# Unit 2: Exponential and Logarithmic Functions :::{.proposition title="Multiplicative and additive properties of logs and exponentials"} For logarithms: 1. $\log_\alpha(a) + \log_\alpha(b) = \log_\alpha(ab)$ 2. $\log_\alpha(b^a) = a\log_{\alpha}(b)$ Mnemonic: follows from (1) for $a\in \NN$ since exponentiation is repeated multiplication. 3. $\log_\alpha(a + b) = \text{ nothing!}$ For exponentials: 1. $(\alpha^a)^b = \alpha^{ab}$ 2. $\alpha^a \alpha^b = \alpha^{a+b}$ 3. $\alpha^a + \alpha^b = \text{ nothing!}$ ::: :::{.proposition title="Inverse properties"} The pair $f(x) = \alpha^x$ and $g(x) = \log_\alpha(x)$ form an inverse pair. Thus \[ (f\circ g)(?) &= \alpha^{\log_\alpha(?)} = ? \\ (g\circ f)(?) &= \log_\alpha(\alpha^{?}) = ? .\] Moreover, both functions are **injective**, so \[ a &= b \\ \iff \alpha^a &= \alpha^b \\ \iff \log_\alpha(a) &= \log_\alpha(b) .\] ::: :::{.example title="?"} Simplifying: - $e^{5\ln(x)} = x^5$. - $\ln(e^{5x}) = 5x$ - $10^{3 \log_{10}(x) - 4 \log_{10}(x^2 + 1)} = x^3 / (x^2 + 1)^4$. Solving for $x$: - In $\log_\alpha(x+1) + \log_\alpha(x-1) = \beta$, can obtain $x^2 = \alpha^\beta + 1$. ::: ## Algebra :::{.example title="Simplifying"} - $\qty{y^2 \over x}^3 {x^4 \over y} = y^5 x$ - $(-2x^2 t^3 (z+\ell)^2 )^{-2} {z^3\over x} = -{1\over 2} x^{-5} (z+\ell)^{-4} z^3 t^{-6}$. - $3^x = {1\over 5}7^x$ implies $x = \ln(1/5) / (\ln(3) - \ln(7))$. - Common mistake: $\ln({1\over 5} 7^x) \neq x\ln( {1\over 5} 7)$. Need exponent to be on the *entire* argument. :::