation to Enriques surfaces.

Remark 4.2. Towards constructing such a KSBA compactification, one can form
a period domain for FCo and study (semi)toroidal compactifications as an interme-
diate step. Note that the blowup of a rational plane sextic C along its ten nodes
yields a Coble surface S with n = 1 boundary components. The double cover of S
branched along C is a K3 surface X containing divisors e0, · · · , e10 where e0 is the
preimage of the pullback of a hyperplane class in P2 and e1, · · · , e10 are preimages
of the exceptional divisors over the nodes of C.

These divisors in X generate a sublattice SCo of Pic(X) with orthogonal com-
plement TCo, which can be shown to be isometric to the following:

SCo = I1,10(2) ∼= ⟨−2⟩ ⊕ E10(2), TCo
∼= ⟨2⟩ ⊕ E10(2)

where E10 := U ⊕E8 with U the hyperbolic lattice and E8 the lattice associated to
the E8 Dynkin diagram. I construct the period domain

FCo := DTCo
/O(TCo), DTCo

⊆
{
[σ] ∈ P (TCo ⊗Z C)

∣∣∣ σ2 = 0, σσ > 0
}
,

which is birational to the moduli space of Coble surfaces with n = 1 boundary
component constructed as a GIT quotient (P2)10//PGL3. The moduli space FCo is
an arithmetic quotient of a Hermitian symmetric domain of Type IV, and thus ad-
mits semitoroidal compactifications, including the canonically defined Baily-Borel

compactification FCo
BB

.

Remark 4.3. In my current single-author project, I have studied the boundary

∂FCo
BB

of the Baily-Borel compactification of the moduli space of Coble surfaces
and constructed an embedding FCo ↪→ FEn into the moduli space of unpolarized
Enriques surfaces. Furthermore, I extend this to a morphism

η : FCo
BB → FEn

BB

on their Baily-Borel compactifications. To determine the stratification of FCo
BB

, I
apply the mirror moves of [AE23b], which are encoded in fig. 1.
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(11, 11, 1)1

S

(11, 11, 1)2

T

(9, 9, 1)1

T̄

(7, 7, 1)0

¯̄T
U(2) U(2)

Figure 1. Application of the mirror move algorithm to SCo =
(11, 11, 1)1.

Using this, I have constructed the incidence diagram that represents ∂FCo
BB

,
which is shown in fig. 2. Using lattice theoretic techniques, and in particular an
invariant called the divisibility, I have determined that η induces the correspondence

∂FCo
BB → ∂FEn

BB
depicted in fig. 3, which has allowed me to determine that Coble

degenerations are D2-type, as opposed to RP2-type, an essential ingredient for later
constructing the correct divisorial log terminal (dlt) models of KSBA degenerations.

⟨2⟩ ⊕ E8(2)D2 A⊕7
1

(9, 9, 1)1 (7, 7, 1)0

div ⟨e′⟩ = 2 div ⟨e′, 2h+ α1 + α2⟩ = (2, 2)

Figure 2. The boundary of the Baily-Borel compactification of
FCo. Rounded nodes indicate points added in the boundary of the

compactification FCo
BB

, and rectangles indicate modular curves.
Solid arrows A → B indicate that a point A is contained in the
closure of a curve B.
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E10(2)

(10, 10, 0)1

RP2,div = 1

E8(2)

(8, 8, 0)0

U ⊕ E8(2)

(10, 8, 0)1

D2,div = 2

A⊕8
1 ∗

(8, 6, 0)0

⟨2⟩ ⊕ E8(2)

(9, 9, 1)1

D2,div = 2

A⊕7
1

(7, 7, 1)0

Figure 3. The cusp correspondence η : FCo
BB → FEn

BB
. Dotted

arrows indicate the boundary correspondence under η.

Remark 4.4. I have extended η to a morphism η̃ : FCo
BB → F(2,2,0)

BB
, a moduli

space of quartic hyperelliptic K3 surfaces used in [Ale+23]. I determined that that
the Coble cusps correspond to U⊕E2

8 , the lattice with invariants (18, 0, 0)1 in fig. 4.
Using our previous work in [Ale+23], I am working on a correspondence between
FCo and FEn,2 in order to construct KSBA degenerations. The cusp diagram for
FEn,2 was first given by [Ste91], and I have computed that the Coble 0-cusp cor-
responds with cusp 2 of fig. 5. This correspondence requires studying a separate
period domain DCo/Γ for a certain subgroup ΓCo ≤ O(TCo) and classifying orbits
of isotropic vectors under this subgroup.

Toward this end, I have been working on adapting the techniques of [Ste91] and
[Sca87] to new lattices. This has involved a careful study of the discriminant groups
ATCo

and ATEn
of the Coble and Enriques lattices, and finding techniques to reduce

classification of orbits of isotropic vectors in TCo to finite, computable problems
in ATCo

. This has also involved explicit constructions of Eichler transformations
which prove that vectors satisfying certain numerical properties are in the same
ΓCo-orbit. Conjecturally, this will suffice to produce a complete cusp diagram for
DCo/ΓCo, which I can then put in correspondence with the cusps of FEn,2.

Ultimately, this chain of correspondences will allow me to leverage [Ale+23],
[AT21], and [AE23b] to construct integral affine structures and dlt models of KSBA-
stable Coble surfaces in terms of those for K3 and Enriques surfaces. From these
data, in an in-progress paper which will comprise the majority of my dissertation,
I am working on constructing the KSBA stable limits of Coble surfaces as special
cases of limits of Enriques surfaces satisfying a certain linear relation, yielding a
geometrically meaningful, explicit, combinatorial description of the KSBA stable
pair compactification FCo and its boundary ∂FCo.
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U ⊕ E2
8

E2
8

D+
16

U(2)⊕ E2
8

D2
8

E2
7C2

E8D8

D12D4

D16

A15A1(2)

(18, 0, 0)1 (16, 0, 0)0 (18, 2, 0)1 (16, 2, 0)0

div = 2 div = 1

div = (2, 1)

div = (1, ?)

Figure 4. The boundary cusp diagram of F(2,2,0), the moduli
space of quartic hyperelliptic K3 surfaces.

2

E2
8

12

D+
16

245

1

3

4

5

E2
7C2 13

D2
8 14

A15A1(2) 15

A15A1(2) 34

D12D4 35

D2
8 45

E2
7C2 55

Figure 5. The boundary cusp diagram of FEn,2, the moduli space
of degree 2 numerically polarized Enriques surfaces.

5. Future Work

5A. Coble surfaces with 1 ≤ n ≤ 10 boundary components.
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Remark 5.1. For S a Coble surface of K3 type, one can write |−2KS | = {C} where
C = C1+ · · ·+Cn, with each Ci an irreducible curve on S. The Ci are referred to as
boundary components, and it is known that 1 ≤ n ≤ 10. The moduli spaces FCo,n

for n ≥ 2 have not yet appeared in the literature, but are amenable to a similar
study as the n = 1 case. Let Σ be a general Coble set of points in P2, so that the
blowup S of P2 along the points of Σ is a Coble surface double covered by a K3
surface X branched along C. Following a similar construction as that described in
remark 4.2 yields a collection of primitively embedded sublattices L1, · · · , L10 in
Pic(X). These are 2-elementary lattices with invariants (r = 10+n, a = 12−n, δ),
described in [CDL24, Table 5.1, p.553] and reproduced in fig. 6.

n |Σ| K2
V M = (r, a, δ) 2-elementary lattice M N = M⊥

1 10 -1 (11, 11, 1) E10(2)⊕ ⟨−2⟩ I2,9(2)

2 11 -2 (12, 10, 1) E8(2)⊕U⊕ ⟨−2⟩⊕2
I2,8(2)

3 12 -3 (13, 9, 1) D⊕2
4 ⊕ ⟨−2⟩⊕3 ⊕U(2) I2,7(2)

4 13 -4 (14, 8, 1) D⊕2
4 ⊕ ⟨−2⟩⊕4 ⊕U(2) I2,6(2)

5 14 -5 (15, 7, 1) E8 ⊕ ⟨−2⟩⊕5 ⊕U I2,5(2)

6 15 -6 (16, 6, 1) E10 ⊕ ⟨−2⟩⊕6
I2,4(2)

7 16 -7 (17, 5, 1) E8 ⊕D6 ⊕ ⟨−2⟩ ⊕U(2) I2,3(2)
8 17 -8 (18, 4, 0) E8 ⊕D8 ⊕U(2) U(2)⊕2

8 17 -8 (18, 4, 1) E10 ⊕D6 ⊕ ⟨−2⟩⊕2
I2,2(2)

9 18 -9 (19, 3, 1) E10 ⊕D8 ⊕ ⟨−2⟩ I2,1(2)
10 19 -10 (20, 2, 1) E10 ⊕D10 ⟨2⟩⊕2

Figure 6. 10 irreducible families of K3 surfaces corresponding to
Coble surfaces with 1 ≤ n ≤ 10 boundary components.

Remark 5.2. This collection coincides precisely with the g = 0 line of Nikulin’s
triangular table of 2-elementary lattices [AE23b, Fig. 1], and applying the period
domain construction to these lattices yields ten moduli spaces FCo,n for 1 ≤ n ≤ 10.
The n = 1 case is the subject of my current work.

I conjecture that the moduli spaces and the boundaries of their compactifications
for the cases 2 ≤ n ≤ 10 can be described using similar techniques, which would
be the first explicit study of their boundaries in the literature. Most immediately,
I have computed several of the boundary incidence diagrams of their Baily-Borel
compactifications using algorithms described in [AE22], and the remaining ones are
similarly computable.

Remark 5.3. The ramification locus of the K3 cover of S is described in [CDL24,
Eqn. 5.3.1] – I conjecture that the corresponding involutions are nonsymplectic
and that a component of the ramification locus forms a recognizable divisor
c.f. [AE23a; AEH22]. Under this assumption, [AEH22, Thm. 3.24] can be applied
to identify the KSBA compactification with a semitoroidal compactification for a
specific choice of semifans. I conjecture that these semifans are either refinements
or coarsenings of the canonical Coxeter fans at the Baily-Borel cusps, and can be
described in an explicit way, using an extension of the theory of ADE surfaces
developed in [AT21].
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Moreover, from this data one can extract a classification of dlt models for KSBA
stable limits of such surfaces, giving a first description of ∂FCo,n, as our previ-
ous paper [Ale+23] did for numerically polarized Enriques surfaces. Finally, by
[CDL24, Prop. 5.4.6], for each lattice of rank 10+n in fig. 6, there is an embedding
FCo,n ↪→ FEn the moduli space of Enriques surfaces as constructed from E10(2)-
polarized K3 surfaces. Thus the data of integral affine structures, and hence dlt
and stable models, can be understood by studying restrictions of the K3 boundary
data described in [AE23b].

5B. Nodal Enriques surfaces. An Enriques surface Y is called nodal if Y con-
tains a rational (−2)-curve, and unnodal otherwise. Let FEn,Nod be the moduli
space of nodal Enriques surfaces. Such surfaces have received a great deal of atten-
tion in recent years, c.f.

• [CD85] describes the automorphism group of a generic point of FEn,Nod

using non-transcendental methods, showing it is equal to a normal subgroup
of the Weyl group W (T2,4,6) containing its 2-congruence subgroup. They
further show that up to Aut(S), there is a unique smooth rational curve
on such a surface. Combined with the work of [BP83] on unnodal surfaces,
this gives a description of the automorphism group at a generic point of
FEn.

• [IK15] studies semiorthogonal decompositions of the derived categoriesDb(Y )
of nodal Enriques surfaces, as progress toward answering similar questions
for general Enriques surfaces.

• [MMV24] shows that an arbitrary (not just generic) nodal Enriques surface
Y is a Reye congruence: letting F±

i be the multiple fibers of the 10 elliptic
pencils on Y , the image of the Fano model of Y defined by

∣∣ 1
3

∑
F+
i

∣∣ is
contained in a quadric.

• [DK13] shows that FEn,Nod is rational.

By [CDL24, §. 5.6], the moduli space FNod can be constructed using the period
domain FS of lattice-polarized K3 surfaces where

SNod = ⟨−4⟩ ⊕ U ⊕ E8(2)

is the generic Picard lattice of the K3 cover X of Y and

TNod := S⊥ ∼= ⟨4⟩ ⊕ U ⊕ E8(2)

is its transcendental lattice. It is known that FEn,Nod forms an irreducible hyper-
surface in FEn, and that a generic Enriques surface is unnodal. Similar to the case
of Coble surfaces, FNod can also be realized as a divisor H−4/O(TEn), yielding an
9-dimensional irreducible quasiprojective variety. By [CDL24, Def. 5.6.3], there is
a primitive embedding of lattices

SEn := E10(2) := U(2)⊕ E8(2) → SNod := ⟨−4⟩ ⊕ U ⊕ E8(2)

((e1, f1), x) 7→ (f2, 2e2 + f2 + h, x)

(where h is a generator of ⟨−4⟩) which exhibits FNod ↪→ FEn as a divisor in the
moduli space of unpolarized Enriques surfaces.

This yields a similar setup to FCo, and I conjecture that the Baily-Borel com-
pactification can be studied using similar techniques. In particular, I conjecture
that orbits under O(TNod) of isotropic vectors and planes can be classified, yield-
ing a boundary incidence diagram, and that the above lattice embedding will allow
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leveraging [Ale+23] to construct the KSBA compactification. I similarly conjecture
that the work in [Ale+23] can be used to construct dlt models and integral affine
structures that classify KSBA stable limits of nodal Enriques surfaces. However,
new techniques will have to be developed, since TNod is not a 2-elementary lattice.

5C. Halphen and rational elliptic surfaces. Following [MZ21], a rational el-
liptic surface is a smooth, projective, rational surface Y which admits a relatively
minimal fibration π : Y → P1 where the generic fiber is a smooth elliptic curve.
Given a rational elliptic surface, the index of Y is the minimal m such that π
corresponds to the anti-pluricanonical linear system |−mKY |. A Halphen pencil
of index m is a pencil of curves of degree 3m in P2 with 9 basepoints. A rational
surface obtained by minimally resolving the base points of a Halphen pencil of index
m is called a Halphen surface of index m. Equivalently, by [Gri18, Def. 3.18]
they are rational surfaces Y such that |−mKY | is of dimension 1, has no fixed part,
and defines a basepoint-free pencil.

By [CDL24, Rmk. 4.9.4], the set of Halphen pencils in P2 up to Cremona equiva-
lence is in bijection with the set of rational surfaces with genus 1 fibrations. Indeed,
and by [DZ99, Rmk. 2.4] and [Gri18, §3.3.3], any relatively minimal rational elliptic
surface Y is a Halphen surface of some index m, realized as the blowup of P2 along
the 9 basepoints of a Halphen pencil,

By [CD12, Rmk. 2.8], Halphen surfaces of index 1 are parameterized by an open
subset of the Grassmannian Gr2(10) of pencils of plane cubic curves, and their
moduli space MH,1 is an irreducible variety of dimension 8. Moreover, there are
moduli spaces MH,m of Halphen surfaces of index m for m ≥ 2 which are fibrations
over MH,1 with 1-dimensional fibers, and are conjectured to be irreducible varieties
of dimension 9. Equivalently, these are moduli spaces of rational elliptic surfaces
of index m.

By [DK24, Prop. 9.1.4], any terminal Coble surface of K3 type is isomorphic to
a blowup of a Halphen surface of index 1 or 2 at either 2 or 1 simple reduced fibers.
In particular, [DZ99] shows that blowing down any (−1)-curve on an unnodal Coble
surface S yields a Halphen surface Y of index 2. Conversely, by [DM20], any such
Coble surface S is obtained by blowing up the singular point of a non-multiple
irreducible fiber of a Halphen surface Y . Due to this close geometric relationship
between Coble surfaces and Halphen surfaces of index 1 and 2, I conjecture that
there is a relationship between FCo and the moduli spaces MH,1 and MH,2.

Open subsets of these moduli spaces are referenced in the literature, e.g. in
[Dol+20, Rmk. 5.4] and [Gri18, §. 3.3.3]. [Mir81] constructs a projective compacti-
fication of MH,1 via GIT applied to the Weierstrass models of such surfaces. [MZ21]
constructs MH,2, showing it is a toric variety of dimension 9, and [Zan23] studies
the GIT stability of index 2 Halphen pencils in P2, toward a GIT compactification
of MH,2.

Halphen surfaces of index 2 are special classes of elliptic surfaces without a global
section, and are double-covered by K3 surfaces cf. [Kim18]. [ABE22] and [AT21]
introduce stable pair compactifications for special classes of elliptic fibrations. In
particular, there is a starting point for this study provided by [AE23b], for which
the case S = (10, 10, 1) corresponds to K3 surfaces X with nonsymplectic involution
ι such that Y := X/ι is an index 2 Halphen pencil. More generally, by [AE23b,
§4C], the lattices S = (10 + n, 12 − n, δ) for 1 ≤ n ≤ 9 yield index 2 Halphen
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K3 surfaces X with I2k fiber, and the surfaces Y obtained from contracting the
(−1)-curves in the special fiber are index 2 Halphen pencils with an Ik fiber.

In particular, these are precisely the lattices that appear in fig. 6. I conjecture
that these lattices can be used to construct period domains of such pencils, yielding
moduli spaces MH,2,k of Halphen surfaces of index 2 with an I2k fiber, and that the
matching of these lattices arises from a geometric comparison to Coble surfaces.
Consequently, their KSBA compactifications can be studied, much as was done for
FEn,2 and FCo in our previous and current work, and I conjecture that the boundary
strata of MH,2,k can be classified in a similar way. In particular, I conjecture that

the normalizations of the stable pair compactifications MH,2,k
R

are isomorphic to
semitoroidal compactifications of the corresponding period domains, where R is a
suitably canonical choice of divisor. In particular, a Halphen surface of index m ≥ 2
has a unique multiple fiber of multiplicity m, and I conjecture that such a fiber can
be used to construct a recognizable divisor R.

As a starting point, the Coxeter diagram for S := (10, 10, 1) is well-known, and
the moduli theory for the corresponding K3 surfaces is well-developed. Further
study would include

• Constructing the period domain FS ,

• Constructing Baily-Borel compactification FS
BB

,
• Studying O(S)-orbits of isotropic vectors ei in S,

• Using lattice-theoretic techniques to determine the cusp diagram of ∂FS
BB

,
• Computing e⊥i / ⟨ei⟩ and the Coxeter diagrams at the corresponding 0-cusps,
• Finding an appropriate recognizable divisor R and constructing the stable

pair compactification FS
R
, and

• Leveraging [AE22] to construct dlt models and integral affine structures

classifying ∂FS
R
.

This would open an avenue of research comparing GIT compactifications to
KSBA compactifications, and generalizing these techniques to compactifications

MH,m
R
form > 2 to construct new moduli spaces of general rational elliptic surfaces

(with no restrictions on the fiber type).
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Birkhäuser/Springer, [Cham], 2016, pp. 55–72. doi: 10.1007/978-3-
319-29959-4\_3.

[Gri18] Julien Grivaux. “Infinitesimal Deformations of Rational Surface Auto-
morphisms”. In:Mathematische Zeitschrift 288.3-4 (Apr. 2018), pp. 1195–
1253. issn: 0025-5874, 1432-1823. doi: 10.1007/s00209-017-1932-x.
arXiv: 1210.7163 [math]. (Visited on 08/08/2024).

[Ill79] Luc Illusie. “Complexe de deRham-Witt et Cohomologie Cristalline”.
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