

Notes: These are rough notes for the Math 1113 Precalculus course at the University of Georgia

Precalculus

University of Georgia, Spring 2021

D. Zack Garza

1

D. Zack Garza University of Georgia dzackgarza@gmail.com Last updated: 2021-04-27

Table of Contents

Contents

Table of Contents		
1	Preface	3
2	Unit 1: Functions	3
3	Unit 2: Exponential and Logarithmic Functions	5
4	Unit 3: Trigonometric Functions	5
	4.1 General Notes	5
	4.2 Common Mistakes	5
	4.3 Basic Trigonometric Functions	5
	4.4 Proportionality Relationships	6
	4.5 Trigonometric Functions as Ratios	7
	4.6 Polar Coordinates	8
	4.7 Special Angles	9
	4.8 Reference Angles and the Flipping Method	10
	4.9 Identities Using Pythagoras	10
	4.10 Even/Odd Properties	11
	4.11 Wave Function	12
	4.12 Simplifying Identities	16
	4.13 Inverse Functions	17
	$4.13.1$ Motivation \ldots	17
	4.13.2 Using Triangles	19
	4.13.3 Defining Inverses	21
	4.14 Double/Half-Angle Identities	27
	4.15 Bonus: Complex Exponentials	30
Тс	oDos	32
D	efinitions	34
TI	heorems	35
E×	xercises	36
Fi	igures	37

1 | Preface **2** | Unit 1: Functions

Theorem 2.0.1 (*The Pythagorean Theorem*). If a, b are the legs of a right triangle with hypotenuse c, there is a relation

 $a^2 + b^2 = c^2.$

Theorem 2.0.2 (*The Distance Formula*). If $p = (x_1, y_1)$ and $q = (x_2, y_2)$ are points in the Cartesian plane, then there is a **distance function**

 $d: \{ \text{Pairs of points } (p,q) \} \to \mathbb{R}$

$$(p,q) \mapsto d(p,q) \coloneqq \sqrt{(x_2 - x_1)^2 + (y_2 - y_q)^2}$$

 $\alpha, \beta \in \mathbb{R}.$

Law of cosines

Definition 2.0.3 (Linear Functions) A function $f : \mathbb{R} \to \mathbb{R}$ is **linear** if and only if f has a formula of the following form:

$$f(x) = \alpha x + \beta$$

Definition 2.0.4 (Intercepts)

Given a function $f : \mathbb{R} \to \mathbb{R}$, an *x*-intercept of f is a point $(x_0, 0)$ on the graph of f, so $f(x_0) = 0$. Equivalently, it is a point on the intersection of the graph and the *x*-axis.

A *y*-intercept of f is a point $(0, y_0)$ on the graph of f, so $f(0) = y_0$. Equivalently, it is a point on the intersection of the graph and the *y*-axis.

Definition 2.0.5 (Relation)

A relation on two sets X and Y is a set of ordered pairs $(x, y) \in X \times Y$, so R can be described as a set:

$$R = \{(x_0, y_0), (x_1, y_2), \cdots \}.$$

The **domain** of the relation is the set of all $x \in X$ that occur in the first slot of these pairs, and the **range** is the set of all $y \in Y$ that occur in the second slot.

Definition 2.0.6 (Function)

A relation R is a **function** if it satisfies the following *deterministic property*: for every $x_0 \in$

dom(R), there is exactly one pair of the form $(x_0, y_0) \in R$.

Remark 2.0.7: This says we can think of X as "inputs" and Y as "output", and a function is a way to unambiguously assign inputs to outputs. It can be useful to think of functions like programs: if I send in an x, what y should the program return to me? If I run this program today, tomorrow, and 100 years from now, sending in the same x every time, we might want it to give the same output every time, which is the *deterministic* property: I can *determine* a single unique output if I know what the input is. If my program tells me that 2 + 2 = 4 today but 2 + 2 = 5 tomorrow, who knows what it will return in 100 years! We can't "determine" it.

Slogan 2.0.8

For domains and ranges:

- Domains: the set of *meaningful* inputs that the function "knows" how to handle.
- Ranges: the set of *attainable* outputs that we can expect.

Remark 2.0.9: To determine a domain:

- 1. Naively hope it is all of \mathbb{R} .
- 2. Throw out "problematic" points.
- 3. Draw a number line and write out what you are left with in interval notation.

Example 2.0.10(?): Define

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{1}{x}.$$

Then dom $(f) = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ and range $(f) = \mathbb{R}$.

Example 2.0.11(?): Define

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sqrt{x}$$

Then dom $(f) = \mathbb{R} \setminus (-\infty, 0) = [0, \infty)$ and range $(f) = [0, \infty)$.

3 | Unit 2: Exponential and Logarithmic Functions

4 Unit 3: Trigonometric Functions

4.1 General Notes

- In this section, always draw a picture! Virtually 100% of the time.
 - In particular, a unit circle should almost always show up.
- Use exact ratios wherever possible.
- There are too many details and formulas to just memorize in this unit: focus on the **processes**.

4.2 Common Mistakes

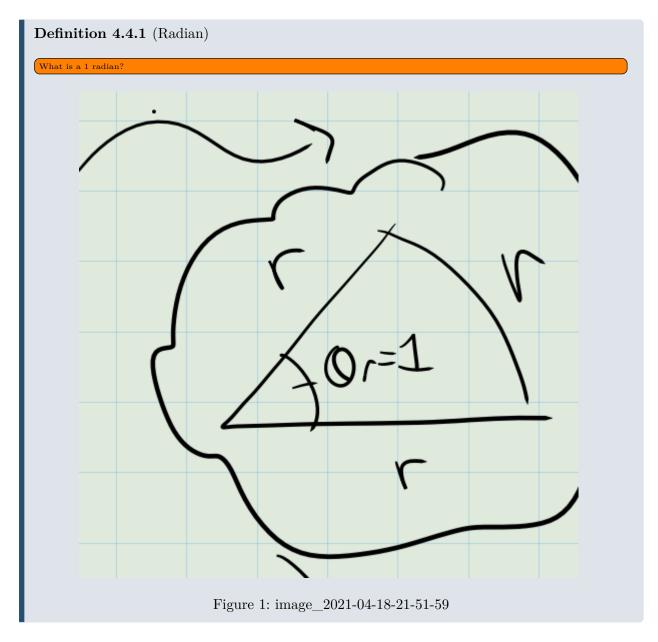
Some facts to remember:

• $\sin^{-1}(\theta) \neq 1/\sin(\theta)$. Mnemonic: reciprocals of trigonometric functions already have a better name, here $\csc(\theta)$.

4.3 Basic Trigonometric Functions

Sin/cos/etc as ratios

4.4 Proportionality Relationships



Remark 4.4.2: In geometric terms, an angle in radians in the ratio of the arc length $s(\theta, R)$ to the radius R, so

$$\theta_R = \frac{s(\theta, R)}{R}.$$

Definition 4.4.3 (Coterminal Angles)

If θ is an abstract angle, we will say $\theta + k \operatorname{rev} \simeq \theta$ for any integer $k \in \mathbb{Z}$. Any such angle is said to be **coterminal** to θ .

Remark 4.4.4: In radians:

$$\theta_R \simeq \theta_R + k \cdot 2\pi$$
 $k \in \mathbb{Z}.$

In degrees:

$$\theta_D \simeq \theta_D + k \cdot 360^\circ \qquad \qquad k \in \mathbb{Z}$$

Proposition 4.4.5 (Degrees are related to radians).

todo

$$\frac{\theta}{1 \operatorname{rev}} = \frac{\theta_R}{2\pi \operatorname{rad}} = \frac{\theta_D}{360^\circ}.$$

Proposition 4.4.6 (Arc length and sector area are related to radians).

todo

$$\frac{\theta}{1 \operatorname{rev}} = \frac{s(R,\theta)}{2\pi R} = \frac{A(R,\theta)}{\pi R^2}.$$

This implies that

$$A(R,\theta) = \frac{R^2\theta}{2}$$
$$s(R,\theta) = R\theta.$$

4.5 Trigonometric Functions as Ratios

Definition 4.5.1 (?) There are 6 trigonometric functions defined by the following ratios: soh-cah-toa, cho-sha-cao

Function	Domain	Range
sin	\mathbb{R}	[-1, 1]
\cos	\mathbb{R}	[-1, 1]
tan	$\mathbb{R}\setminus\left\{\pmrac{\pi}{2},\pmrac{3\pi}{2},\cdots ight\}$?
csc	$\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$?

sec
$$\mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \cdots \right\}$$
?
cot
$$\mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi, \cdots\}$$
?

Proposition 4.5.2 (Domains of trigonometric functions).

4.6 Polar Coordinates

Definition 4.6.1 (Unit Circle) The **unit circle** is defined as

$$S^{1} \coloneqq \left\{ \mathbf{p} = (x, y) \in \mathbb{R}^{2} \mid d(\mathbf{p}, \mathbf{0}) = 1 \right\} = \left\{ (x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1 \right\},$$

the set of all points in the plane that are distance exactly 1 from the origin.

Theorem 4.6.2 (*Polar Coordinates*). If a vector \mathbf{v} has at an angle of θ in radians and has length R, the corresponding point \mathbf{p} at the end of \mathbf{v} is given by

$$\mathbf{p} = [x, y] = [R\cos(\theta), R\sin(\theta)].$$

Conversely, if (x, y) are known, then the corresponding R and θ are given by

$$[R,\theta] = \left[\sqrt{x^2 + y^2}, \arctan\left(\frac{y}{x}\right)\right].$$

Corollary 4.6.3 (Polar Coordinates on S^1). If R = 1, so **v** is on the unit circle S^1 , then

 $[x, y] = [\cos(\theta), \sin(\theta)].$

Remark 4.6.4: This is a very important fact! The x, y coordinates on the unit circle *literally* corresponding to cosines and sines of subtended angles will be used frequently.

Slogan 4.6.5

Cosines are like x coordinates, sines are like y coordinates.

Example 4.6.6(?): Given $\theta_R = 4\pi/3$, what is the corresponding point on the unit circle S^1 ?

Warning 4.6.7

Note that $\sin(\theta), \cos(\theta)$ work for any θ at all. However, $\cos(\theta) = 0$ sometimes, so $\tan(\theta) := \sin(\theta)/\cos(\theta)$ will on occasion be problematic. Similar story for the other functions.

4.7 Special Angles

For reference: the unit circle.

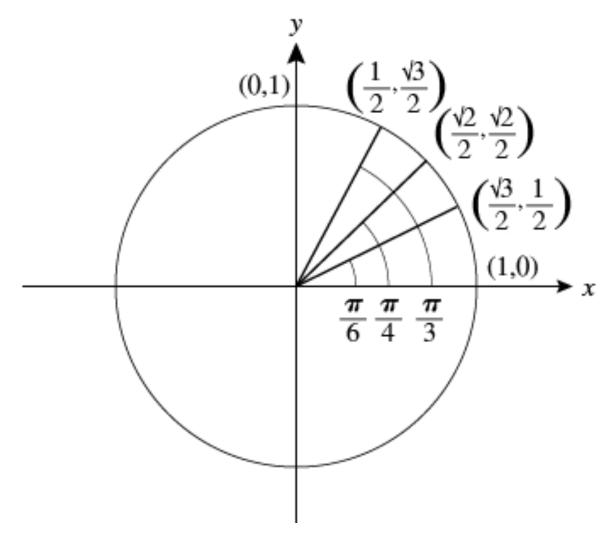


Figure 2: image_2021-04-18-21-06-45

Remark 4.7.1: Idea: we want to partition the circle simultaneously

- Into 8 pieces, so we increment by $2\pi/8 = \pi/4$
- Into 12 pieces, so we increment by $2\pi/12 = \pi/6$.

Proposition 4.7.2 (Trick to memorize special angles).

Table of special angles, increasing/decreasing

~

4.8 Reference Angles and the Flipping Method

Definition 4.8.1 (Reference Angle)

Given a vector at of length R and angle θ , the **reference angle** θ_{Ref} is the acute angle in the triangle formed by dropping a perpendicular to the nearest horizontal axis.

Proposition 4.8.2(?). Reference angles for each quadrant:

Quadrant II :	$\theta + \theta_{ m Ref} = \pi$
Quadrant III :	$\pi + \theta_{\rm Ref} = \theta$
Quadrant IV :	$\theta + \theta_{\text{Ref}} = 2\pi.$

Example 4.8.3(?): Given $sin(\theta) = 7/25$, what are the five remaining trigonometric functions of θ ?

Method:

- 1. Draw a picture! Embed θ into a right triangle.
- 2. Find the missing side using the Pythagorean theorem.
- 3. Use definition of trigonometric functions are ratios.

Remark 4.8.4: Note that you can not necessarily find the angle θ here, but we didn't need it. If we *did* want θ , we would need an inverse function to free the argument:

$$\sin(\theta) = 7/25$$
$$\implies \arcsin(\sin(\theta)) = \arcsin(7/25)$$
$$\implies \theta = \arcsin(7/25)$$

4.9 Identities Using Pythagoras

Proposition 4.9.1(?).

$$(\sin(\theta))^2 + (\cos(\theta))^2 = 1$$

$$1 + (\cot(\theta))^2 = (\csc(\theta))^2$$

$$(\tan(\theta))^2 + 1 = (\sec(\theta))^2.$$

Proof (?).

Derive first from Pythagorean theorem in S^1 . Obtain the second by dividing through by $(\sin(\theta))^2$. Obtain the third by dividing through by $(\cos(\theta))^2$.

4.10 Even/Odd Properties

Question 4.10.1

Thinking of $\cos(\theta)$ as a function of θ , is it

- Even?
- Odd?
- Neither?

Remark 4.10.2: Why do we care? The Fundamental Theorem of Calculus.

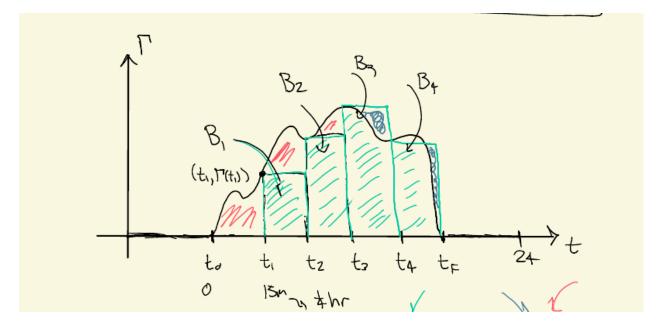


Figure 3: image_2021-04-18-22-39-08

Proposition 4.10.3(?).

- $f(\theta) \coloneqq \cos(\theta)$ is an even function.
- $g(\theta) \coloneqq \sin(\theta)$ is an odd function.

Proof (?). Plot vectors for θ , $-\theta$ on S^1 and flip over the *x*-axis.

Corollary 4.10.4(?).

- $\cos(t)$, $\sec(t)$ are even.
- $\sin(t), \csc(t), \tan(t), \cot(t)$ are odd.

4.11 Wave Function

Remark 4.11.1: Motivation: let a vector run around the unit circle, where we think of θ as a time parameter. What are its x and y coordinates? What happens if we plot x(t) in a new θ plane?

Definition 4.11.2 (Standard Form of a Wave Function) The **standard form** of a wave function is given by

$$f(t) \coloneqq A\cos(\omega(t-\varphi)) + \delta,$$

where

- A is the **amplitude**,
- ω is the **frequency**,
- φ is the **phase shift**, and
- δ is the **vertical shift**.
- $P \coloneqq 2\pi/\omega$ is the **period**, so f(t+kP) = f(t) for all $k \in \mathbb{Z}$.

Insert plot

Remark 4.11.3: Note that this is nothing more than a usual cosine wave, just translated/dilated in the x direction and the y direction.

Warning 4.11.4

Don't memorize equations like $y = \sin(Bt + C)$ and e.g. the phase shift if $\varphi = -C/B$. Instead, use a process: always put your equation in standard form, then you can just read off the parameters. For example:

$$f(t) = \cos(Bt + C)$$

= $\cos(B(t + \frac{C}{B}))$
= $\cos(\omega(t - \varphi))$
 $\implies B = \omega, \varphi = -\frac{C}{B}.$

Example 4.11.5(?): Put the following wave in standard form:

$$f(t) \coloneqq 4\cos(3t+2).$$

Example 4.11.6(?): Put the following wave in standard form:

$$f(t) \coloneqq \alpha \cos(\beta t + \gamma).$$

Proposition 4.11.7*(?).* How to plot the graph of a wave equation:

- 1. Put in standard form.
- 2. Read off the parameters to build a rectangular box of width P and height 2|A| about the line $y = \delta$.
- 3. Break the box into 4 pieces using the key points $t = \varphi + \frac{k}{4}P$ for k = 0, 1, 2, 3, 4.

Example 4.11.8 (*Plotting*): Plot the following function in the t plane:

$$f(t) = 2\cos\left(5t - \frac{\pi}{2}\right) + 7.$$

Example 4.11.9(?): Plot the following:

$$f(t) = -2\sin(3t - 7).$$

Proposition 4.11.10 (Determining the equation of a sine wave). Given a picture of a graph of a sine wave,

- 1. Draw a horizontal line cutting the wave in half. This will be δ .
- 2. Measure the distance from this midline to a peak. This will be |A|.
- 3. Restrict to one full period, starting either at a peak (if you want to match cos(t)) or a zero (if you want to match sin(t)). Pick the period starting as close as possible to the *y*-axis.
- 4. Measure the period P and reverse-engineer it to get ω : $P = 2\pi/\omega \implies \omega = 2\pi/P$.
- 5. Measure the distance from the starting point to the y-axis: this is φ .

Example 4.11.11(?): Determine the equation of the following wave function:

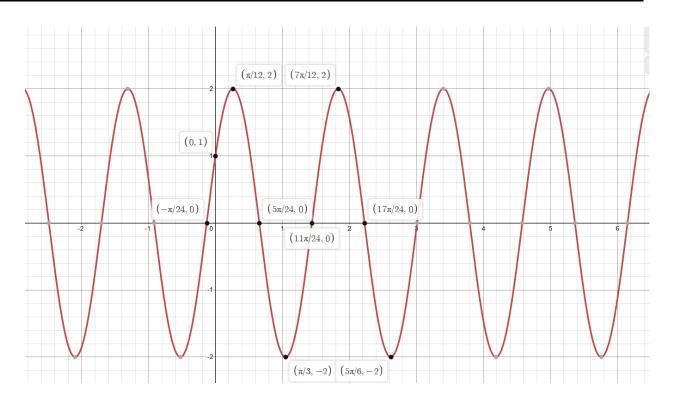
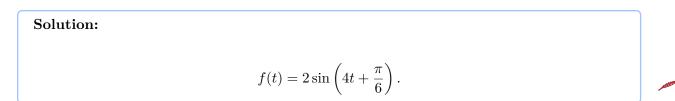


Figure 4: image_2021-04-18-20-51-34



Remark 4.11.12: Note that we can graph other trigonometric functions: they get pretty wild though.

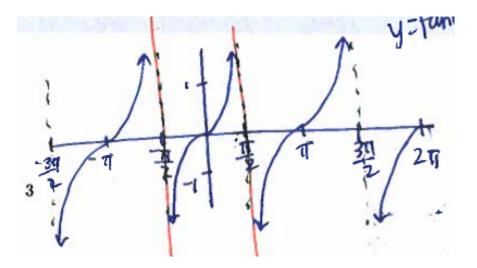
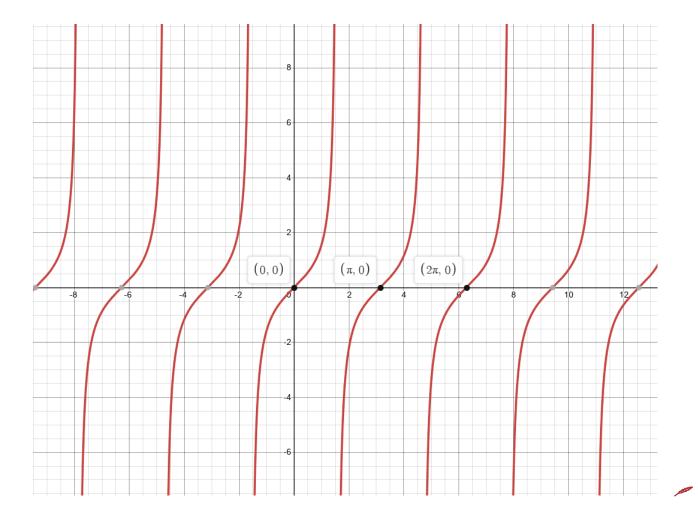


Figure 5: Tangent



4.12 Simplifying Identities

Remark 4.12.1: The goal: reduce a complicated mess of trigonometric functions to something as simple as possible. We'll use a **boxing-up method**.

Remark 4.12.2: On verifying identities: if you want to show $f(\theta) = g(\theta)$, start at one and arrive at the other:

$$f(\theta) = \text{simplify } f$$
$$= \cdots$$
$$= \cdots$$
$$= g(\theta)$$

Warning 4.12.3 If you end up with something like 1 = 1 or 0 = 0, this is hinting at a problem with your logic.

Exercise 4.12.4 (?) Simplify the following:

$$F(\theta) \coloneqq \left(\frac{\sin(\theta)\cos(\theta)}{\cot(\theta)}\right)\cos(\theta)\csc(\theta).$$

Solution:

~

$$F = s\left(\frac{s}{c}\right).$$

Remark 4.12.5: As an alternative, you can use the **transitivity of equality**: show that $f(\theta) = h(\theta)$ for some totally different function h, and then show $g(\theta) = h(\theta)$ as well.

~

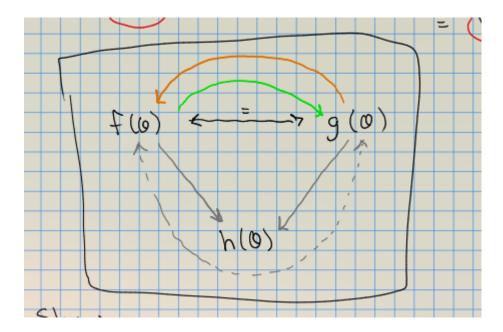


Figure 6: image_2021-04-18-21-58-52

Exercise 4.12.6 (Reducing both sides to a common expression) Show the following identity:

$$\sin(-\theta) + \csc(\theta) = \cot(\theta)\cos(\theta)$$

by showing both sides are separately equal to $h(\theta) \coloneqq \csc(\theta) - \sin(\theta)$.

4.13 Inverse Functions

4.13.1 Motivation

Remark 4.13.1: Motivation: we want a way to solve equations where the unknown θ is stuck in the argument of a trigonometric function. For example, for $\sin : \mathbb{R}_A \to \mathbb{R}_B$, this would be some function $f : \mathbb{R}_B \to \mathbb{R}_A$ such that

$$f(\sin(\theta)) = id(\theta) = \theta$$

$$\sin(f(y)) = id(y) = y.$$

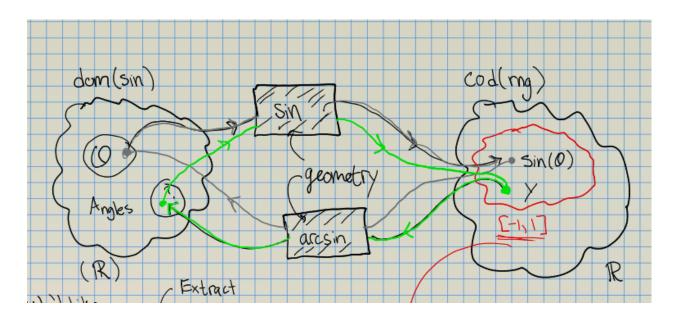
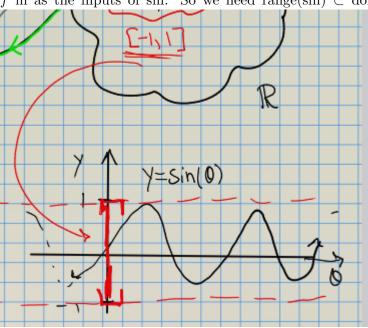


Figure 7: Input-Output perspective: important!

Note that we only ever have to define f on range(sin), since we're only ever sending outputs of f in as the inputs of sin. So we need range(sin) \subset dom(f), noting that range(sin) = [-1, 1]:



Similarly, we need range $(f) \subset \operatorname{dom}(\sin)$.

4.13.2 Using Triangles

Remark 4.13.2: Optimistically imagine that we had some such inverse function. Then we could evaluate some expressions without even knowing anything else about it. The trick:

$$\theta = \arccos(p/q)$$
$$\implies \cos(\theta) = \cos(\arccos(p/q))$$
$$\implies \cos(\theta) = p/q.$$

Now embed this in a triangle. We can't solve for θ , but we can solve for other trigonometric functions.

Exercise 4.13.3 (Using functional inverse property)

$$\cos\left(\arccos\left(\frac{\sqrt{5}}{5}\right)\right) = \frac{\sqrt{5}}{5}$$
$$\arccos\left(\cos\left(\frac{\sqrt{5}}{5}\right)\right) = \frac{\sqrt{5}}{5}$$

Exercise 4.13.4 (Using a triangle)

$$\tan\left(\arcsin\left(\frac{p}{q}\right)\right) = \frac{p}{\sqrt{q^2 - p^2}}$$

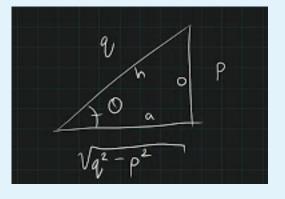


Figure 8: image_2021-04-22-22-14-13

Exercise 4.13.5 (Can't extract angles) Compute $\arcsin(3/5)$. Warning 4.13.6 This is equal to $\sin^{-1}(2/5)$, which is not equal

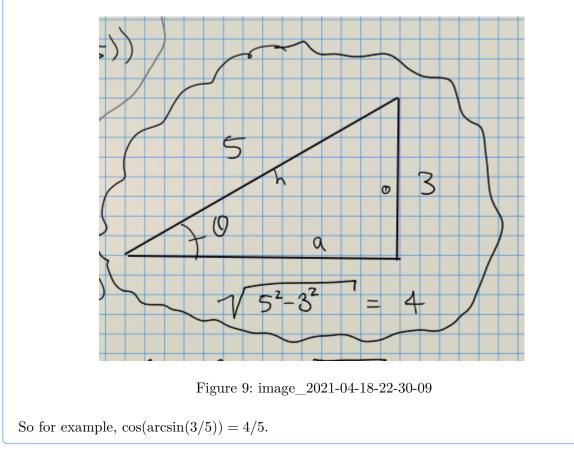
This is equal to $\sin^{-1}(3/5)$, which is *not* equal to $\frac{1}{\sin(3/5)}$! One way to remember this is that we have another name for reciprocals, here $\csc(3/5)$.

Solution:

$$\theta = \arcsin(3/5)$$
$$\implies \sin(\theta) = (3/5)$$
$$\implies = \cdots?.$$

roughly by injectivity

We are out of luck, since this isn't a special angle. So we can't find a numerical value of θ . We can find other trig functions of θ though:

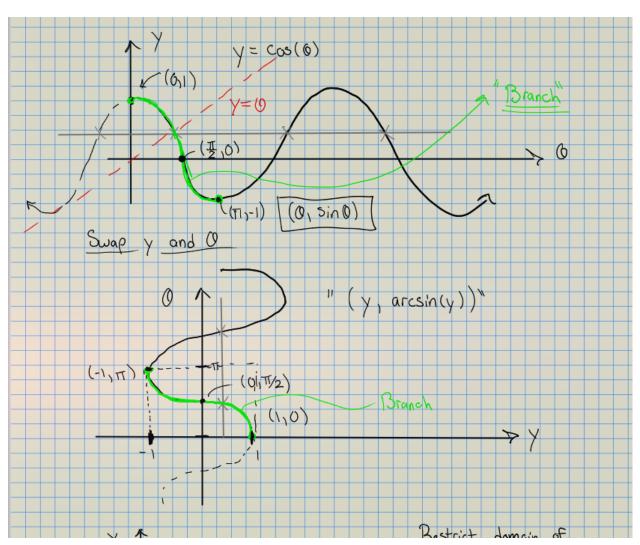


Remark 4.13.7: Most inverse trigonometric functions can *not* be exactly solved! We'll have to approximate by calculator if we want the actual angle. If we just want *other* trigonometric functions though, we can always embed in a triangle.

Example 4.13.8 (Using triangles): Show the following:

- $\cos(\arcsin(24/26)) = 10/26$
 - Write $\theta = \arcsin(24/26)$, note θ is in $[-\pi/2, \pi/2] = \operatorname{range}(\operatorname{arcsin})$.
- $\tan(\arccos(-10/26)) = 10/26$
 - Write $\theta = \arccos(-10/26)$, note θ is in $[0, \pi] = \operatorname{range}(\arccos)$

4.13.3 Defining Inverses



Remark 4.13.9: The setup: try swapping y and θ in the graph of $y = \sin(\theta)$:

Figure 10: image_2021-04-18-22-32-36

Note that the latter is a function (vertical line test) iff the former is injective (horizontal line test). So we take the largest branch where the inverse is a function:

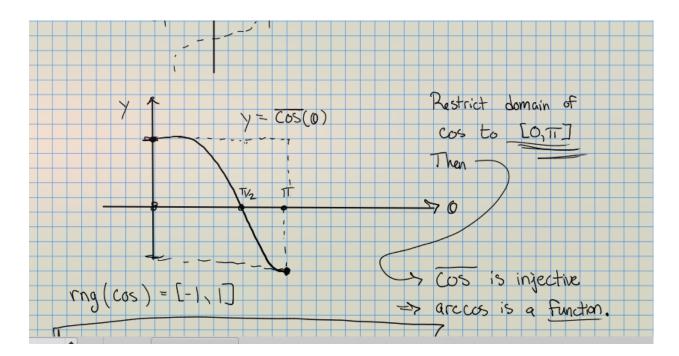


Figure 11: image_2021-04-18-22-33-27

Back on our original graph, this looks like the following:

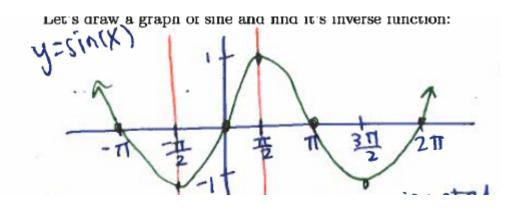


Figure 12: image_2021-04-18-20-53-25

Restricting, we get

- dom(arccos) := range(cos) = [-1, 1].
- range(arccos) := dom(cos) = $[0, \pi]$.

Remark 4.13.10: A similar analysis works for $sin(\theta)$:

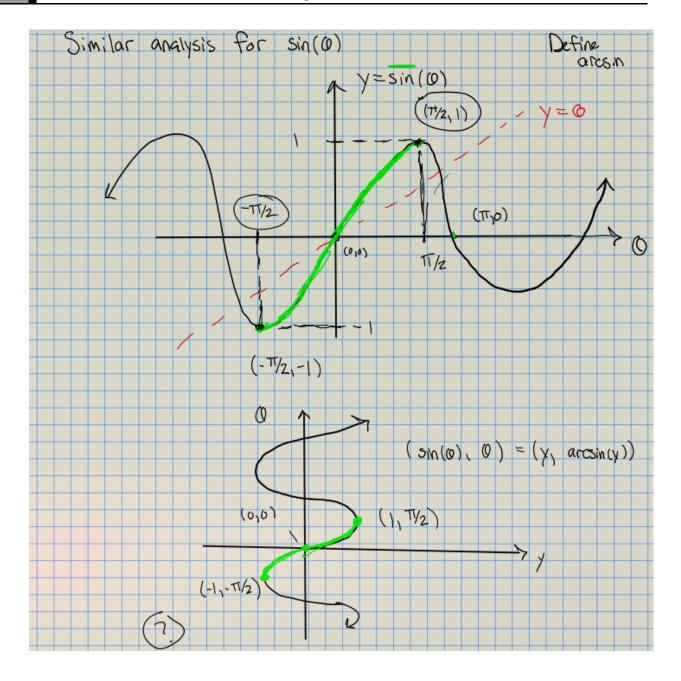


Figure 13: image_2021-04-18-22-34-21

Restricting, we get

- dom(arcsin) := range(sin) = [-1, 1].
- range(arcsin) := dom(sin) = $[-\pi/2, \pi/2]$.

Remark 4.13.11: This gives us a new tool to solve equations:

but only if we know this makes sense based on domain/range issues.

Proposition 4.13.12 (Domains of inverse trigonometric functions). Restrict domains in the following ways:

- sin: $[-\pi/2, \pi/2]$
- $\cos: [0, \pi]$
- $\tan: [-\pi/2, \pi/2]$

Function	Domain	Range
arcsin	[-1,1]	$[-\pi/2,\pi/2]$
arccos	[-1,1]	$[0,\pi]$
arctan	\mathbb{R}	$(-\pi/2,\pi/2)$
arccsc	$\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$	$[-\pi/2,\pi/2]\setminus\{0\}$
arcsec	$\mathbb{R}\setminus\left\{\pm\frac{\pi}{2},\pm\frac{3\pi}{2},\cdots\right\}$	$[0,\pi]\setminus\{\pi/2\}$
arccot	R	$(0,\pi)$

Slogan 4.13.13

There is an easy way to remember this:

- Cosines are x-values, pick the upper (or lower) half of the circle to make them unique.
- Sines are *y*-values, pick the right (or left) half of the circle to make them unique.

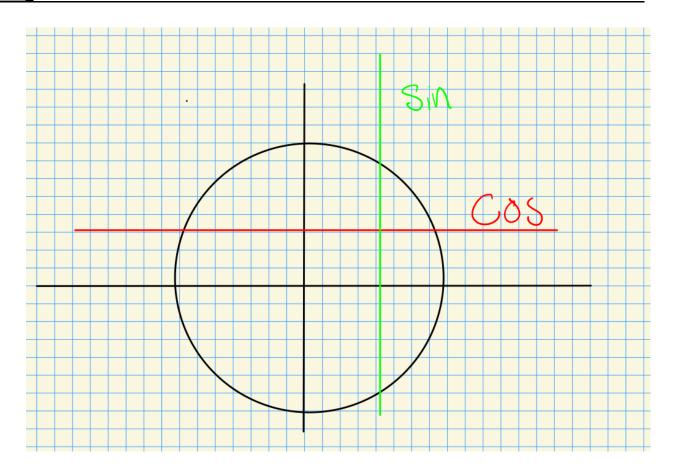


Figure 14: image_2021-04-22-22-00-04

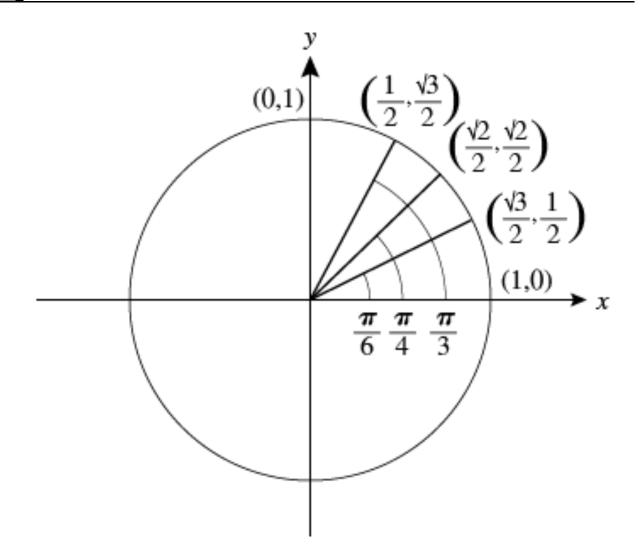


Figure 15: Unit Circle

Example 4.13.14 (Using special angles): We have some exact values.

Sines should be in QI or QIV:

- $\arcsin(1/2) = \pi/6$
- $\arcsin(\sqrt{3}/2) = \pi/3$
- $\arcsin(-1/2) = -\pi/6$

Cosines should be in QI or QII:

- $\operatorname{arccos}(\sqrt{3}/2) = \pi/6$
- $\arccos(-\sqrt{2}/2) = 3\pi/4$
- $\arccos(1/2) = \pi/3$

4

Tangents should be in QI or QIV:

- $\arctan(\sqrt{3}/3) = \pi/6$
- $\arctan(0) = 0$
- $\arctan(1) = \pi/4$

Warning 4.13.15

Note that if f, g are an inverse pair, we have

 $f \circ g = \mathrm{id} \quad \iff \quad f(g(x)) = x, \quad g(f(x)) = x.$

However, we have to be careful with domains for trigonometric functions:

- $\arcsin(\sin(x)) = x \iff x \in [-\pi/2, \pi/2]$ (restricted domain of sin)
- $\sin(\arcsin(x)) = x \iff x \in [-1, 1]$ (domain of arcsin)
- $\arccos(\cos(x)) = x \iff x \in [0, \pi]$ (restricted domain of \cos)
- $\cos(\arccos(x)) = x \iff x \in [-1, 1]$ (domain of arccos)
- $\arctan(\tan(x)) = x \iff x \in [0]$ (restricted domain of tan)
- $\tan(\arctan(x)) = x \iff x \in \mathbb{R}$

- Domain of arctan, then range is $[-\pi/2, \pi/2]$, which is in the domain of tan.

4.14 Double/Half-Angle Identities

Remark 4.14.1: Sometimes we are interested in **superposition** of waves, see **Desmos** for an example. Mathematically this is modeled by adding wave functions together. Similarly, we are sometimes interested in **modulating** or **enveloping** waves, which is modeled by multiplying a wave with another function: see **Desmos**.

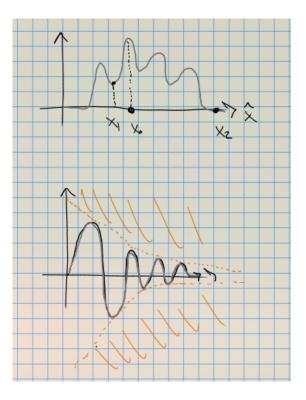


Figure 16: image_2021-04-18-22-06-08

We can sometimes rewrite these as a *single* wave with a phase shift.

Proposition 4.14.2(Angle Sum Identities). Identities:

$$\sin(\theta + \psi) = \sin(\theta)\cos(\psi) + \cos(\theta)\sin(\psi)$$
$$\cos(\theta + \psi) = \cos(\theta)\cos(\psi) + \sin(\theta)\sin(\psi).$$

Note that you can divide these to get

$$\tan(\theta + \psi) = \frac{\tan(\theta) + \tan(\psi)}{1 - \tan(\theta)\tan(\psi)}$$

and replace ψ with $-\psi$ and use even/odd properties to get formulas for $\sin(\theta - \psi), \cos(\theta - \psi)$

Slogan 4.14.3

Sines are friendly and cosines are clique-y!

Corollary 4.14.4 (Double angle identities).

Taking $\theta = \psi$ is the above identities yields

$$\sin(2\theta) = \sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta)$$
$$= 2\sin(\theta)\cos(\theta)$$
$$\cos(2\theta) = \cos(\theta)\cos(\theta) + \sin(\theta)\sin(\theta)$$
$$= \cos^{2}(\theta) - \sin^{2}(\theta).$$

A Warning 4.14.5

The latter is not equal to 1! That would be $\cos^2(\theta) + \sin^2(\theta)$.

Remark 4.14.6: Why do we care? We had 16 special angles, this gives a lot more. For example,

$$\cos(\pi/12) = \cos(\pi/3 - \pi/4) = \cdots$$
 plug in.

By allowing increments of $\pi/12$, we have 24 total angles.

Corollary 4.14.7(?). Starting from the following:

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

= $\cos^2(\theta) - (1 - \cos^2(\theta))$
= $2\cos^2(\theta) - 1$ using $s^2 + c^2 = 1$,

one can solve for

$$\cos^2(\theta) = \frac{1}{2} \left(1 + \cos(2\theta) \right).$$

Similarly

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

= $(1 - \sin^2(\theta)) - \sin^2(\theta)$
= $1 - 2\sin^2(\theta)$ using $s^2 + c^2 = 1$,

solving yields

$$\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)).$$

Remark 4.14.8: These are very important in Calculus! This gives us a way to reduce the exponents on expressions like $\sin^{n}(\theta)$.

4.15 Bonus: Complex Exponentials

Question 4.15.1

We spent one entire unit studying the function $f(x) = e^x$, and another studying the functions $g(x) = \cos(x), h(x) = \sin(x)$. They seem completely unrelated, but miraculously they are both just shadows of of unifying concept.

Remark 4.15.2: Components of vectors: every $\mathbf{v} \in \mathbb{R}^2$ breaks up as the sum of two vectors, i.e. $\mathbf{v} = \mathbf{v}_x + \mathbf{v}_y$. In coordinates, if $\mathbf{v} = (a, b)$, we have $\mathbf{v}_x = (a, 0)$ and $\mathbf{v}_y = (0, b)$. Alternatively, we can drop the ordered pair notation and write $\mathbf{v} = a\hat{\mathbf{x}} + b\hat{\mathbf{y}}$.

Remark 4.15.3: We've worked with the *Cartesian plane* all semester. One powerful tool is replacing this with the *complex* plane. We formally define a new symbol *i* and replace the $\hat{\mathbf{y}}$ direction with the *i* direction – this amounts to replacing ordered pairs $(a, b) := a\hat{\mathbf{x}} + b\hat{\mathbf{y}}$ by a single number a + ib.

Example 4.15.4 (*How to work with complex numbers*): Complex numbers can be added:

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

This is perhaps easier to understand in the ordered pair notation: you just add the components in each component:

$$[a, b] + [c, d] = [a + c, b + d]$$

Complex numbers can be multiplied:

$$(a+bi)(c+di) = a(c+di) + bi(c+di)$$
$$= ac + adi + bci + bdi^{2}$$
$$= (ac - bd) + (ad + bc)i.$$

This is harder to see in the ordered pair notation.

We can compare complex numbers: they are equal iff their components are equal:

$$a + bi = c + di \iff a = c \text{ and } b = d,$$

or in ordered pair notation,

$$[a,b] = [c,d] \iff a = c \text{ and } b = d$$

Remark 4.15.5: The symbol *i* happens to have another algebraic property. Consider the family of equations $f(x,t) = x^2 + t$, and think about finding the roots. Finding a root is solving f(x,t) = 0, which is the exact same thing as finding the intersection points with the graph of g(x) = 0. Taking t = 0 yields $f(x) = x^2$, which has a root at zero. Taking t < 0 yields two roots. However, taking t > 0 yields no roots – at least not in \mathbb{R} . As it turns out, the function $f_1(x) = x^2 + 1$ and g(x) = 0 do intersect in some other, bigger space, and we're only seeing a shadow of this! In other words, $x^2 + 1 = 0$ didn't have solutions in \mathbb{R} , but will have a solution in \mathbb{C} .

Remark 4.15.6: The following is the main link between exponentials and waves:

Proposition 4.15.7 (Euler's Formula).

 $e^{i\theta} = \cos(\theta) + i\sin(\theta).$

Remark 4.15.8: Really, this is just polar coordinates on the unit circle: if we go back to ordered pair notation, this is just giving a point $(\cos(\theta), \sin(\theta)) \in S^1$. So the *complex number* $e^{i\theta}$ is also a *vector* pointing at an angle θ from the origin and landing on the unit circle.

Proposition 4.15.9 (Euler's Identity).

$$e^{i\pi} = -1.$$

Remark 4.15.10: This is remarkable! It relates some of the most fundamental constant numbers in mathematics:

e = 2.718...
π = 3.14159...
-1

Proof: just plug π into Euler's equation. Geometric interpretation: π radians is directly to the left.

Example 4.15.11(?): An application: proving the angle sum formulas algebraically. We start by considering the angle $\alpha + \beta$. On one hand, Euler's formula says

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta) = [\cos(\alpha+\beta), \sin(\alpha+\beta)].$$

On the other hand, we can use properties of exponentials first and expand:

$$e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}$$

= $(\cos(\alpha) + i\sin(\alpha)) \cdot (\cos(\beta) + i\sin(\beta))$
= $\cos(\alpha)(\cos(\beta) + i\sin(\beta)) + i\sin(\alpha)(\cos(\beta) + i\sin(\beta))$
= $\cos(\alpha)\cos(\beta) + i\cos(\alpha)\sin(\beta) + i\sin(\alpha)\cos(\beta) + i^2\sin(\alpha)\sin(\beta)$
= $(\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)) + i(\cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta))$
= $[\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta), \cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta)].$

Now we just equate components:

ToDos

$$\implies \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
$$\implies \sin(\alpha + \beta) = \cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta).$$

Remark 4.15.12: The analogy goes farther: polar coordinates are essentially just a shadow of complex numbers. Since $e^{i\theta} \in S^1$, we can scale by a radius r to write $z = re^{i\theta}$ and get any point in the plane. If we just draw a vector $\mathbf{v}[r\cos(\theta), r\sin(\theta)]$, note that Euler's formula gives us a way to get a complex number z that corresponds to it:

$$z \coloneqq re^{i\theta} = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta) + i \cdot r\sin(\theta) = [r\cos(\theta), r\sin(\theta)] = \mathbf{v}.$$

Remark 4.15.13: Results like these are at the heart of mathematics: having a bunch of equations, seeing patterns, and trying to find some common, unifying, and hopefully simpler structure that underlies all of it. An example you'll see in Calculus: all of the graphs we've been looking at in this class are "shadows" of intersecting shapes in some higher dimensional space!

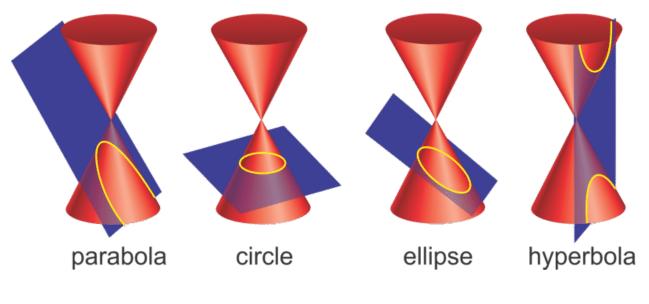


Figure 17: Conic Sections

ToDos

List of Todos

Law of cosines

Sin/cos/etc as ratios	. 5
What is a 1 radian?	. 6
todo	. 7
todo	. 7
soh-cah-toa, cho-sha-cao	. 7
Table of special angles, increasing/decreasing	. 9
Insert plot	. 12

Definitions

2.0.3	Definition – Linear Functions
2.0.4	Definition – Intercepts
2.0.5	Definition – Relation
2.0.6	Definition – Function
4.4.1	Definition – Radian
4.4.3	Definition – Coterminal Angles
4.5.1	Definition – ?
4.6.1	Definition – Unit Circle
4.8.1	Definition – Reference Angle
4.11.2	Definition – Standard Form of a Wave Function

Theorems

2.0.1	Theorem – The Pythagorean Theorem	3
2.0.2	Theorem – The Distance Formula	3
4.4.5	Proposition – Degrees are related to radians	7
4.4.6	Proposition – Arc length and sector area are related to radians	7
4.5.2	Proposition – Domains of trigonometric functions	7
4.6.2	Theorem – Polar Coordinates	8
4.7.2	Proposition – Trick to memorize special angles	9
4.8.2	Proposition – ?	10
4.9.1	Proposition – ?	10
4.10.3	Proposition – ?	11
4.11.7	Proposition – ?	13
4.11.10	Proposition – Determining the equation of a sine wave	13
4.13.12	Proposition – Domains of inverse trigonometric functions	24
4.14.2	Proposition – Angle Sum Identities	28
4.15.7	Proposition – Euler's Formula	31
4.15.9	Proposition – Euler's Identity	31

Exercises

4.12.4	Exercise – ?	16
4.12.6	Exercise – Reducing both sides to a common expression	17
4.13.3	Exercise – Using functional inverse property	19
4.13.4	Exercise – Using a triangle	19
4.13.5	Exercise – Can't extract angles	19

Figures

List of Figures

1	image_2021-04-18-21-51-59	6
2	image_2021-04-18-21-06-45	9
3	image_2021-04-18-22-39-08	1
4	image_2021-04-18-20-51-34	4
5	Tangent	5
6	image_2021-04-18-21-58-52	7
7	Input-Output perspective: important!	8
8	image_2021-04-22-22-14-13	9
9	image_2021-04-18-22-30-09	0
10	image_2021-04-18-22-32-36	1
11	image_2021-04-18-22-33-27 22	2
12	image_2021-04-18-20-53-25	2
13	image_2021-04-18-22-34-21	3
14	image_2021-04-22-22-00-04 24	5
15	Unit Circle	6
16	image_2021-04-18-22-06-08	8
17	Conic Sections	2