# Calc 3 Week of Nov 28 FTC: $$ \begin{align} \int_C \nabla f \cdot d \mathbf{r} &=f\left(P_1\right)-f\left(P_0\right) \\ \iint \nabla \times \mathbf F(x,y) \, dA = \iint_D\left(Q_x-P_y\right)\, d A &=\int_C \mathbf F\cdot\mathbf T\, ds = \int_C \mathbf{F} \cdot d \mathbf{r} \qquad\text{Green's theorem (Circulation)}\\ \iint\nabla \cdot \mathbf F(x,y) \, dA = \iint_D\left(P_x+Q_y\right) \,d A &=\int_C \mathbf{F} \cdot \mathbf{N} \,d s \qquad\text{Green's theorem (Flux)} \\ \iint_S \nabla \times \mathbf{F} \cdot d \mathbf{S} &=\int_C \mathbf{F} \cdot d \mathbf{r} \qquad\text{Stokes theorem} \\ \iiint_E \nabla \cdot \mathbf{F} \,d V &=\iint_S \mathbf{F} \cdot d \mathbf{S} \end{align} $$ - Stokes: ![image-20221127182631100](/home/zack/.config/Typora/typora-user-images/image-20221127182631100.png) Some formulas: $$ \begin{align} \int_C f(x,y,z)\, ds &= \int_a^b f(\mathbf r(t)) \, || \mathbf r'(t)|| \, dt\\ \int_C \mathbf F(x,y,z)\cdot d\mathbf r &= \int_a^b\mathbf F(\mathbf r(t))\cdot \mathbf{r}'(t)\,dt \\ \iint_S f(x,y,z) \, dS &= \iint f(\mathbf r(u, v)) \, || \mathbf r_u(u, v) \times \mathbf r_v(u, v)|| \, dA, \\ \iint_S \mathbf F(x,y,z)\cdot d\mathbf S &= \iint_S \mathbf F(\mathbf r(u, v))\cdot \mathbf r'(u, v) \, dA \\ \iint_S \mathbf{F}\cdot \mathbf{N} \, dS &= \iint \mathbf F(\mathbf r(u, v)) \cdot (\mathbf r_u \times \mathbf r_v) \, dA \\ \\ S = g(x,y,z) \implies \mathbf r(u, v) &= (u, v, g(u, v)) \implies ||\mathbf r_u \times \mathbf r_v|| = \sqrt{1 + g_u^2 + g_v^2} \\ \mu(S) = \iint 1\,dS \end{align} $$