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2 Unit 1: Functions

1 Preface

2 Unit 1: Functions

Theorem 2.0.1(The Pythagorean Theorem).
If a, b are the legs of a right triangle with hypotenuse c, there is a relation

a2 + b2 = c2.

Theorem 2.0.2(The Distance Formula).
If p = (x1, y1) and q = (x2, y2) are points in the Cartesian plane, then there is a distance
function

d : {Pairs of points (p, q)} → R

(p, q) 7→ d(p, q) :=
√

(x2 − x1)2 + (y2 − yq)2.

Law of cosines

Definition 2.0.3 (Linear Functions)
A function f : R→ R is linear if and only if f has a formula of the following form:

f(x) = αx+ β α, β ∈ R.

Definition 2.0.4 (Intercepts)
Given a function f : R → R, an x-intercept of f is a point (x0, 0) on the graph of f , so
f(x0) = 0. Equivalently, it is a point on the intersection of the graph and the x-axis.

A y-intercept of f is a point (0, y0) on the graph of f , so f(0) = y0. Equivalently, it is a point
on the intersection of the graph and the y-axis.

Definition 2.0.5 (Relation)
A relation on two sets X and Y is a set of ordered pairs (x, y) ∈ X×Y , so R can be described
as a set:

R = {(x0, y0), (x1, y2), · · ·} .

The domain of the relation is the set of all x ∈ X that occur in the first slot of these pairs,
and the range is the set of all y ∈ Y that occur in the second slot.

Definition 2.0.6 (Function)
A relation R is a function if it satisfies the following deterministic property: for every x0 ∈

Preface 3



4 Unit 1: Functions

dom(R), there is exactly one pair of the form (x0, y0) ∈ R.

Remark 2.0.7: This says we can think of X as “inputs” and Y as “output”, and a function is a
way to unambiguously assign inputs to outputs. It can be useful to think of functions like programs:
if I send in an x, what y should the program return to me? If I run this program today, tomorrow,
and 100 years from now, sending in the same x every time, we might want it to give the same
output every time, which is the deterministic property: I can determine a single unique output if I
know what the input is. If my program tells me that 2 + 2 = 4 today but 2 + 2 = 5 tomorrow, who
knows what it will return in 100 years! We can’t “determine” it.

Slogan 2.0.8
For domains and ranges:

• Domains: the set of meaningful inputs that the function “knows” how to handle.
• Ranges: the set of attainable outputs that we can expect.

Remark 2.0.9: To determine a domain:

1. Naively hope it is all of R.
2. Throw out “problematic” points.
3. Draw a number line and write out what you are left with in interval notation.

Example 2.0.10(?): Define

f : R→ R

x 7→ 1
x
.

Then dom(f) = R \ {0} = (−∞, 0) ∪ (0,∞) and range(f) = R.

Example 2.0.11(?): Define

f : R→ R
x 7→

√
x.

Then dom(f) = R \ (−∞, 0) = [0,∞) and range(f) = [0,∞).

Unit 1: Functions 4



4 Unit 3: Trigonometric Functions

3 Unit 2: Exponential and Logarithmic
Functions

4 Unit 3: Trigonometric Functions

E 4.1 General Notes e

• In this section, always draw a picture! Virtually 100% of the time.

– In particular, a unit circle should almost always show up.

• Use exact ratios wherever possible.

• There are too many details and formulas to just memorize in this unit: focus on the processes.

E 4.2 Common Mistakes e

Some facts to remember:

• sin−1(θ) 6= 1/ sin(θ). Mnemonic: reciprocals of trigonometric functions already have a better
name, here csc(θ).

E 4.3 Basic Trigonometric Functions e

Sin/cos/etc as ratios

E 4.4 Proportionality Relationships e

Unit 2: Exponential and Logarithmic Functions 5



4 Unit 3: Trigonometric Functions

Definition 4.4.1 (Radian)

What is a 1 radian?

Figure 1: image_2021-04-18-21-51-59

Remark 4.4.2: In geometric terms, an angle in radians in the ratio of the arc length s(θ,R) to
the radius R, so

θR = s(θ,R)
R

.

Definition 4.4.3 (Coterminal Angles)
If θ is an abstract angle, we will say θ + k rev ' θ for any integer k ∈ Z. Any such angle is
said to be coterminal to θ.

4.4 Proportionality Relationships 6



4 Unit 3: Trigonometric Functions

Remark 4.4.4: In radians:

θR ' θR + k · 2π k ∈ Z.

In degrees:

θD ' θD + k · 360◦ k ∈ Z.

Proposition 4.4.5(Degrees are related to radians).

todo

θ

1 rev = θR
2π rad = θD

360◦ .

Proposition 4.4.6(Arc length and sector area are related to radians).

todo

θ

1 rev = s(R, θ)
2πR = A(R, θ)

πR2 .

This implies that

A(R, θ) = R2θ

2
s(R, θ) = Rθ.

E 4.5 Trigonometric Functions as Ratios e

Definition 4.5.1 (?)
There are 6 trigonometric functions defined by the following ratios:

soh-cah-toa, cho-sha-cao

Function Domain Range
sin R [−1, 1]
cos R [−1, 1]
tan R \

{
±π2 ,±

3π
2 , · · ·

}
?

csc R \ {0,±π,±2π, · · ·} ?

4.5 Trigonometric Functions as Ratios 7



4 Unit 3: Trigonometric Functions

sec R \
{
±π2 ,±

3π
2 , · · ·

}
?

cot R \ {0,±π,±2π, · · ·} ?

Proposition 4.5.2(Domains of trigonometric functions).

E 4.6 Polar Coordinates e

Definition 4.6.1 (Unit Circle)
The unit circle is defined as

S1 :=
{

p = (x, y) ∈ R2
∣∣∣ d(p,0) = 1

}
=
{

(x, y) ∈ R2
∣∣∣ x2 + y2 = 1

}
,

the set of all points in the plane that are distance exactly 1 from the origin.

Theorem 4.6.2(Polar Coordinates).
If a vector v has at an angle of θ in radians and has length R, the corresponding point p at
the end of v is given by

p = [x, y] = [R cos(θ), R sin(θ)].

Conversely, if (x, y) are known, then the corresponding R and θ are given by

[R, θ] =
[√

x2 + y2, arctan
(
y

x

)]
.

Corollary 4.6.3(Polar Coordinates on S1).
If R = 1, so v is on the unit circle S1, then

[x, y] = [cos(θ), sin(θ)].

Remark 4.6.4: This is a very important fact! The x, y coordinates on the unit circle literally
corresponding to cosines and sines of subtended angles will be used frequently.

Slogan 4.6.5
Cosines are like x coordinates, sines are like y coordinates.

Example 4.6.6(?): Given θR = 4π/3, what is the corresponding point on the unit circle S1?

4! Warning 4.6.7
Note that sin(θ), cos(θ) work for any θ at all. However, cos(θ) = 0 sometimes, so tan(θ) :=
sin(θ)/ cos(θ) will on occasion be problematic. Similar story for the other functions.

4.6 Polar Coordinates 8



4 Unit 3: Trigonometric Functions

E 4.7 Special Angles e

For reference: the unit circle.

Figure 2: image_2021-04-18-21-06-45

Remark 4.7.1: Idea: we want to partition the circle simultaneously

• Into 8 pieces, so we increment by 2π/8 = π/4
• Into 12 pieces, so we increment by 2π/12 = π/6.

Proposition 4.7.2(Trick to memorize special angles).

Table of special angles, increasing/decreasing

4.7 Special Angles 9



4 Unit 3: Trigonometric Functions

E
4.8 Reference Angles and the Flipping

Method
e

Definition 4.8.1 (Reference Angle)
Given a vector at of length R and angle θ, the reference angle θRef is the acute angle in the
triangle formed by dropping a perpendicular to the nearest horizontal axis.

Proposition 4.8.2(?).
Reference angles for each quadrant:

Quadrant II : θ + θRef = π

Quadrant III : π + θRef = θ

Quadrant IV : θ + θRef = 2π.

Example 4.8.3(?): Given sin(θ) = 7/25, what are the five remaining trigonometric functions of
θ?

Method:

1. Draw a picture! Embed θ into a right triangle.
2. Find the missing side using the Pythagorean theorem.
3. Use definition of trigonometric functions are ratios.

Remark 4.8.4: Note that you can not necessarily find the angle θ here, but we didn’t need it. If
we did want θ, we would need an inverse function to free the argument:

sin(θ) = 7/25
=⇒ arcsin(sin(θ)) = arcsin(7/25)

=⇒ θ = arcsin(7/25)
.

E 4.9 Identities Using Pythagoras e

Proposition 4.9.1(?).

(sin(θ))2 + (cos(θ))2 = 1
1 + (cot(θ))2 = (csc(θ))2

(tan(θ))2 + 1 = (sec(θ))2.

4.8 Reference Angles and the Flipping Method 10



4 Unit 3: Trigonometric Functions

Proof (?).
Derive first from Pythagorean theorem in S1. Obtain the second by dividing through by
(sin(θ))2. Obtain the third by dividing through by (cos(θ))2.

�

E 4.10 Even/Odd Properties e

Question 4.10.1
Thinking of cos(θ) as a function of θ, is it

• Even?
• Odd?
• Neither?

Remark 4.10.2: Why do we care? The Fundamental Theorem of Calculus.

Figure 3: image_2021-04-18-22-39-08

Proposition 4.10.3(?).

• f(θ) := cos(θ) is an even function.
• g(θ) := sin(θ) is an odd function.

4.10 Even/Odd Properties 11



4 Unit 3: Trigonometric Functions

Proof (?).
Plot vectors for θ,−θ on S1 and flip over the x-axis.

�

Corollary 4.10.4(?).

• cos(t), sec(t) are even.
• sin(t), csc(t), tan(t), cot(t) are odd.

E 4.11 Wave Function e

Remark 4.11.1: Motivation: let a vector run around the unit circle, where we think of θ as a time
parameter. What are its x and y coordinates? What happens if we plot x(t) in a new θ plane?

Definition 4.11.2 (Standard Form of a Wave Function)
The standard form of a wave function is given by

f(t) := A cos(ω(t− ϕ)) + δ,

where

• A is the amplitude,
• ω is the frequency,
• ϕ is the phase shift, and
• δ is the vertical shift.
• P := 2π/ω is the period, so f(t+ kP ) = f(t) for all k ∈ Z.

Insert plot

Remark 4.11.3: Note that this is nothing more than a usual cosine wave, just translated/dilated
in the x direction and the y direction.

4! Warning 4.11.4
Don’t memorize equations like y = sin(Bt+ C) and e.g. the phase shift if ϕ = −C/B. Instead, use
a process: always put your equation in standard form, then you can just read off the parameters.
For example:

f(t) = cos(Bt+ C)

= cos(B(t+ C

B
))

= cos(ω(t− ϕ))

=⇒ B = ω, ϕ = −C
B
.

4.11 Wave Function 12



4 Unit 3: Trigonometric Functions

Example 4.11.5(?): Put the following wave in standard form:

f(t) := 4 cos(3t+ 2).

Example 4.11.6(?): Put the following wave in standard form:

f(t) := α cos(βt+ γ).

Proposition 4.11.7(?).
How to plot the graph of a wave equation:

1. Put in standard form.
2. Read off the parameters to build a rectangular box of width P and height 2|A| about

the line y = δ.
3. Break the box into 4 pieces using the key points t = ϕ+ k

4P for k = 0, 1, 2, 3, 4.

Example 4.11.8(Plotting): Plot the following function in the t plane:

f(t) = 2 cos
(

5t− π

2

)
+ 7.

Example 4.11.9(?): Plot the following:

f(t) = −2 sin(3t− 7).

Proposition 4.11.10(Determining the equation of a sine wave).
Given a picture of a graph of a sine wave,

1. Draw a horizontal line cutting the wave in half. This will be δ.
2. Measure the distance from this midline to a peak. This will be |A|.
3. Restrict to one full period, starting either at a peak (if you want to match cos(t)) or a

zero (if you want to match sin(t)). Pick the period starting as close as possible to the
y-axis.

4. Measure the period P and reverse-engineer it to get ω: P = 2π/ω =⇒ ω = 2π/P .
5. Measure the distance from the starting point to the y-axis: this is ϕ.

Example 4.11.11(?): Determine the equation of the following wave function:

4.11 Wave Function 13



4 Unit 3: Trigonometric Functions

Figure 4: image_2021-04-18-20-51-34

Solution:

f(t) = 2 sin
(

4t+ π

6

)
.

Remark 4.11.12: Note that we can graph other trigonometric functions: they get pretty wild
though.

4.11 Wave Function 14



4 Unit 3: Trigonometric Functions

Figure 5: Tangent

4.11 Wave Function 15



4 Unit 3: Trigonometric Functions

E 4.12 Simplifying Identities e

Remark 4.12.1: The goal: reduce a complicated mess of trigonometric functions to something as
simple as possible. We’ll use a boxing-up method.

Remark 4.12.2: On verifying identities: if you want to show f(θ) = g(θ), start at one and arrive
at the other:

f(θ) = simplify f
= · · ·
= · · ·
= · · ·
= g(θ)
.

4! Warning 4.12.3
If you end up with something like 1 = 1 or 0 = 0, this is hinting at a problem with your logic.

Exercise 4.12.4 (?)
Simplify the following:

F (θ) :=
(sin(θ) cos(θ)

cot(θ)

)
cos(θ) csc(θ).

Solution:

F = s

(
s

c

)
.

Remark 4.12.5: As an alternative, you can use the transitivity of equality: show that f(θ) =
h(θ) for some totally different function h, and then show g(θ) = h(θ) as well.

4.12 Simplifying Identities 16



4 Unit 3: Trigonometric Functions

Figure 6: image_2021-04-18-21-58-52

Exercise 4.12.6 (Reducing both sides to a common expression)
Show the following identity:

sin(−θ) + csc(θ) = cot(θ) cos(θ)

by showing both sides are separately equal to h(θ) := csc(θ)− sin(θ).

E 4.13 Inverse Functions e

4.13.1 Motivation

Remark 4.13.1: Motivation: we want a way to solve equations where the unknown θ is stuck in
the argument of a trigonometric function. For example, for sin : RA → RB, this would be some
function f : RB → RA such that

f(sin(θ)) = id(θ) = θ

sin(f(y)) = id(y) = y.

4.13 Inverse Functions 17



4 Unit 3: Trigonometric Functions

Figure 7: Input-Output perspective: important!

Note that we only ever have to define f on range(sin), since we’re only ever sending outputs of
f in as the inputs of sin. So we need range(sin) ⊂ dom(f), noting that range(sin) = [−1, 1]:

Similarly, we need range(f) ⊂ dom(sin).

4.13 Inverse Functions 18



4 Unit 3: Trigonometric Functions

4.13.2 Using Triangles

Remark 4.13.2: Optimistically imagine that we had some such inverse function. Then we could
evaluate some expressions without even knowing anything else about it. The trick:

θ = arccos(p/q)
=⇒ cos(θ) = cos(arccos(p/q))
=⇒ cos(θ) = p/q.

Now embed this in a triangle. We can’t solve for θ, but we can solve for other trigonometric
functions.

Exercise 4.13.3 (Using functional inverse property)

cos
(

arccos
(√

5
5

))
=
√

5
5

arccos
(

cos
(√

5
5

))
=
√

5
5 .

Exercise 4.13.4 (Using a triangle)

tan
(

arcsin
(
p

q

))
= p√

q2 − p2 .

Figure 8: image_2021-04-22-22-14-13

Exercise 4.13.5 (Can’t extract angles)
Compute arcsin(3/5).
4! Warning 4.13.6
This is equal to sin−1(3/5), which is not equal to 1

sin(3/5) ! One way to remember this is that

we have another name for reciprocals, here csc(3/5).

4.13 Inverse Functions 19



4 Unit 3: Trigonometric Functions

Solution:

θ = arcsin(3/5)
=⇒ sin(θ) = (3/5) roughly by injectivity

=⇒ = · · ·?.

We are out of luck, since this isn’t a special angle. So we can’t find a numerical value of θ. We
can find other trig functions of θ though:

Figure 9: image_2021-04-18-22-30-09

So for example, cos(arcsin(3/5)) = 4/5.

Remark 4.13.7: Most inverse trigonometric functions can not be exactly solved! We’ll have to
approximate by calculator if we want the actual angle. If we just want other trigonometric functions
though, we can always embed in a triangle.

Example 4.13.8(Using triangles): Show the following:

• cos(arcsin(24/26)) = 10/26

– Write θ = arcsin(24/26), note θ is in [−π/2, π/2] = range(arcsin).

• tan(arccos(−10/26)) = 10/26

– Write θ = arccos(−10/26), note θ is in [0, π] = range(arccos)

4.13 Inverse Functions 20



4 Unit 3: Trigonometric Functions

4.13.3 Defining Inverses

Remark 4.13.9: The setup: try swapping y and θ in the graph of y = sin(θ):

Figure 10: image_2021-04-18-22-32-36

Note that the latter is a function (vertical line test) iff the former is injective (horizontal line test).
So we take the largest branch where the inverse is a function:

4.13 Inverse Functions 21



4 Unit 3: Trigonometric Functions

Figure 11: image_2021-04-18-22-33-27

Back on our original graph, this looks like the following:

Figure 12: image_2021-04-18-20-53-25

Restricting, we get

• dom(arccos) := range(cos) = [−1, 1].
• range(arccos) := dom(cos) = [0, π].

Remark 4.13.10: A similar analysis works for sin(θ):

4.13 Inverse Functions 22



4 Unit 3: Trigonometric Functions

Figure 13: image_2021-04-18-22-34-21

Restricting, we get

• dom(arcsin) := range(sin) = [−1, 1].
• range(arcsin) := dom(sin) = [−π/2, π/2].

4.13 Inverse Functions 23



4 Unit 3: Trigonometric Functions

Remark 4.13.11: This gives us a new tool to solve equations:

... =
...

=⇒ cos(x) = b

=⇒ arccos(cos(x)) = arccos(b)
=⇒ x = arccos(b),

but only if we know this makes sense based on domain/range issues.

Proposition 4.13.12(Domains of inverse trigonometric functions).
Restrict domains in the following ways:

• sin: [−π/2, π/2]
• cos : [0, π]
• tan : [−π/2, π/2]

Function Domain Range
arcsin [−1, 1] [−π/2, π/2]
arccos [−1, 1] [0, π]
arctan R (−π/2, π/2)
arccsc R \ {0,±π,±2π, · · ·} [−π/2, π/2] \ {0}
arcsec R \

{
±π2 ,±

3π
2 , · · ·

}
[0, π] \ {π/2}

arccot R (0, π)

Slogan 4.13.13
There is an easy way to remember this:

• Cosines are x-values, pick the upper (or lower) half of the circle to make them unique.
• Sines are y-values, pick the right (or left) half of the circle to make them unique.

4.13 Inverse Functions 24
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Figure 14: image_2021-04-22-22-00-04

4.13 Inverse Functions 25



4 Unit 3: Trigonometric Functions

Figure 15: Unit Circle

Example 4.13.14(Using special angles): We have some exact values.

Sines should be in QI or QIV:

• arcsin(1/2) = π/6
• arcsin(

√
3/2) = π/3

• arcsin(−1/2) = −π/6

Cosines should be in QI or QII:

• arccos(
√

3/2) = π/6
• arccos(−

√
2/2) = 3π/4

• arccos(1/2) = π/3

4.13 Inverse Functions 26



4 Unit 3: Trigonometric Functions

Tangents should be in QI or QIV:

• arctan(
√

3/3) = π/6
• arctan(0) = 0
• arctan(1) = π/4

4! Warning 4.13.15
Note that if f, g are an inverse pair, we have

f ◦ g = id ⇐⇒ f(g(x)) = x, g(f(x)) = x.

However, we have to be careful with domains for trigonometric functions:

• arcsin(sin(x)) = x ⇐⇒ x ∈ [−π/2, π/2] (restricted domain of sin)
• sin(arcsin(x)) = x ⇐⇒ x ∈ [−1, 1] (domain of arcsin)
• arccos(cos(x)) = x ⇐⇒ x ∈ [0, π] (restricted domain of cos)
• cos(arccos(x)) = x ⇐⇒ x ∈ [−1, 1] (domain of arccos)
• arctan(tan(x)) = x ⇐⇒ x ∈ [0] (restricted domain of tan)
• tan(arctan(x)) = x ⇐⇒ x ∈ R

– Domain of arctan, then range is [−π/2, π/2], which is in the domain of tan.

E 4.14 Double/Half-Angle Identities e

Remark 4.14.1: Sometimes we are interested in superposition of waves, see Desmos for an
example. Mathematically this is modeled by adding wave functions together. Similarly, we are
sometimes interested in modulating or enveloping waves, which is modeled by multiplying a
wave with another function: see Desmos.

4.14 Double/Half-Angle Identities 27
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4 Unit 3: Trigonometric Functions

Figure 16: image_2021-04-18-22-06-08

We can sometimes rewrite these as a single wave with a phase shift.

Proposition 4.14.2(Angle Sum Identities).
Identities:

sin(θ + ψ) = sin(θ) cos(ψ) + cos(θ) sin(ψ)
cos(θ + ψ) = cos(θ) cos(ψ) + sin(θ) sin(ψ).

Note that you can divide these to get

tan(θ + ψ) = tan(θ) + tan(ψ)
1− tan(θ) tan(ψ) ,

and replace ψ with −ψ and use even/odd properties to get formulas for sin(θ − ψ), cos(θ − ψ)

Slogan 4.14.3
Sines are friendly and cosines are clique-y!

Corollary 4.14.4(Double angle identities).

4.14 Double/Half-Angle Identities 28



4 Unit 3: Trigonometric Functions

Taking θ = ψ is the above identities yields

sin(2θ) = sin(θ) cos(θ) + cos(θ) sin(θ)
= 2 sin(θ) cos(θ)

cos(2θ) = cos(θ) cos(θ) + sin(θ) sin(θ)
= cos2(θ)− sin2(θ).

4! Warning 4.14.5
The latter is not equal to 1! That would be cos2(θ) + sin2(θ).

Remark 4.14.6: Why do we care? We had 16 special angles, this gives a lot more. For example,

cos(π/12) = cos(π/3− π/4) = · · · plug in.

By allowing increments of π/12, we have 24 total angles.

Corollary 4.14.7(?).
Starting from the following:

cos(2θ) = cos2(θ)− sin2(θ)

= cos2(θ)−
(
1− cos2(θ)

)
= 2 cos2(θ)− 1 using s2 + c2 = 1,

one can solve for

cos2(θ) = 1
2 (1 + cos(2θ)) .

Similarly

cos(2θ) = cos2(θ)− sin2(θ)

=
(
1− sin2(θ)

)
− sin2(θ)

= 1− 2 sin2(θ) using s2 + c2 = 1,

solving yields

sin2(θ) = 1
2(1− cos(2θ)).

Remark 4.14.8: These are very important in Calculus! This gives us a way to reduce the exponents
on expressions like sinn(θ).
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E 4.15 Bonus: Complex Exponentials e

Question 4.15.1
We spent one entire unit studying the function f(x) = ex, and another studying the functions
g(x) = cos(x), h(x) = sin(x). They seem completely unrelated, but miraculously they are both just
shadows of of unifying concept.

Remark 4.15.2: Components of vectors: every v ∈ R2 breaks up as the sum of two vectors,
i.e. v = vx + vy. In coordinates, if v = (a, b), we have vx = (a, 0) and vy = (0, b). Alternatively,
we can drop the ordered pair notation and write v = ax̂ + bŷ.

Remark 4.15.3: We’ve worked with the Cartesian plane all semester. One powerful tool is replacing
this with the complex plane. We formally define a new symbol i and replace the ŷ direction with
the i direction – this amounts to replacing ordered pairs (a, b) := ax̂ + bŷ by a single number a+ ib.

Example 4.15.4(How to work with complex numbers): Complex numbers can be added:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

This is perhaps easier to understand in the ordered pair notation: you just add the components in
each component:

[a, b] + [c, d] = [a+ c, b+ d].

Complex numbers can be multiplied:

(a+ bi)(c+ di) = a(c+ di) + bi(c+ di)
= ac+ adi+ bci+ bdi2

= (ac− bd) + (ad+ bc)i.

This is harder to see in the ordered pair notation.

We can compare complex numbers: they are equal iff their components are equal:

a+ bi = c+ di ⇐⇒ a = c and b = d,

or in ordered pair notation,

[a, b] = [c, d] ⇐⇒ a = c and b = d.

Remark 4.15.5: The symbol i happens to have another algebraic property. Consider the family of
equations f(x, t) = x2 + t, and think about finding the roots. Finding a root is solving f(x, t) = 0,
which is the exact same thing as finding the intersection points with the graph of g(x) = 0. Taking
t = 0 yields f(x) = x2, which has a root at zero. Taking t < 0 yields two roots. However, taking
t > 0 yields no roots – at least not in R. As it turns out, the function f1(x) = x2 + 1 and g(x) = 0
do intersect in some other, bigger space, and we’re only seeing a shadow of this! In other words,
x2 + 1 = 0 didn’t have solutions in R, but will have a solution in C.
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Remark 4.15.6: The following is the main link between exponentials and waves:

Proposition 4.15.7(Euler’s Formula).

eiθ = cos(θ) + i sin(θ).

Remark 4.15.8: Really, this is just polar coordinates on the unit circle: if we go back to ordered
pair notation, this is just giving a point (cos(θ), sin(θ)) ∈ S1. So the complex number eiθ is also a
vector pointing at an angle θ from the origin and landing on the unit circle.

Proposition 4.15.9(Euler’s Identity).

eiπ = −1.

Remark 4.15.10: This is remarkable! It relates some of the most fundamental constant numbers
in mathematics:

• e = 2.718 . . .
• π = 3.14159 . . .
• −1

Proof: just plug π into Euler’s equation. Geometric interpretation: π radians is directly to the left.

Example 4.15.11(?): An application: proving the angle sum formulas algebraically. We start by
considering the angle α+ β. On one hand, Euler’s formula says

ei(α+β) = cos(α+ β) + i sin(α+ β) = [cos(α+ β), sin(α+ β)].

On the other hand, we can use properties of exponentials first and expand:

ei(α+β) = eiαeiβ

= (cos(α) + i sin(α)) · (cos(β) + i sin(β))
= cos(α) (cos(β) + i sin(β)) + i sin(α) (cos(β) + i sin(β))
= cos(α) cos(β) + i cos(α) sin(β) + i sin(α) cos(β) + i2 sin(α) sin(β)
= (cos(α) cos(β)− sin(α) sin(β)) + i (cos(α) sin(β) + sin(α) cos(β))
= [cos(α) cos(β)− sin(α) sin(β), cos(α) sin(β) + sin(α) cos(β)] .

Now we just equate components:
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[cos(α+ β), sin(α+ β)] = [cos(α) cos(β)− sin(α) sin(β), cos(α) sin(β) + sin(α) cos(β)]

=⇒ cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)
=⇒ sin(α+ β) = cos(α) sin(β) + sin(α) cos(β).

Remark 4.15.12: The analogy goes farther: polar coordinates are essentially just a shadow of
complex numbers. Since eiθ ∈ S1, we can scale by a radius r to write z = reiθ and get any point in
the plane. If we just draw a vector v[r cos(θ), r sin(θ)], note that Euler’s formula gives us a way to
get a complex number z that corresponds to it:

z := reiθ = r(cos(θ) + i sin(θ)) = r cos(θ) + i · r sin(θ) = [r cos(θ), r sin(θ)] = v.

Remark 4.15.13: Results like these are at the heart of mathematics: having a bunch of equations,
seeing patterns, and trying to find some common, unifying, and hopefully simpler structure that
underlies all of it. An example you’ll see in Calculus: all of the graphs we’ve been looking at in this
class are “shadows” of intersecting shapes in some higher dimensional space!

Figure 17: Conic Sections
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