\newcommand{\cat}[1]{\mathsf{#1}} \newcommand{\Sets}[0]{{\mathsf{Set}}} \newcommand{\Set}[0]{{\mathsf{Set}}} \newcommand{\sets}[0]{{\mathsf{Set}}} \newcommand{\set}{{\mathsf{Set} }} \newcommand{\Poset}[0]{\mathsf{Poset}} \newcommand{\GSets}[0]{{G\dash\mathsf{Set}}} \newcommand{\Groups}[0]{{\mathsf{Group}}} \newcommand{\Grp}[0]{{\mathsf{Grp}}} % Modifiers \newcommand{\pre}[0]{{\mathsf{pre}}} \newcommand{\fn}[0]{{\mathsf{fn}}} \newcommand{\smooth}[0]{{\mathsf{sm}}} \newcommand{\Aff}[0]{{\mathsf{Aff}}} \newcommand{\Ab}[0]{{\mathsf{Ab}}} \newcommand{\Assoc}[0]{\mathsf{Assoc}} \newcommand{\Ch}[0]{\mathsf{Ch}} \newcommand{\Coh}[0]{{\mathsf{Coh}}} \newcommand{\Comm}[0]{\mathsf{Comm}} \newcommand{\Cor}[0]{{\mathsf{Cor}}} \newcommand{\Fin}[0]{{\mathsf{Fin}}} \newcommand{\Free}[0]{\mathsf{Free}} \newcommand{\Perf}[0]{\mathsf{Perf}} \newcommand{\Unital}[0]{\mathsf{Unital}} \newcommand{\eff}[0]{\mathsf{eff}} \newcommand{\derivedcat}[1]{\mathbf{D} {#1} } \newcommand{\Cx}[0]{\mathsf{Ch}} \newcommand{\Stable}[0]{\mathsf{Stab}} \newcommand{\ChainCx}[1]{\mathsf{Ch}\qty{ #1 } } \newcommand{\Vect}[0]{{ \mathsf{Vect} }} % Rings \newcommand{\Fieldsover}[1]{{ \mathsf{Fields}_{#1} }} \newcommand{\Field}[0]{\mathsf{Field}} \newcommand{\Ring}[0]{\mathsf{Ring}} \newcommand{\CRing}[0]{\mathsf{CRing}} \newcommand{\DedekindDomain}[0]{\mathsf{DedekindDom}} % Modules \newcommand{\modr}[0]{{\mathsf{Mod}\dash\mathsf{R}}} \newcommand{\modsleft}[1]{\mathsf{#1}\dash\mathsf{Mod}} \newcommand{\modsright}[1]{\mathsf{Mod}\dash\mathsf{#1}} \newcommand{\mods}[1]{{\mathsf{#1}\dash\mathsf{Mod}}} \newcommand{\bimod}[2]{({#1}, {#2})\dash\mathsf{biMod}} \newcommand{\Mod}[0]{{\mathsf{Mod}}} \newcommand{\zmod}[0]{{\mathbb{Z}\dash\mathsf{Mod}}} \newcommand{\rmod}[0]{{\mathsf{R}\dash\mathsf{Mod}}} \newcommand{\kmod}[0]{{\mathsf{k}\dash\mathsf{Mod}}} \newcommand{\gmod}[0]{{\mathsf{G}\dash\mathsf{Mod}}} \newcommand{\grMod}[0]{{\mathsf{grMod}}} \newcommand{\gr}[0]{{\mathsf{gr}\,}} \newcommand{\mmod}[0]{{\dash\mathsf{Mod}}} \newcommand{\Rep}[0]{{\mathsf{Rep}}} % Vector Spaces and Bundles \newcommand{\VectBundle}[0]{{ \Bun_{\GL_r} }} \newcommand{\VectBundlerk}[1]{{ \Bun_{\GL_{#1}} }} \newcommand{\VectSp}[0]{{ \VectSp }} \newcommand{\VectBun}[0]{{ \VectBundle }} \newcommand{\VectBunrk}[1]{{ \VectBundlerk{#1} }} % Algebras \newcommand{\alg}[0]{\mathsf{Alg}} \newcommand{\Alg}[0]{{\mathsf{Alg}}} \newcommand{\scalg}[0]{\mathsf{sCAlg}} \newcommand{\cAlg}[0]{{\mathsf{cAlg}}} \newcommand{\calg}[0]{\mathsf{CAlg}} \newcommand{\liegmod}[0]{{\mathfrak{g}\dash\mathsf{Mod}}} \newcommand{\liealg}[0]{{\mathsf{Lie}\dash\mathsf{Alg}}} \newcommand{\kalg}[0]{{\mathsf{Alg}_{/k} }} \newcommand{\kAlg}[0]{{\mathsf{Alg}_{/k} }} \newcommand{\kSch}[0]{{\mathsf{Sch}_{/k}}} \newcommand{\rAlg}[0]{{\mathsf{Alg}_{/R}}} \newcommand{\ralg}[0]{{\mathsf{Alg}_{/R}}} \newcommand{\CCalg}[0]{{\mathsf{Alg}_{\mathbb{C}} }} \newcommand{\cdga}[0]{{\mathsf{cdga} }} % Schemes and Sheaves \newcommand{\Ringedspace}[0]{\mathsf{RingSp}} \newcommand{\DCoh}[0]{{\mathsf{DCoh}}} \newcommand{\QCoh}[0]{{\mathsf{QCoh}}} \newcommand{\Cov}[0]{{\mathsf{Cov}}} \newcommand{\sch}[0]{{\mathsf{Sch}}} \newcommand{\presh}[0]{ \underset{ \mathsf{pre} } {\mathsf{Sh} }} \newcommand{\prest}[0]{ {\underset{ \mathsf{pre} } {\mathsf{St} } } } \newcommand{\Descent}[0]{{\mathsf{Descent}}} \newcommand{\Desc}[0]{{\mathsf{Desc}}} \newcommand{\FFlat}[0]{{\mathsf{FFlat}}} \newcommand{\Perv}[0]{\mathsf{Perv}} \newcommand{\smsch}[0]{{ \smooth\Sch }} \newcommand{\Sch}[0]{{\mathsf{Sch}}} \newcommand{\Schf}[0]{{\mathsf{Schf}}} \newcommand{\Sh}[0]{{\mathsf{Sh}}} \newcommand{\St}[0]{{\mathsf{Stack}}} \newcommand{\Vark}[0]{{\mathsf{Var}_{/k} }} \newcommand{\Var}[0]{{\mathsf{Var}}} \newcommand{\Open}[0]{{\mathsf{Open}}} % Homotopy \newcommand{\CW}[0]{{\mathsf{CW}}} \newcommand{\sSet}[0]{{\mathsf{sSet}}} \newcommand{\ssets}[0]{\mathsf{sSet}} \newcommand{\hoTop}[0]{{\mathsf{hoTop}}} \newcommand{\hoType}[0]{{\mathsf{hoType}}} \newcommand{\ho}[0]{{\mathsf{ho}}} \newcommand{\SHC}[0]{{\mathsf{SHC}}} \newcommand{\SH}[0]{{\mathsf{SH}}} \newcommand{\Spaces}[0]{{\mathsf{Spaces}}} \newcommand{\Spectra}[0]{{\mathsf{Sp}}} \newcommand{\Sp}[0]{{\mathsf{Sp}}} \newcommand{\Top}[0]{{\mathsf{Top}}} % Infty Cats \newcommand{\Finset}[0]{{\mathsf{FinSet}}} \newcommand{\Cat}[0]{\mathsf{Cat}} \newcommand{\Grpd}[0]{{\mathsf{Grpd}}} \newcommand{\inftyGrpd}[0]{{\infty\dash\mathsf{Grpd}}} \newcommand{\Fun}[0]{{\mathsf{Fun}}} \newcommand{\Kan}[0]{{\mathsf{Kan}}} \newcommand{\Monoid}[0]{\mathsf{Mon}} % New? \newcommand{\Prism}[0]{\mathsf{Prism}} \newcommand{\Solid}[0]{\mathsf{Solid}} \newcommand{\WCart}[0]{\mathsf{WCart}} % Motivic \newcommand{\Torsor}[1]{{\mathsf{#1}\dash\mathsf{Torsor}}} \newcommand{\Torsorleft}[1]{{\mathsf{#1}\dash\mathsf{Torsor}}} \newcommand{\Torsorright}[1]{{\mathsf{Torsor}\dash\mathsf{#1} }} \newcommand{\Quadform}[0]{{\mathsf{QuadForm}}} \newcommand{\HI}[0]{{\mathsf{HI}}} \newcommand{\DM}[0]{{\mathsf{DM}}} \newcommand{\hoA}[0]{{\mathsf{ho}_*^{\scriptstyle \AA^1}}} % Unsorted \newcommand{\FGL}[0]{\mathsf{FGL}} \newcommand{\FI}[0]{{\mathsf{FI}}} \newcommand{\Fuk}[0]{{\mathsf{Fuk}}} \newcommand{\Lag}[0]{{\mathsf{Lag}}} \newcommand{\Mfd}[0]{{\mathsf{Mfd}}} \newcommand{\Riem}[0]{\mathsf{Riem}} \newcommand{\Wein}[0]{{\mathsf{Wein}}} \newcommand{\dgens}[1]{\gens{\gens{ #1 }}} \newcommand{\ctz}[1]{\, {\converges{{#1} \to\infty}\longrightarrow 0} \, } \newcommand{\conj}[1]{{\overline{{#1}}}} \newcommand{\complex}[1]{{#1}_{*}} \newcommand{\floor}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\fourier}[1]{\widehat{#1}} \newcommand{\embedsvia}[1]{\xhookrightarrow{#1}} \newcommand{\openimmerse}[0]{\underset{\scriptscriptstyle O}{\hookrightarrow}} \newcommand{\weakeq}[0]{\underset{\scriptscriptstyle W}{\rightarrow}} \newcommand{\fromvia}[1]{\xleftarrow{#1}} \newcommand{\generators}[1]{\left\langle{#1}\right\rangle} \newcommand{\gens}[1]{\left\langle{#1}\right\rangle} \newcommand{\globsec}[1]{{\mathsf{\Gamma}\qty{#1} }} \newcommand{\equalsbecause}[1]{\overset{#1}{=}} \newcommand{\congbecause}[1]{\overset{#1}{\cong}} \newcommand{\congas}[1]{\underset{#1}{\cong}} \newcommand{\isoas}[1]{\underset{#1}{\cong}} \newcommand{\addbase}[1]{{ {}_{\pt} }} \newcommand{\ideal}[1]{\mathcal{#1}} \newcommand{\adjoin}[1]{ { \left[ {#1} \right] } } \newcommand{\powerseries}[1]{ { \left[ {#1} \right] } } \newcommand{\htyclass}[1]{ { \left[ {#1} \right] } } \newcommand{\formalpowerseries}[1]{ { \left[\left[ {#1} \right] \right] } } \newcommand{\formalseries}[1]{ { \left[\left[ {#1} \right] \right] } } \newcommand{\qtext}[1]{{\quad \operatorname{#1} \quad}} \newcommand{\abs}[1]{{\left\lvert {#1} \right\rvert}} \newcommand{\stack}[1]{\mathclap{\substack{ #1 }}} \newcommand\tmf{ \mathrm{tmf} } \newcommand\taf{ \mathrm{taf} } \newcommand\TAF{ \mathrm{TAF} } \newcommand\TMF{ \mathrm{TMF} } \newcommand{\BO}[0]{{\operatorname{BO}}} \newcommand{\BP}[0]{{\operatorname{BP}}} \newcommand{\BU}[0]{{\operatorname{BU}}} \newcommand{\MO}[0]{{\operatorname{MO}}} \newcommand{\MSO}[0]{{\operatorname{MSO}}} \newcommand{\MSpin}[0]{{\operatorname{MSpin}}} \newcommand{\MSp}[0]{{\operatorname{MSpin}}} \newcommand{\MString}[0]{{\operatorname{MString}}} \newcommand{\MStr}[0]{{\operatorname{MString}}} \newcommand{\MU}[0]{{\operatorname{MU}}} \newcommand{\KO}[0]{{\operatorname{KO}}} \newcommand{\KU}[0]{{\operatorname{KU}}} \newcommand{\smashprod}[0]{\wedge} \newcommand{\ku}[0]{{\operatorname{ku}}} \newcommand{\hofib}[0]{{\operatorname{hofib}}} \newcommand{\hocofib}[0]{{\operatorname{hocofib}}} \newcommand*\dif{\mathop{}\!\operatorname{d}} \newcommand*{\horzbar}{\rule[.5ex]{2.5ex}{0.5pt}} \newcommand*{\vertbar}{\rule[-1ex]{0.5pt}{2.5ex}} \newcommand\Fix{ \mathrm{Fix} } \newcommand\Ell{ \mathrm{Ell} } \newcommand\Kahler[0]{\operatorname{Kähler}} \newcommand\Prinbun{\mathrm{Bun}^{\mathrm{prin}}} \newcommand\aug{\fboxsep=-\fboxrule\!\!\!\fbox{\strut}\!\!\!} \newcommand\compact[0]{\operatorname{cpt}} \newcommand\hyp[0]{{\operatorname{hyp}}} \newcommand\jan{\operatorname{Jan}} \newcommand\curl{\operatorname{curl}} \newcommand\kbar{ { \bar{k} } } \newcommand\ksep{ { k\sep } } \newcommand\mypound{\scalebox{0.8}{\raisebox{0.4ex}{\#}}} \newcommand\rref{\operatorname{RREF}} \newcommand\RREF{\operatorname{RREF}} \newcommand{\Tatesymbol}{\operatorname{TateSymb}} \newcommand\tilt[0]{ { \flat } } \newcommand\vecc[2]{\textcolor{#1}{\textbf{#2}}} \newcommand{\Af}[0]{{\mathbb{A}}} \newcommand{\Ag}[0]{{\mathcal{A}_g}} \newcommand{\Ahat}[0]{\hat{ \operatorname{A}}_g } \newcommand{\Ann}[0]{\operatorname{Ann}} \newcommand{\Arg}[0]{\operatorname{Arg}} \newcommand{\Art}[0]{\operatorname{Art}} \newcommand{\BB}[0]{{\mathbb{B}}} \newcommand{\Betti}[0]{{\operatorname{Betti}}} \newcommand{\CC}[0]{{\mathbb{C}}} \newcommand{\CF}[0]{\operatorname{CF}} \newcommand{\CH}[0]{{\operatorname{CH}}} \newcommand{\CP}[0]{{\mathbb{CP}}} \newcommand{\CY}{{ \text{CY} }} \newcommand{\Cl}[0]{{ \operatorname{Cl}} } \newcommand{\Crit}[0]{\operatorname{Crit}} \newcommand{\DD}[0]{{\mathbb{D}}} \newcommand{\DSt}[0]{{ \operatorname{DSt}}} \newcommand{\Def}{\operatorname{Def} } \newcommand{\Diffeo}[0]{{\operatorname{Diffeo}}} \newcommand{\Diff}[0]{\operatorname{Diff}} \newcommand{\Disjoint}[0]{\displaystyle\coprod} \newcommand{\Disk}[0]{{\operatorname{Disk}}} \newcommand{\Dist}[0]{\operatorname{Dist}} \newcommand{\Div}[0]{\operatorname{Div}} \newcommand{\EE}[0]{{\mathbb{E}}} \newcommand{\EKL}[0]{{\mathrm{EKL}}} \newcommand{\EO}[0]{{\operatorname{EO}}} \newcommand{\Emb}[0]{{\operatorname{Emb}}} \newcommand{\minor}[0]{{\operatorname{minor}}} \newcommand{\Et}{\text{Ét}} \newcommand{\trace}{\operatorname{tr}} \newcommand{\Norm}{\operatorname{Nm}} \newcommand{\Extpower}[0]{\bigwedge\nolimits} \newcommand{\Extalgebra}[0]{\bigwedge\nolimits} \newcommand{\Extalg}[0]{\Extalgebra} \newcommand{\Extprod}[0]{\bigwedge\nolimits} \newcommand{\Ext}{\operatorname{Ext} } \newcommand{\FFbar}[0]{{ \bar{ \mathbb{F}} }} \newcommand{\FFpn}[0]{{\mathbb{F}_{p^n}}} \newcommand{\FFp}[0]{{\mathbb{F}_p}} \newcommand{\FF}[0]{{\mathbb{F}}} \newcommand{\FS}{{ \text{FS} }} \newcommand{\Fil}[0]{{\operatorname{Fil}}} \newcommand{\Flat}[0]{{\operatorname{Flat}}} \newcommand{\Fpbar}[0]{\bar{\mathbb{F}_p}} \newcommand{\Fpn}[0]{{\mathbb{F}_{p^n} }} \newcommand{\Fppf}[0]{\mathrm{\operatorname{Fppf}}} \newcommand{\Fp}[0]{{\mathbb{F}_p}} \newcommand{\Frac}[0]{\operatorname{Frac}} \newcommand{\GF}[0]{{\mathbb{GF}}} \newcommand{\GG}[0]{{\mathbb{G}}} \newcommand{\GL}[0]{\operatorname{GL}} \newcommand{\GW}[0]{{\operatorname{GW}}} \newcommand{\Gal}[0]{{ \mathsf{Gal}} } \newcommand{\Gl}[0]{\operatorname{GL}} \newcommand{\Gr}[0]{{\operatorname{Gr}}} \newcommand{\HC}[0]{{\operatorname{HC}}} \newcommand{\HFK}[0]{\operatorname{HFK}} \newcommand{\HF}[0]{\operatorname{HF}} \newcommand{\HHom}{\mathscr{H}\kern-2pt\operatorname{om}} \newcommand{\HH}[0]{{\mathbb{H}}} \newcommand{\HP}[0]{{\operatorname{HP}}} \newcommand{\HT}[0]{{\operatorname{HT}}} \newcommand{\HZ}[0]{{H\mathbb{Z}}} \newcommand{\Hilb}[0]{\operatorname{Hilb}} \newcommand{\Homeo}[0]{{\operatorname{Homeo}}} \newcommand{\Honda}[0]{\mathrm{\operatorname{Honda}}} \newcommand{\Hsh}{{ \mathcal{H} }} \newcommand{\Id}[0]{\operatorname{Id}} \newcommand{\Intersect}[0]{\displaystyle\bigcap} \newcommand{\JCF}[0]{\operatorname{JCF}} \newcommand{\RCF}[0]{\operatorname{RCF}} \newcommand{\Jac}[0]{\operatorname{Jac}} \newcommand{\KK}[0]{{\mathbb{K}}} \newcommand{\KH}[0]{ \K^{\scriptscriptstyle \mathrm{H}} } \newcommand{\KMW}[0]{ \K^{\scriptscriptstyle \mathrm{MW}} } \newcommand{\KMimp}[0]{ \hat{\K}^{\scriptscriptstyle \mathrm{M}} } \newcommand{\KM}[0]{ \K^{\scriptstyle\mathrm{M}} } \newcommand{\Kah}[0]{{ \operatorname{Kähler} } } \newcommand{\LC}[0]{{\mathrm{LC}}} \newcommand{\LL}[0]{{\mathbb{L}}} \newcommand{\Lie}[0]{\operatorname{Lie}} \newcommand{\Log}[0]{\operatorname{Log}} \newcommand{\MCG}[0]{{\operatorname{MCG}}} \newcommand{\MM}[0]{{\mathcal{M}}} \newcommand{\MW}[0]{\operatorname{MW}} \newcommand{\Mat}[0]{\operatorname{Mat}} \newcommand{\Mor}[0]{\operatorname{Mor}} \newcommand{\NN}[0]{{\mathbb{N}}} \newcommand{\NS}[0]{{\operatorname{NS}}} \newcommand{\OO}[0]{{\mathcal{O}}} \newcommand{\OP}[0]{{\mathbb{OP}}} \newcommand{\OX}[0]{{\mathcal{O}_X}} \newcommand{\Obs}{\operatorname{Obs} } \newcommand{\Ob}[0]{{\operatorname{Ob}}} \newcommand{\Op}[0]{{\operatorname{Op}}} \newcommand{\Orb}[0]{{\mathrm{Orb}}} \newcommand{\Orth}[0]{{\operatorname{O}}} \newcommand{\PD}[0]{\mathrm{PD}} \newcommand{\PGL}[0]{\operatorname{PGL}} \newcommand{\PP}[0]{{\mathbb{P}}} \newcommand{\PSL}[0]{{\operatorname{PSL}}} \newcommand{\Pic}[0]{{\operatorname{Pic}}} \newcommand{\Pin}[0]{{\operatorname{Pin}}} \newcommand{\Places}[0]{{\operatorname{Places}}} \newcommand{\Presh}[0]{\presh} \newcommand{\QHB}[0]{\operatorname{QHB}} \newcommand{\QHS}[0]{\operatorname{QHS}} \newcommand{\QQpadic}[0]{{ \QQ_p }} \newcommand{\QQ}[0]{{\mathbb{Q}}} \newcommand{\Quot}[0]{\operatorname{Quot}} \newcommand{\RP}[0]{{\mathbb{RP}}} \newcommand{\RR}[0]{{\mathbb{R}}} \newcommand{\Rat}[0]{\operatorname{Rat}} \newcommand{\Rees}[0]{{\operatorname{Rees}}} \newcommand{\Reg}[0]{\operatorname{Reg}} \newcommand{\Ric}[0]{\operatorname{Ric}} \newcommand{\SF}[0]{\operatorname{SF}} \newcommand{\SL}[0]{{\operatorname{SL}}} \newcommand{\SNF}[0]{\mathrm{SNF}} \newcommand{\SO}[0]{{\operatorname{SO}}} \newcommand{\SP}[0]{{\operatorname{SP}}} \newcommand{\SU}[0]{{\operatorname{SU}}} \newcommand{\Sgn}[0]{{ \Sigma_{g, n} }} \newcommand{\Sm}[0]{{\operatorname{Sm}}} \newcommand{\SpSp}[0]{{\mathbb{S}}} \newcommand{\Spec}[0]{\operatorname{Spec}} \newcommand{\Spf}[0]{\operatorname{Spf}} \newcommand{\Spinc}[0]{\mathrm{Spin}^{{c} }} \newcommand{\Spin}[0]{{\operatorname{Spin}}} \newcommand{\Sq}[0]{\operatorname{Sq}} \newcommand{\Stab}[0]{{\operatorname{Stab}}} \newcommand{\Sum}[0]{ \displaystyle\sum } \newcommand{\Syl}[0]{{\operatorname{Syl}}} \newcommand{\Sym}[0]{\operatorname{Sym}} \newcommand{\Tensor}[0]{\bigotimes} \newcommand{\Tor}[0]{\operatorname{Tor}} \newcommand{\Hom}[0]{\operatorname{Hom}} \newcommand{\Homcx}[0]{\operatorname{Hom}^{\bullet}} \newcommand{\Tr}[0]{\operatorname{Tr}} \newcommand{\Ug}[0]{{\mathcal{U}(\mathfrak{g}) }} \newcommand{\Uh}[0]{{\mathcal{U}(\mathfrak{h}) }} \newcommand{\Union}[0]{\displaystyle\bigcup} \newcommand{\U}[0]{{\operatorname{U}}} \newcommand{\Wedge}[0]{\bigwedge} \newcommand{\Wittvectors}[0]{{\mathbb{W}}} \newcommand{\ZHB}[0]{\operatorname{ZHB}} \newcommand{\ZHS}[0]{\mathbb{Z}\operatorname{HS}} \newcommand{\ZZG}[0]{{\mathbb{Z}G}} \newcommand{\ZZH}[0]{{\mathbb{Z}H}} \newcommand{\ZZlocal}[1]{{ \ZZ_{\hat{#1}} }} \newcommand{\ZZpadic}[0]{{ \ZZ_p }} \newcommand{\ZZ}[0]{{\mathbb{Z}}} \newcommand{\Zar}[0]{{\mathrm{Zar}}} \newcommand{\ZpZ}[0]{\mathbb{Z}/p} \newcommand{\abuts}[0]{\Rightarrow} \newcommand{\ab}[0]{{\operatorname{ab}}} \newcommand{\actsonl}[0]{\curvearrowleft} \newcommand{\actson}[0]{\curvearrowright} \newcommand{\adjoint}[0]{\dagger} \newcommand{\adj}[0]{\operatorname{adj}} \newcommand{\ad}[0]{\operatorname{ad}} \newcommand{\afp}[0]{A_{/\FF_p}} \newcommand{\annd}[0]{{\operatorname{ and }}} \newcommand{\ann}[0]{\operatorname{Ann}} \newcommand{\arccot}[0]{\operatorname{arccot}} \newcommand{\arccsc}[0]{\operatorname{arccsc}} \newcommand{\arcsec}[0]{\operatorname{arcsec}} \newcommand{\bP}[0]{\operatorname{bP}} \newcommand{\barz}{\bar{z} } \newcommand{\bbm}[0]{{\mathbb{M}}} \newcommand{\bd}[0]{{\del}} \newcommand{\bigast}[0]{{\mathop{\text{\Large $\ast$}}}} \newcommand{\bmgn}[0]{{ \bar{\mathcal{M}}_{g, n} }} \newcommand{\bundle}[1]{\mathcal{#1}} \newcommand{\Bun}{{\mathsf{Bun}}} \newcommand{\bung}{{\mathsf{Bun}_G}} \newcommand{\by}[0]{\times} \newcommand{\candim}[0]{\operatorname{candim}} \newcommand{\chp}[0]{\operatorname{ch. p}} \newcommand{\ch}[0]{\operatorname{ch}} \newcommand{\cl}[0]{{ \operatorname{cl}} } \newcommand{\codim}[0]{\operatorname{codim}} \newcommand{\cohdim}[0]{\operatorname{cohdim}} \newcommand{\coim}[0]{\operatorname{coim}} \newcommand{\coker}[0]{\operatorname{coker}} \newcommand{\cok}[0]{\operatorname{coker}} \newcommand{\cone}[0]{\operatorname{cone}} \newcommand{\conjugate}[1]{{\overline{{#1}}}} \newcommand{\connectsum}[0]{\mathop{ \Large\mypound }} \newcommand{\const}[0]{{\operatorname{const.}}} \newcommand{\converges}[1]{\overset{#1}} \newcommand{\convolve}[0]{\ast} \newcommand{\correspond}[1]{\theset{\substack{#1}}} \newcommand{\covers}[0]{\rightrightarrows} \newcommand{\covol}[0]{\operatorname{covol}} \newcommand{\cpt}[0]{{ \operatorname{compact} } } \newcommand{\crit}[0]{\operatorname{crit}} \newcommand{\cross}[0]{\times} \newcommand{\dR}[0]{\mathrm{dR}} \newcommand{\dV}{\,dV} \newcommand{\dash}[0]{{\hbox{-}}} \newcommand{\da}[0]{\coloneqq} \newcommand{\ddd}[2]{{\frac{d #1}{d #2}\,}} \newcommand{\ddim}[0]{\operatorname{ddim}} \newcommand{\ddt}{\tfrac{\dif}{\dif t}} \newcommand{\ddx}{\tfrac{\dif}{\dif x}} \newcommand{\dd}[2]{{\frac{\partial #1}{\partial #2}\,}} \newcommand{\decreasesto}[0]{\searrow} \newcommand{\definedas}[0]{\coloneqq} \newcommand{\del}[0]{{\partial}} \newcommand{\diagonal}[1]{\Delta} \newcommand{\diag}[0]{\operatorname{diag}} \newcommand{\diam}[0]{{\operatorname{diam}}} \newcommand{\diff}[0]{\operatorname{Diff}} \newcommand{\directlim}[0]{\varinjlim} \newcommand{\discriminant}[0]{{\Delta}} \newcommand{\disc}[0]{{\operatorname{disc}}} \newcommand{\disjoint}[0]{{\textstyle\coprod}} \newcommand{\dist}[0]{\operatorname{dist}} \newcommand{\dlog}[0]{\operatorname{dLog}} \newcommand{\dom}[0]{\operatorname{dom}} \newcommand{\dual}[0]{ {}^{ \vee }} \newcommand{\dmu}{\,d\mu} \newcommand{\dr}{\,dr} \newcommand{\ds}{\,ds} \newcommand{\dtheta}{\,d\theta} \newcommand{\dt}{\,dt} \newcommand{\du}{\,du} \newcommand{\dw}{\,dw} \newcommand{\dxi}{\,d\xi} \newcommand{\dx}{\,dx} \newcommand{\dA}{\,dA} \newcommand{\dy}{\,dy} \newcommand{\dzbar}{\,d\bar{z} } \newcommand{\dzeta}{\,d\zeta} \newcommand{\dz}{\,dz} \newcommand{\embeds}[0]{\hookrightarrow} \newcommand{\eo}[0]{{\operatorname{eo}}} \newcommand{\eps}[0]{{\varepsilon}} \newcommand{\essdim}[0]{\operatorname{essdim}} \newcommand{\et}{\text{ét}} \newcommand{\eul}[0]{{\operatorname{eul}}} \newcommand{\evalfrom}[0]{\Big|} \newcommand{\ext}{\operatorname{Ext} } \newcommand{\ff}[0]{\operatorname{ff}} \newcommand{\fppf}[0]{\mathrm{\operatorname{fppf}}} \newcommand{\fpqc}[0]{\mathrm{\operatorname{fpqc}}} \newcommand{\fp}[0]{\operatorname{fp}} \newcommand{\fqr}[0]{{\mathbb{F}_{q^r}}} \newcommand{\fq}[0]{{\mathbb{F}_{q}}} \newcommand{\freeprod}[0]{\ast} \newcommand{\from}[0]{\leftarrow} \newcommand{\gal}[0]{{ \operatorname{Gal}} } \newcommand{\gl}[0]{{\mathfrak{gl}}} \newcommand{\gp}[0]{ {\operatorname{gp} } } \newcommand{\grad}[0]{\operatorname{grad}} \newcommand{\grdim}[0]{{\operatorname{gr\,dim}}} \newcommand{\height}[0]{\operatorname{ht}} \newcommand{\homotopic}[0]{\simeq} \newcommand{\id}[0]{\operatorname{id}} \newcommand{\im}[0]{\operatorname{im}} \newcommand{\increasesto}[0]{\nearrow} \newcommand{\inftycat}[0]{{ \underset{\infty}{ \Cat} }} \newcommand{\injectivelim}[0]{\varinjlim} \newcommand{\injects}[0]{\hookrightarrow} \newcommand{\inner}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\interior}[0]{^\circ} \newcommand{\intersect}[0]{\cap} \newcommand{\into}[0]{\to} \newcommand{\inverselim}[0]{\varprojlim} \newcommand{\inv}[0]{^{-1}} \newcommand{\ip}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\isomorphic}{{ \, \mapsvia{\sim}\, }} \newcommand{\iso}{{ \isomorphic }} \newcommand{\kG}[0]{{kG}} \newcommand{\kfq}[0]{K_{/\mathbb{F}_q}} \newcommand{\kk}[0]{{\mathbb{k}}} \newcommand{\ko}[0]{{\operatorname{ko}}} \newcommand{\krulldim}[0]{\operatorname{krulldim}} \newcommand{\ks}[0]{\operatorname{ks}} \newcommand{\kxn}[0]{k[x_1, \cdots, x_{n}]} \newcommand{\kx}[1]{k[x_1, \cdots, x_{#1}]} \newcommand{\lci}[0]{\mathrm{lci}} \newcommand{\lcm}[0]{\operatorname{lcm}} \newcommand{\liealgk}[0]{{ \liealg_{/k} }} \newcommand{\liea}[0]{{\mathfrak{a}}} \newcommand{\lieb}[0]{{\mathfrak{b}}} \newcommand{\lied}[0]{{\mathfrak{d}}} \newcommand{\lief}[0]{{\mathfrak{f}}} \newcommand{\liegl}[0]{{\mathfrak{gl}}} \newcommand{\lieg}[0]{{\mathfrak{g}}} \newcommand{\lieh}[0]{{\mathfrak{h}}} \newcommand{\liel}[0]{{\mathfrak{l}}} \newcommand{\lien}[0]{{\mathfrak{n}}} \newcommand{\lieo}[0]{{\mathfrak{o}}} \newcommand{\lier}[0]{{\mathfrak{r}}} \newcommand{\liesl}[0]{{\mathfrak{sl}}} \newcommand{\lieso}[0]{{\mathfrak{so}}} \newcommand{\liesp}[0]{{\mathfrak{sp}}} \newcommand{\liet}[0]{{\mathfrak{t}}} \newcommand{\lieu}[0]{{\mathfrak{u}}} \newcommand{\lk}[0]{\operatorname{lk}} \newcommand{\loc}[0]{{\mathsf{loc}}} \newcommand{\mTHH}[0]{{\operatorname{THH}}} \newcommand{\mHH}[0]{{\operatorname{HH}}} \newcommand{\TCH}[0]{{\operatorname{TCH}}} \newcommand{\TC}[0]{{\operatorname{TC}}} \newcommand{\THC}[0]{{\operatorname{THC}}} \newcommand{\THoH}[0]{{\operatorname{THH}}} \newcommand{\HoH}[0]{{\operatorname{HH}}} \newcommand{\TP}[0]{{\operatorname{TP}}} \newcommand{\TT}[0]{{\mathbb{T}}} \newcommand{\mapscorrespond}[2]{\mathrel{\operatorname*{\rightleftharpoons}_{#2}^{#1}}} \newcommand{\mapstofrom}[0]{\rightleftharpoons} \newcommand{\mapstovia}[1]{\xmapsto{#1}} \newcommand{\mapsvia}[1]{\xrightarrow{#1}} \newcommand{\injectsvia}[1]{\xhookrightarrow{#1}} \newcommand{\injectsfromvia}[1]{\xhookleftarrow{#1}} \newcommand{\maps}[0]{\operatorname{Maps}} \newcommand{\mat}[0]{\operatorname{Mat}} \newcommand{\maxspec}[0]{{\operatorname{maxSpec}}} \newcommand{\mcTop}[0]{\mathcal{T}\mathsf{op}} \newcommand{\mca}[0]{{\mathcal{A}}} \newcommand{\mcb}[0]{{\mathcal{B}}} \newcommand{\mcc}[0]{{\mathcal{C}}} \newcommand{\mcd}[0]{{\mathcal{D}}} \newcommand{\mce}[0]{{\mathcal{E}}} \newcommand{\mcf}[0]{{\mathcal{F}}} \newcommand{\mcg}[0]{{\mathcal{G}}} \newcommand{\mch}[0]{{\mathcal{H}}} \newcommand{\mci}[0]{{\mathcal{I}}} \newcommand{\mcj}[0]{{\mathcal{J}}} \newcommand{\mck}[0]{{\mathcal{K}}} \newcommand{\mcl}[0]{{\mathcal{L}}} \newcommand{\mcm}[0]{{\mathcal{M}}} \newcommand{\mcp}[0]{{\mathcal{P}}} \newcommand{\mcs}[0]{{\mathcal{S}}} \newcommand{\mct}[0]{{\mathcal{T}}} \newcommand{\mcu}[0]{{\mathcal{U}}} \newcommand{\mcv}[0]{{\mathcal{V}}} \newcommand{\mcx}[0]{{\mathcal{X}}} \newcommand{\mcz}[0]{{\mathcal{Z}}} \newcommand{\mfa}[0]{{\mathfrak{a}}} \newcommand{\mfb}[0]{{\mathfrak{b}}} \newcommand{\mfc}[0]{{\mathfrak{c}}} \newcommand{\mff}[0]{{\mathfrak{f}}} \newcommand{\mfi}[0]{{\mathfrak{I}}} \newcommand{\mfm}[0]{{\mathfrak{m}}} \newcommand{\mfn}[0]{{\mathfrak{n}}} \newcommand{\mfp}[0]{{\mathfrak{p}}} \newcommand{\mfq}[0]{{\mathfrak{q}}} \newcommand{\mfr}[0]{{\mathfrak{r}}} \newcommand{\mfs}[0]{{\mathfrak{s}}} \newcommand{\mfy}[0]{{\mathfrak{Y}}} \newcommand{\mfx}[0]{{\mathfrak{X}}} \newcommand{\mg}[0]{{ \mathcal{M}_{g} }} \newcommand{\mgn}[0]{{ \mathcal{M}_{g, n} }} \newcommand{\minpoly}[0]{{\operatorname{minpoly}}} \newcommand{\mltext}[1]{\left\{\begin{array}{c}#1\end{array}\right\}} \newcommand{\mm}[0]{{\mathfrak{m}}} \newcommand{\mot}[0]{{ \mathrm{mot}} } \newcommand{\cell}[0]{{ \mathrm{cell}} } \newcommand{\mspec}[0]{\operatorname{mSpec}} \newcommand{\ms}[0]{\xrightarrow{\sim}} \newcommand{\multinomial}[1]{\left(\!\!{#1}\!\!\right)} \newcommand{\mult}[0]{{\operatorname{mult}}} \newcommand{\mveq}[0]{{\mapsvia{\sim}}} \newcommand{\mviso}[0]{{\mapsvia{\sim}}} \newcommand{\nd}[0]{\operatorname{nd}} \newcommand{\nilrad}[1]{{\sqrt{0_{#1}} }} \newcommand{\jacobsonrad}[1]{{J ({#1}) }} \newcommand{\nil}[0]{{\operatorname{nil}}} \newcommand{\noeth}[0]{\mathrm{Noeth}} \newcommand{\nonzero}[0]{^{\bullet}} \newcommand{\normalneq}{\mathrel{\reflectbox{$\trianglerightneq$}}} \newcommand{\normal}[0]{{~\trianglelefteq~}} \newcommand{\norm}[1]{{\left\lVert {#1} \right\rVert}} \newcommand{\notimplies}[0]{\centernot\implies} \newcommand{\onto}[0]{\twoheadhthtarrow} \newcommand{\open}[1]{\overset{\circ}{#1}} \newcommand{\op}[0]{^{\operatorname{op}}} \newcommand{\ord}[0]{{\operatorname{Ord}}} \newcommand{\oriented}[0]{{ \operatorname{oriented} } } \newcommand{\orr}[0]{{\operatorname{ or }}} \newcommand{\padic}[0]{p\dash\text{adic}} \newcommand{\pic}[0]{{\operatorname{Pic}}} \newcommand{\pnorm}[2]{{\left\lVert {#1} \right\rVert}_{#2}} \newcommand{\poly}[0]{\mathrm{poly}} \newcommand{\prim}[0]{{\operatorname{prim}}} \newcommand{\projectivelim}[0]{\varprojlim} \newcommand{\pr}[0]{{\operatorname{pr}}} \newcommand{\pt}[0]{{\operatorname{pt}}} \newcommand{\qc}[0]{{\operatorname{qc}}} \newcommand{\qst}[0]{{\quad \operatorname{such that} \quad}} \newcommand{\rank}[0]{\operatorname{rank}} \newcommand{\realpart}[1]{{\mathcal{Re}({#1})}} \newcommand{\red}[0]{{ \text{red} }} \newcommand{\reg}[0]{\mathrm{reg}} \newcommand{\reldim}[0]{\operatorname{reldim}} \newcommand{\restrictionof}[2]{ {\left.{{#1}} \right|_{{#2}} } } \newcommand{\rk}[0]{{\operatorname{rank}}} \newcommand{\rotate}[2]{{\style{display: inline-block; transform: rotate(#1deg)}{#2}}} \newcommand{\ro}[2]{{ \left.{{#1}} \right|_{{#2}} }} \newcommand{\selfmap}[0]{{\circlearrowleft}} \newcommand{\semidirect}[0]{\rtimes} \newcommand{\sep}[0]{{ {}^{ \operatorname{sep} } }} \newcommand{\sgn}[0]{\operatorname{sgn}} \newcommand{\shom}{ {\mathcal{H}}\kern-0.5pt{\operatorname{om}}} \newcommand{\signature}[0]{\operatorname{sig}} \newcommand{\sign}[0]{\operatorname{sign}} \newcommand{\Sing}[0]{{\operatorname{Sing}}} \newcommand{\sing}[0]{{\mathrm{sing}}} \newcommand{\slope}[0]{{\mathrm{slope}}} \newcommand{\smts}[1]{\setminus\theset{#1}} \newcommand{\smz}[0]{\setminus\theset{0}} \newcommand{\sm}[0]{\setminus} \newcommand{\spanof}[0]{{\operatorname{span}}} \newcommand{\spec}[0]{\operatorname{Spec}} \newcommand{\stab}[0]{{\operatorname{Stab}}} \newcommand{\stirlingfirst}[2]{\genfrac{[}{]}{0pt}{}{#1}{#2}} \newcommand{\stirling}[2]{\genfrac\{\}{0pt}{}{#1}{#2}} \newcommand{\st}[0]{{~\mathrel{\Big|}~}} \newcommand{\surjectsvia}[2][]{ \xrightarrow[#1]{#2} { \mathrel{\mkern-16mu}\rightarrow }\, } \newcommand{\surjects}[0]{\twoheadrightarrow} \newcommand{\syl}[0]{{\operatorname{Syl}}} \newcommand{\sym}[0]{\operatorname{Sym}} \newcommand{\td}[0]{\mathrm{td}} \newcommand{\tensor}[0]{\otimes} \newcommand{\tgn}[0]{{ \mathcal{T}_{g, n} }} \newcommand{\theset}[1]{\left\{{#1}\right\}} \newcommand{\thetaref}[0]{{ \theta_{\mathrm{Ref} } }} \newcommand{\thevector}[1]{{\left[ {#1} \right]}} \newcommand{\thinrank}[0]{T_n\dash\operatorname{rank}} \newcommand{\too}[1]{{\xrightarrow{#1}}} \newcommand{\tors}[0]{{\operatorname{tors}}} \newcommand{\tor}[0]{\operatorname{Tor}} \newcommand{\transverse}[0]{\pitchfork} \newcommand{\trdeg}[0]{\operatorname{trdeg}} \newcommand{\trianglerightneq}{\mathrel{\ooalign{\raisebox{-0.5ex}{\reflectbox{\rotatebox{90}{$\nshortmid$}}}\cr$\triangleright$\cr}\mkern-3mu}} \newcommand{\tr}[0]{{\mathrm{tr}}} \newcommand{\tspt}[0]{{\{\operatorname{pt}\}}} \newcommand{\ts}[1]{\left\{{#1}\right\}} \newcommand{\tv}[1]{{\left[ {#1} \right]}} \newcommand{\txand}[0]{{\operatorname{ and }}} \newcommand{\txor}[0]{{\operatorname{ or }}} \newcommand{\txt}[1]{{\operatorname{ {#1} }}} \newcommand{\type}[0]{{\operatorname{type}}} \newcommand{\uniformlyconverges}[0]{\rightrightarrows} \newcommand{\union}[0]{\cup} \newcommand{\unital}[0]{{\operatorname{unital}}} \newcommand{\units}[0]{^{\times}} \newcommand{\up}[0]{\uparrow} \newcommand{\vhat}[1]{\widehat{ \vector{#1} }} \newcommand{\vol}[0]{\operatorname{vol}} \newcommand{\wait}[0]{{-}} \newcommand{\wt}[0]{{\operatorname{wt}}} \newcommand{\zar}[0]{{\mathrm{zar}}} \newcommand{\zbar}{\bar{z} } \newcommand{\zlnz}[0]{\mathbb{Z}/\ell^n\mathbb{Z}} \newcommand{\zlz}[0]{\mathbb{Z}/\ell\mathbb{Z}} \newcommand{\znz}[0]{\mathbb{Z}/n\mathbb{Z}} \newcommand{\zpz}[0]{\mathbb{Z}/p\mathbb{Z}} \renewcommand{\AA}[0]{{\mathbb{A}}} \renewcommand{\SS}[0]{{\mathbb{S}}} \renewcommand{\bar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu} \renewcommand{\det}{\operatorname{det}} \renewcommand{\div}[0]{\operatorname{Div}} \renewcommand{\hat}[1]{\widehat{#1}} \renewcommand{\labelitemiii}{$\diamondsuit$} \renewcommand{\labelitemiv}{$\diamondsuit$} \renewcommand{\mid}[0]{\mathrel{\Big|}} \renewcommand{\mod}{\operatorname{mod}} \renewcommand{\qed}[0]{\hfill\blacksquare} \renewcommand{\too}[0]{\longrightarrow} \renewcommand{\vector}[1]{\mathbf{#1}} \DeclareMathOperator*{\supp}{supp} \DeclareMathOperator*{\eq}{=} \DeclareMathOperator*{\hocolim}{hocolim} \DeclareMathOperator{\aut}{Aut} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Inn}{Inn} \DeclareMathOperator{\Out}{Out} \DeclareMathOperator{\BiHol}{BiHol} \DeclareMathOperator{\Bl}{Bl} \DeclareMathOperator{\Br}{Br} \DeclareMathOperator{\Curv}{Curv} \DeclareMathOperator{\Deck}{Deck} \DeclareMathOperator{\Der}{Der} \DeclareMathOperator{\Endo}{End} \DeclareMathOperator{\Exists}{\exists} \DeclareMathOperator{\Forall}{\forall} \DeclareMathOperator{\Forget}{Forget} \DeclareMathOperator{\Frame}{Frame} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\Griff}{Griff} \DeclareMathOperator{\Hol}{Hol} \DeclareMathOperator{\Ind}{Ind} \DeclareMathOperator{\Isom}{Isom} \DeclareMathOperator{\Ld}{{\mathbb{L} }} \DeclareMathOperator{\Maps}{Maps} \DeclareMathOperator{\Map}{Maps} \DeclareMathOperator{\OFrame}{OFrame} \DeclareMathOperator{\Prin}{Prin} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\RHom}{\mathbb{R}Hom} \DeclareMathOperator{\Rad}{Rad} \DeclareMathOperator{\Rd}{{\mathbb{R} }} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\Suspendpinf}{{\Sigma_+^\infty}} \DeclareMathOperator{\Symb}{Symb} \DeclareMathOperator{\Taut}{Taut} \DeclareMathOperator{\Th}{Th} \DeclareMathOperator{\Triv}{Triv} \DeclareMathOperator{\UFrame}{UFrame} \DeclareMathOperator{\coInd}{coInd} \DeclareMathOperator{\codom}{codom} \DeclareMathOperator{\coh}{coh} \DeclareMathOperator{\coind}{coInd} \DeclareMathOperator{\coinfl}{coinf} \DeclareMathOperator{\colspace}{colspace} \DeclareMathOperator{\cores}{cores} \DeclareMathOperator{\hd}{Head} \DeclareMathOperator{\hilb}{Hilb} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\infl}{inf} \DeclareMathOperator{\len}{len} \DeclareMathOperator{\nullity}{nullspace} \DeclareMathOperator{\nullspace}{nullspace} \DeclareMathOperator{\per}{per} \DeclareMathOperator{\prin}{prin} \DeclareMathOperator{\projection}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\range}{range} \DeclareMathOperator{\rowspace}{rowspace} \DeclareMathOperator{\soc}{Soc} \DeclareMathOperator{\submfds}{SubMfds} \newcommand{\Suchthat}[0]{\middle\vert} \newcommand{\suchthat}[0]{{~\mathrel{\Big|}~}} \newcommand{\delbar}[0]{{ \bar{\del}}} \newcommand{\contains}[0]{\supseteq} \newcommand{\containing}[0]{\supseteq} \newcommand{\iscontainedin}[0]{\supseteq} \newcommand{\rad}[1]{\sqrt{#1}} \newcommand{\thecat}[1]{\mathbf{#1}} \newcommand{\sheaf}[1]{\operatorname{\mathcal{#1}}} \newcommand{\rightderive}[0]{{\mathbf{R}}} \newcommand\rrarrows{\rightrightarrows} \newcommand\rrrarrows{ \mathrel{\substack{\textstyle\rightarrow\\[-0.6ex] \textstyle\rightarrow \\[-0.6ex] \textstyle\rightarrow}} } \newcommand\ul[1]{\underline{#1}} \newcommand\constantsheaf[1]{\underline{#1}} \newcommand\holomorphic[0]{\text{holo}} \newcommand\std[0]{\text{std}} \newcommand\Mero[0]{\operatorname{Mero}} \newcommand\res[0]{\operatorname{res}} \newcommand\even[0]{\text{even}} \newcommand\odd[0]{\text{odd}} \newcommand\hodgestar[0]{\star} \newcommand\dirac[0]{\mkern-3mu \not{ \partial} } \newcommand\laplacian[0]{\Delta} \newcommand\Laplacian[0]{\Delta} \newcommand\stardstar[0]{\hodgestar {d} \mkern-5mu \hodgestar} \newcommand\covariant[0]{\nabla} \newcommand\ol[1]{\overline{#1}} \newcommand\univcover[1]{\overline{#1}} \newcommand\closure[1]{\overline{#1}} \newcommand\fps[1]{{\left[\left[ #1 \right]\right] }} \newcommand\laurent[1]{{\left(\left( #1 \right)\right) }} \newcommand\capprod{\frown} \newcommand\cupprod{\smile} \newcommand\Path{\mathcal{P}} \newcommand\gradient{\nabla} \newcommand\cechH[0]{{\check{H}}} \newcommand\Hc[0]{{\check{H}}} \newcommand\Cc[0]{{\check{C}}} \newcommand\cupp[0]{\smile} \newcommand\capp[0]{\frown} \newcommand\sig[0]{\operatorname{sig}} \newcommand\ev[0]{\operatorname{ev}} \newcommand\coev[0]{\operatorname{coev}} \newcommand{\fractional}[1]{\theset{#1}} \newcommand{\fractionalpart}[1]{\theset{#1}} \newcommand{\integerpart}[1]{\left[ {#1}\right] } \newcommand{\zadjoin}[1]{\mathbb{Z}\left[ {#1} \right]} \newcommand{\wedgeprod}[0]{\vee} \newcommand{\Wedgepower}[0]{\bigwedge\nolimits} \def\multichoose#1#2{{\left(\kern-.3em\left(\genfrac{}{}{0pt}{}{#1}{#2}\right)\kern-.3em\right)}} \newcommand\elts[2]{{ {#1}_1, {#1}_2, \cdots, {#1}_{#2}}} \newcommand\tselts[2]{{ \theset{ {#1}_1, {#1}_2, \cdots, {#1}_{#2} } }} \newcommand\fiberproduct[1]{\underset{\scriptscriptstyle {#1} }{\times}} \newcommand\fiberprod[1]{{ \fiberproduct{#1} }} \newcommand\fprod[1]{{ \fiberproduct{#1} }} \newcommand\smallprod[0]{{ \scriptscriptstyle\prod }} \newcommand\sumpower[1]{{ {}^{ \scriptscriptstyle\oplus^{#1} } }} \newcommand\prodpower[1]{{ {}^{ \scriptscriptstyle\times^{#1} } }} \newcommand\tensorpower[2]{{ {}^{ \scriptstyle\otimes_{#1}^{#2} } }} \newcommand\derivedtensorpower[3]{{ {}^{ \scriptstyle {}_{#1} {\otimes_{#2}^{#3}} } }} \newcommand\smashpower[1]{{ {}^{ \scriptscriptstyle\smashprod^{#1} } }} \newcommand{\Tot}[0]{{ \operatorname{Tot} }} \newcommand{\Totsum}[0]{\Tot^{\oplus}} \newcommand{\Totprod}[0]{\Tot^{\Pi}} \newcommand{\xpn}[0]{ { x^{p^n} } } \newcommand{\Qbar}[0]{{ \bar{ \mathbb{Q} } }} \newcommand{\Loop}[0]{{\Omega}} \newcommand{\Loopinf}[0]{{\Omega}^\infty} \newcommand{\Suspend}[0]{{\Sigma}} \newcommand{\ptd}{{\scriptstyle { * } }} \newcommand{\fin}[0]{{\mathrm{fin}}} \newcommand{\can}[0]{{\mathrm{can}}} \newcommand{\ess}[0]{{\mathrm{ess}}} \newcommand{\fd}[0]{{\mathrm{fd}}} \newcommand{\fg}[0]{{\mathrm{fg}}} \newcommand{\qproj}[0]{{\mathrm{qproj}}} \newcommand{\irr}[0]{{\mathrm{irr}}} \newcommand{\ft}[0]{{\mathrm{ft}}} \newcommand{\smol}[0]{{\mathrm{small}}} \newcommand{\alev}[0]{{\,\mathrm{a.e.}}} \newcommand{\semisimple}[0]{{\operatorname{ss}}} \newcommand{\gon}[0]{{\dash\mathrm{gon}}} \newcommand{\semi}[0]{{\operatorname{semi}}} \newcommand{\inc}[0]{{\operatorname{inc}}} \newcommand{\Ball}[0]{{B}} \newcommand{\hq}[0]{{/}} \newcommand{\unioninfty}[0]{{\union\ts{\infty}}} \newcommand{\dualnumbers}[0]{{ [\eps] / \eps^2 }} \newcommand{\crys}[0]{{\mathrm{crys}}} \newcommand{\Xff}[0]{{X_\mathrm{FF}}} \newcommand{\an}[0]{{\mathrm{an}}} \newcommand{\Nis}[0]{{\mathrm{Nis}}} \newcommand{\perf}[0]{{\mathrm{perf}}} \newcommand{\quillenplus}[0]{{ {}^{+} }} \newcommand{\glue}[1]{{ \Disjoint_{#1} }} \newcommand{\normcomplex}[1]{{\norm{\complex{#1}}}} \newcommand{\nerve}[1]{{ \mathcal{N}({#1}) }} \newcommand{\realize}[1]{{ \abs{#1} }} \newcommand{\localize}[1]{ \left[ { \scriptstyle #1\inv } \right]} \newcommand{\sheafify}[1]{ \left( #1 \right)^{\scriptscriptstyle \mathrm{sh}} } \newcommand{\complete}[1]{{ {}_{ \hat{#1} } }} \newcommand{\takecompletion}[1]{{ \overbrace{#1}^{\widehat{\hspace{4em}}} }} \newcommand{\twistleft}[2]{{ {}^{#1} #2 }} \newcommand{\twistright}[2]{{ #2 {}^{#1} }} \newcommand{\liesover}[1]{{ {}_{/ {#1}} }} \newcommand{\liesabove}[1]{{ {}_{/ {#1}} }} \newcommand{\slice}[1]{_{/ {#1}} } \newcommand{\quotright}[2]{ {}^{#1}\mkern-2mu/\mkern-2mu_{#2} } \newcommand{\quotleft}[2]{ {}_{#2}\mkern-.5mu\backslash\mkern-2mu^{#1} } \newcommand{\invert}[1]{{ \left[ { \scriptstyle \frac{1}{#1} } \right] }} \newcommand{\pcomplete}[0]{{ {}^{ \wedge }_{p} }} \newcommand{\symb}[2]{{ \qty{ #1 \over #2 } }} \newcommand{\B}[0]{{\mathsf{B}}} \newcommand{\E}[0]{{\mathsf{E}}} \newcommand{\T}[0]{{\mathsf{T}}} \newcommand{\K}[0]{{\mathsf{K}}} \newcommand{\G}[0]{{\mathsf{G}}} %\newcommand{\H}[0]{{\mathsf{H}}} \newcommand{\D}{{ \mathsf{D} }} \newcommand{\mH}{{ \mathsf{H} }} \newcommand{\BGL}[0]{ \mathsf{B}\mkern-3mu \operatorname{GL} } \newcommand{\RM}[1]{% \textup{\uppercase\expandafter{\romannumeral#1}}% } \DeclareMathOperator{\righttriplearrows} {{\; \tikz{ \foreach \y in {0, 0.1, 0.2} { \draw [-stealth] (0, \y) -- +(0.5, 0);}} \; }} \DeclareMathOperator*{\mapbackforth}{\rightleftharpoons} \newcommand{\fourcase}[4]{ \begin{cases}{#1} & {#2} \\ {#3} & {#4}\end{cases} } \newcommand{\matt}[4]{{ \begin{bmatrix} {#1} & {#2} \\ {#3} & {#4} \end{bmatrix} }} \newcommand{\mattt}[9]{{ \begin{bmatrix} {#1} & {#2} & {#3} \\ {#4} & {#5} & {#6} \\ {#7} & {#8} & {#9} \end{bmatrix} }} \newcommand\stacksymbol[3]{ \mathrel{\stackunder[2pt]{\stackon[4pt]{$#3$}{$\scriptscriptstyle#1$}}{ $\scriptscriptstyle#2$}} } \newcommand{\textoperatorname}[1]{ \operatorname{\textnormal{#1}} } %\newcommand{\strike}[1]{{\enclose{\horizontalstrike}{#1}}} \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} # Friday, July 30 References: - Course website: - [Gómez 99: Expository article on algebraic stacks](https://arxiv.org/pdf/math/9911199.pdf) :::{.remark} Stated goal of the course: prove that the moduli space $\bar{\mg}$ of stable curves (for $g\geq 2$) is a smooth, proper, irreducible Deligne-Mumford stack of dimension $3g-3$. Moreover, it admits a projective coarse moduli space. In the process we'll define **algebraic spaces** and **stacks**. Prerequisites: - Schemes - Existence of Hilbert schemes - Artin approximation - Resolution of singularities for surfaces - Deformation theory ::: # Lecture 3: Groupoids and Prestacks (Monday, September 06) ## Groupoids :::{.remark} Last time: functors, sheaves on sites, descent, and Artin approximation. Today: groupoids and stacks. Recall that a **site** $\cat{S}$ is a category such that for all $U\in \Ob(\cat{S})$, there exists a set $\Cov(U) \da \ts{U_i \to U}_{i\in I}$ (a *covering family*) such that - $\id_U \in \Cov(U)$, - $\Cov(U)$ is closed under composition. - $\Cov(U)$ is closed under pullbacks: \begin{tikzcd} {\exists U_i\fiberprod{U}V} && {U_i} \\ \\ V && U \arrow["{\in \Cov(U)}", from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \arrow[dashed, from=1-1, to=1-3] \arrow[dashed, from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.025}, draw=none, from=1-1, to=3-3] \arrow["{\in\Cov(U)}"{description}, curve={height=-12pt}, dashed, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMiwyLCJVIl0sWzAsMiwiViJdLFsyLDAsIlVfaSJdLFswLDAsIlxcZXhpc3RzIFVfaVxcZmliZXJwcm9ke1V9ViJdLFsyLDAsIlxcaW4gXFxDb3YoVSkiXSxbMSwwXSxbMywyLCIiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMywxLCIiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMywwLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbMywwLCJcXGluXFxDb3YoVSkiLDEseyJjdXJ2ZSI6LTIsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) ::: :::{.example title="The big étale site"} Take $\cat{S} \da \Sch_{\Et}$ to be the big étale site: the category of all schemes, with covering families given by étale morphisms $\ts{U_i\to U}_{i\in I}$ such that $\Disjoint_i U_i \surjects U$. Note that there is a special covering family given by *surjective* etale morphisms. \todo[inline]{Reducing to case of single surjective etale cover somehow?} ::: :::{.definition title="Sheaves on sites"} Let $\cat{C}$ be a category (e.g. $\cat C \da \Set$) and recall that a *presheaf* on a category $\cat S$ is a contravariant functor $\cat{S}\to \cat{C}$. A $\cat{C}\dash$valued **sheaf** on a site $\cat{S}$ is a presheaf \[ \mcf:\cat{S} \to \cat{C} \] such that for all $U_i, U_j\in \Cov(U)$, the following equalizer diagram is exact in $\cat{C}$ \begin{tikzcd} 0 \stackarr{1}[r] & F(U) \stackarr{3}[r] & \prod\limits_{i} F(U_i) \stackarr{5}[r] & \prod\limits_{i, j} F(U_i \fiberprod{U} U_j) \end{tikzcd} ::: :::{.exercise title="Criterion for sheaves on the big etale site"} Show that a presheaf $F$ is a sheaf on $\Sch_\Et$ iff - $F$ is a sheaf on $\Sch_\Zar$ and - For all etale surjections $U' \surjects_{\et} U$ of affines, the equalizer diagram is exact. ::: :::{.proposition title="Yoneda"} For $X\in \Sch$, the presheaf \[ h_X \da \Mor(\wait, X): \Sch \to \Set \] is a sheaf on $\Sch_{\Et}$. ::: :::{.remark} We'll often consider *moduli functors*: functors $F: \Sch \to \Set$ where $F(S)$ is a family of objects over $S$. Then $F$ will be a sheaf iff families glue uniquely in the étale topology, and representability of such functors will imply they are sheaves. ::: :::{.example title="A non-sheaf"} Consider the following moduli functor: \begin{tikzpicture} \node {% \(\begin{aligned} F_{\Alg}: \Sch &\to \Set \\ S &\mapsto \left\{ \begin{tikzcd} \mathcal{C} \ar[d] \\ S \end{tikzcd} \right. \begin{aligned} \text{Smooth families of}\\ \text{genus $g$ curves.} \end{aligned} \end{aligned}\) }; \end{tikzpicture} This is *not* representable by a scheme and not a sheaf. ::: :::{.remark} Why care about representability? Suppose there were a scheme $M$, so \[ F_{\Alg}(S) \simeq \Mor(S, M) .\] Then taking $\id_M \in \Mor(M, M)$ should yield a universal family $\mcu \to M$: ![](figures/2021-09-06_14-50-50.png) Then the points of $M$ would correspond to isomorphism classes of curves, and every family of curves would be a pullback of this. For any $S\in\Sch$ and a family $\mcc \mapsvia{f} S$, the fiber $f\inv(s)\in\mcc$ is a curve for any $s\in S$, so one could define a map \[ g: S &\to M \\ s &\mapsto [s] ,\] where we send a curve to its isomorphism class. Then $\mcc$ would fit into a pullback diagram: \begin{tikzcd} \mcc && \mcu \\ \\ S && M \arrow[from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \arrow[from=1-1, to=3-1] \arrow[dashed, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1jYyJdLFsyLDAsIlxcbWN1Il0sWzAsMiwiUyJdLFsyLDIsIk0iXSxbMSwzXSxbMiwzXSxbMCwyXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMCwzLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) If $S$ was itself a curve, then $g: S\to M$ would be a path in $M$ deforming a base curve. ::: ## Groupoids :::{.remark} Recall that a **groupoid** is a category where every morphism is an isomorphism. Morphisms of groupoids are functors, and isomorphisms of groupoids are equivalences of categories. ::: :::{.example title="Groupoid of a set"} A basic example is the category of sets where \[ \Mor(A, B) \da \begin{cases} \id_A & A=B \\ \emptyset & \text{else}. \end{cases} \] A similar construction: for any set $\Sigma$, one can form a groupoid $\mcc_\Sigma$: - Object: Elements $x\in \Sigma$. - Morphisms: $\id_x$ ::: :::{.example title="Moduli of curves"} Define a category $\mg(\CC)$: - Objects: smooth projective curves over $\CC$ of genus $g$. - Morphisms: \[ \Mor(C, C') = \Isom_{\Sch\slice\CC}(C, C') \subseteq \Mor_{\Sch\slice\CC}(C, C') .\] ::: :::{.example title="Equivalence of groupoids"} Groupoids are equivalent iff they are equivalent as categories. The following is an example of mapping the quotient groupoid $[C_2/C_4]$ to $\B C_2$: ![](figures/2021-09-06_19-13-21.png) ::: :::{.example title="Groupoids equivalent to sets"} If a groupoid $\mfx$ is equivalent to $\cat{C}_{\Sigma}$ for any $\Sigma \in \Set$, we say $\mfx$ is **equivalent to a set**. For example, the following groupoid is equivalent to a 2-element set: ![](figures/2021-09-06_19-15-23.png) ::: :::{.example title="Quotient groupoids"} For $G\actson \Sigma$ a group acting on any set, define the **quotient groupoid** $[\Sigma/G]$ in the following way: - Objects: $x\in \Sigma$, i.e. one object for each element of the set $\Sigma$. - Morphisms: $\Mor(x, x') = \ts{g\in G \st gx' = x}$. ::: :::{.exercise title="Groupoids equivalent to sets"} Show that $[\Sigma/G]$ is equivalent to a set iff $G\actson \Sigma$ is a free action. ::: :::{.example title="Classifying stacks"} For $\Sigma = \ts{\pt}$, we obtain \[ \B G \da [\pt/ G] ,\] where there is one object $\pt$ and $\Mor(\pt, \pt) = G$. ::: :::{.example title="from representation stability"} Define $\Finset$ to be the category of finite sets where the morphisms are set bijections. Then $\Finset = \Disjoint_{n\in \ZZ_{\geq 0}} \B S_n$ for $S_n$ the symmetric group. ::: :::{.definition title="Fiber products of groupoids"} For $C, D' \to D$ morphisms of groupoids, we can construct their **fiber product** as the cartesian diagram: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{C\fiberprod{D}D'} && {D'} \\ \\ C && D \arrow["f"', from=3-1, to=3-3] \arrow["{g}", from=1-3, to=3-3] \arrow["{\pr_1}"', from=1-1, to=3-1] \arrow["{\pr_2}", from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwyLCJDIl0sWzIsMiwiRCJdLFsyLDAsIkQnIl0sWzAsMCwiQ1xcZmliZXJwcm9ke0R9RCciLFsyNDAsNjAsNjAsMV1dLFswLDEsImYiLDJdLFsyLDEsImYnIl0sWzMsMCwiXFxwcl8xIiwyXSxbMywyLCJcXHByXzIiXV0=) It can be constructed as the following category: \[ \Ob(C\fiberprod{D} D') \da \left\{ \begin{array}{l} (c, d', \alpha) \end{array} \middle\vert \begin{array}{l} c\in C, d'\in D', \\ \\ \alpha: f(c) \mapsvia{\sim} g(d') \end{array} \right\} \] \includegraphics{figures/BigDiagram1.pdf} ::: :::{.exercise title="Universal property of pullbacks in Groupoids"} Describe the universal property of the pullback in the 2-category of groupoids. ::: :::{.example title="$G$ is a pullback of $\B G$"} $G$ regarded as a groupoid is the pullback over inclusions of points into $\B G$: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{G} && \pt \\ \\ \pt && {\B G} \arrow[from=3-1, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=3-1] \arrow[from=1-3, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJHIixbMjQwLDYwLDYwLDFdXSxbMiwwLCJcXHB0Il0sWzAsMiwiXFxwdCJdLFsyLDIsIlxcQiBHIl0sWzIsM10sWzAsMiwiIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFsxLDNdLFswLDEsIiIsMix7ImNvbG91ciI6WzI0MCw2MCw2MF19XSxbMCwzLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) ::: :::{.example title="Orbit/Stabilizer"} Let $G\actson \Sigma$ and $x\in \Sigma$, and let $Gx$ be the orbit and $G_x$ be the stabilizer. Then there is a morphism of groupoids $f \in \Mor(\B G_x, [\Sigma/G])$ inducing a pullback: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{G_x} & {} & \Sigma \\ \\ {\B G_x} && {[\Sigma/G]} \\ \pt && x \arrow["{\exists f}", from=3-1, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=3-1] \arrow[from=1-3, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, color={rgb,255:red,92;green,92;blue,214}, draw=none, from=1-1, to=3-3] \arrow[maps to, from=4-1, to=4-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwwLCJHX3giLFsyNDAsNjAsNjAsMV1dLFsxLDBdLFsyLDAsIlxcU2lnbWEiXSxbMCwyLCJcXEIgR194Il0sWzIsMiwiW1xcU2lnbWEvR10iXSxbMCwzLCJcXHB0Il0sWzIsMywieCJdLFszLDQsIlxcZXhpc3RzIGYiXSxbMCwzLCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfV0sWzIsNF0sWzAsMiwiIiwyLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFswLDQsIiIsMSx7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dLFs1LDYsIiIsmfx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=) ::: ## Prestacks :::{.remark} Motivation: to specify a moduli functor, we'll need the data of - Families over $S$, - How to pull back families under morphisms, and - *How* objects are isomorphic. As a first attempt, we might try to define a 2-functor $F: \Sch \to \Grpd$ between 2-categories, where the latter is the category of groupoids. For this, we need the following data: - For all $S\in \Sch$, an assignment of a groupoid $F(S)$, - For all morphisms $f\in \Mor_{\Sch}(S, T)$, an assignment of morphisms of groupoids \[ f^* \in \Mor_{\Grpd}(F(T), F(S)) .\] - For compositions of morphisms of schemes $S \mapsvia{f} T \mapsvia{g} U$, an isomorphism of functors \[ \psi_{fg}: g^* \circ f^* \mapsvia{\sim} (g \circ f)^* .\] - Compatibility of these isomorphisms on chains of compositions $S \to T \to U \to V \to \cdots$. [^lasfunctors] This is a lot of data to track, so instead we'll construct a large category $\mfx$ that encodes all of this, along with a fibration \begin{tikzcd} \mfx \da \Disjoint_{S\in \Sch} F(S) \ar[d, "p"] & (S, \alpha \in F(S)) \ar[d, maps to] \\ \Sch & S \end{tikzcd} Here $S \in \Sch$ and $F(S) \in \Grpd$, so the "fibers" above $S$ are groupoids. [^lasfunctors]: This leads to the notion of **lax** or **pseudofunctors**. ::: :::{.definition title="Prestack"} Let $p:\mfx \to \cat{C}$ be a functor between two 1-categories, so we have the following data: \begin{tikzcd} \mfx && a && b & {\in \Ob(\mfx)} \\ \\ \cat{C} && S && T & {\in \Ob(\cat C)} \arrow["f", from=3-3, to=3-5] \arrow["p"', from=1-1, to=3-1] \arrow[maps to, from=1-3, to=3-3] \arrow[maps to, from=1-5, to=3-5] \arrow["\alpha", from=1-3, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCwwLCJcXG1meCJdLFswLDIsIlMiXSxbMiwwLCJhIl0sWzQsMCwiYiJdLFsyLDIsIlMiXSxbNCwyLCJUIl0sWzUsMCwiXFxpbiBcXE9iKFxcbWZ4KSJdLFs1LDIsIlxcaW4gXFxPYihTKSJdLFs0LDUsImYiXSxbMCwxLCJwIiwyXSxbMiw0LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV0sWzMsNSwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dLFsyLDNdXQ==) Then $\mfx, p$ define a **prestack** over $\cat C$ iff - Pullbacks exist: for $S \mapsvia{f} T$, there exists a (not necessarily unique) map $f^*b$, sometimes denoted $\ro{b}{f}$, yielding a cartesian square: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{\exists a} && b \\ \\ S && T \arrow[from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow["{f^* b = \ro{b}{f}}", color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=1-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, color={rgb,255:red,92;green,92;blue,214}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXGV4aXN0cyBhIixbMjQwLDYwLDYwLDFdXSxbMiwwLCJiIl0sWzAsMiwiUyJdLFsyLDIsIlQiXSxbMiwzXSxbMSwzXSxbMCwxLCJmXiogYiA9IFxccm97Yn17Zn0iLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19LFsyNDAsNjAsNjAsMV1dLFswLDIsIiIsMCx7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDMsIiIsMSx7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==) - A universal property making $\mfx$ a *fibered category*: every arrow in $\mfx$ is a pullback, so there are always lifts of the following form: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{a} && b && c \\ \\ R && S && R \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[maps to, from=1-3, to=3-3] \arrow[maps to, from=1-5, to=3-5] \arrow[from=1-3, to=1-5] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, maps to, from=1-1, to=3-1] \arrow["{\exists !}", color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwwLCJhIixbMjQwLDYwLDYwLDFdXSxbMiwwLCJiIl0sWzQsMCwiYyJdLFswLDIsIlIiXSxbMiwyLCJTIl0sWzQsMiwiUiJdLFszLDRdLFs0LDVdLFsxLDQsIiIsmfx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XSxbMiw1LCIiLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV0sWzEsMl0sWzAsMywiIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9LCJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMCwxLCJcXGV4aXN0cyAhIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fSxbMjQwLDYwLDYwLDFdXSxbMCw0LCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) ::: :::{.slogan} An alternative definition: a prestack is a category *fibered in groupoids*. ::: :::{.warnings} We often conflate $\mfx$ and the functor $\mfx \mapsvia{p} S$, and don't spell out the composition law in $\mfx$. Moreover, we write $f^*b$ or $\ro{b}{f}$ for a *choice* of a pullback. ::: :::{.definition title="Fiber Categories"} For $p: \mfx\to \cat{C}$ a functor and $S\in \Ob(\cat C)$ any fixed object, the associated **fiber category over $S$**, denoted $\mfx(S)$, is the subcategory of $\mfx$ defined by: - Objects: $a\in \Ob(\mfx)$ such that $a \mapsvia{p} S$, - Morphisms: $\Mor(a, a')$ are morphisms $f\in \Mor_{\mfx}(a, a')$ over $\id_S$: \begin{tikzcd} a \ar[rd, ""] \ar[rr, "f"] & & a' \ar[ld, ""] \\ & S & \end{tikzcd} ::: :::{.remark} We can now equivalently define presheaves as categories fibered in sets. ::: :::{.exercise title="Justifying 'category fibered in groupoids'"} Show that if $\mfx \to \cat{C}$ is a prestack, then for all $S\in \cat{C}$, all maps in $\mfx(S)$ are invertible. Conclude that the fiber categories $\mfx(S)$ are all groupoids. ::: :::{.example title="Presheaves"} Every presheaf forms a prestack. Let $F \in \Presh(\Sch, \Set)$ be a presheaf of sets, and define $\mfx_F$ as the following category: - Objects: Pairs $(S, a \in F(S))$ where $S\in \Sch$ and $F(s) \in \Set$. - Morphisms: \[ \Mor( (S, a), (T, b) ) \da \ts{ S \mapsvia{f} T \st a = f^* b} .\] Note that we'll often conflate $F$ and $\mfx_F$. This yields the fibration \begin{tikzcd} {\mfx_F} && {(S, a)} \\ \\ \Sch && S \arrow[from=1-1, to=3-1, "p"] \arrow[maps to, from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1jeF9GIl0sWzAsMiwiXFxTY2giXSxbMiwwLCIoUywgYSkiXSxbMiwyLCJTIl0sWzAsMV0sWzIsMywiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) ::: :::{.example title="Schemes"} For $X\in \Sch$, take its Yoneda functor $h_X: \Sch \to \Set$. Then define the category $\mfx_X$: - Objects: Morphisms $S\to X$ of schemes. - Morphisms: $\Mor(S\to X, T\to X)$ are morphisms over $X$: \begin{tikzcd} S \ar[rd, ""] \ar[rr, ""] & & T \ar[ld, ""] \\ & X & \end{tikzcd} This yields the fibration \begin{tikzcd} {\mfx_X} && {(S\to X)} \\ \\ \Sch && S \arrow[from=1-1, to=3-1, "p"] \arrow[maps to, from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1jeF9GIl0sWzAsMiwiXFxTY2giXSxbMiwwLCIoUywgYSkiXSxbMiwyLCJTIl0sWzAsMV0sWzIsMywiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) ::: :::{.example title="Moduli of curves"} Define $\mg$ as the following category: - Objects: families $\mcc\to S$ of smooth genus $g$ curves, - Morphisms: $\Mor(\mcc \to S, \mcc'\to S')$: cartesian squares \begin{tikzcd} \mcc && {\mcc'} \\ \\ S && S' \arrow[from=3-1, to=3-3] \arrow[from=1-1, to=3-1] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJDIl0sWzAsMiwiUyJdLFsyLDIsIlMiXSxbMiwwLCJDJyJdLFsxLDIsIlxcaWRfUyIsMl0sWzAsMV0sWzMsMl0sWzAsM10sWzAsMiwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV1d) This yields a fibration \begin{tikzcd} {\mg} && {(\mcc \to S)} \\ \\ \Sch && S \arrow[from=1-1, to=3-1] \arrow[maps to, from=1-3, to=3-3] \end{tikzcd} ::: :::{.example title="Bundles"} For $C$ a smooth connected projective curve over $k$ a field, define $\Bun(C)$ as the following category: - Objects: pairs $(S, F)$ where $F$ is a vector bundle over $C\times S$. - Morphisms: \[ \Mor((S, F), (S', F')) = \left\{ \begin{array}{l} f\in \Mor_{\Sch}(S, S') \\ \text{and a chosen isomorphism} \\ \alpha: (f\times \id)^* \circ F' \mapsvia{\sim} F \end{array} \right\} .\] :::{.remark} A technical point: the choice of pushforward here is not necessarily canonical. However, as part of the data, one can take morphisms $F' \to (f\cross \id)_* \circ F$ such that the adjunction yields an isomorphism. ::: ::: :::{.example title="Quotient prestack"} Let $X\slice S\in \Grp\Sch$ where $G\actson X$. Then define a category $[X/G]^\pre$: - Objects: Morphisms over $\id_S$: \begin{tikzcd} T \ar[rd, ""] \ar[rr, ""] & & X \ar[ld, ""] \\ & S & \end{tikzcd} - Morphisms: \[ \Mor(T\to X, T'\to X) \da \left\{ \begin{array}{l} T\to T' \end{array} \,\, \middle\vert \begin{array}{l} (T \to T' \to X ) = g(T \to X) \\ g\in G(T) \\ G(T) \actson X(T) \end{array} \right\} .\] ::: :::{.remark} A group scheme can alternatively be thought of as a functor with a factorization through $\Grp$. ::: :::{.exercise title="Quotient prestacks and quotient groupoids"} Show that for $T\in \Sch$, there is an equivalence \[ [X/G]^\pre(T) \mapsvia{\sim} [X(T) / G(T)] ,\] where the left-hand side is a fibered category over $T$ and the right-hand side is a quotient groupoid. ::: ### Morphisms of Prestacks :::{.definition title="Morphisms of prestacks"} A **morphism of prestacks** is a functor $\mfx \mapsvia{f} \mfx'$ such that there is a (strictly) commutative triangle \begin{tikzcd} \mfx && \mfx' \\ \\ & \cat{C} \arrow["f", from=1-1, to=1-3] \arrow["{p_X}"', from=1-1, to=3-2] \arrow["{p_Y}", from=1-3, to=3-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXG1jeCJdLFsyLDAsIlxcbWN5Il0sWzEsMiwiXFxTY2giXSxbMCwxLCJmIl0sWzAsMiwicF9YIiwyXSxbMSwyLCJwX1kiXV0=) Here we require a strict equality $p_X(a) = p_Y(f(a))$ for any $a\in \mfx$ A **2-morphism** $\alpha$ between morphisms $f, g$ is a natural transformation: \begin{tikzcd} \mfx &&& \mfx' \arrow[""{name=0, anchor=center, inner sep=0}, "f", curve={height=-30pt}, from=1-1, to=1-4] \arrow[""{name=1, anchor=center, inner sep=0}, "g"', curve={height=30pt}, from=1-1, to=1-4] \arrow["\alpha", shorten <=8pt, shorten >=8pt, Rightarrow, from=0, to=1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMixbMCwwLCJcXG1meCJdLFszLDAsIlxcbWZ5Il0sWzAsMSwiZiIsMCx7ImN1cnZlIjotNX1dLFswLDEsImciLDIseyJjdXJ2ZSI6NX1dLFsyLDMsIlxcYWxwaGEiLDAseyJzaG9ydGVuIjp7InNvdXJjZSI6MjAsInRhcmdldCI6MjB9fV1d) such that for all $a\in \mfx$, the following triangle $\alpha_a\in \Mor_{\mfx'}(f(a), g(a))$ is a morphisms over $\id_S$ for any $S\in \cat{C}$: \begin{tikzcd} f(a) \ar[rd, ""] \ar[rr, ""] & & g(a) \ar[ld, ""] \\ & S & \end{tikzcd} We define a category $\Mor(\mfx, \mfx')$ by: - Objects: morphisms of prestacks. - Morphisms: 2-morphisms of prestacks. ::: :::{.exercise title="?"} Show that $\Mor(\mfx, \mfx')$ is a groupoid. ::: :::{.definition title="2-commutativity"} A diagram is **2-commutative** iff there exists a 2-morphism $\alpha: g \circ f' \mapsvia{\sim} f\circ g'$ which is an isomorphism: \begin{tikzcd} {\mfx \fiberprod{\mfx'} \mfx''} && {\mfx''} \\ \\ \mfx && \mfx' \arrow["g", from=1-3, to=3-3] \arrow["f"', from=3-1, to=3-3] \arrow["{g'}"', from=1-1, to=3-1] \arrow["{f'}", from=1-1, to=1-3] \arrow["\alpha", Rightarrow, from=3-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1meCBcXGZpYmVycHJvZHtcXG1meX0gXFxtZnknIl0sWzIsMCwiXFxtZnknIl0sWzIsMiwiXFxtZnkiXSxbMCwyLCJcXG1meCJdLFsxLDIsImciXSxbMywyLCJmIiwyXSxbMCwzLCJnJyIsMl0sWzAsMSwiZiciXSxbMywxLCJcXGFscGhhIiwwLHsibGV2ZWwiOjJ9XV0=) ::: :::{.definition title="Isomorphisms of prestacks"} An **isomorphism** of prestacks is a 1-isomorphism of prestacks $f: \mfx \to \mfx'$ along with 2-isomorphisms $g\circ f \mapsvia{\sim} \id_{\mfx}$ and $f\circ g \mapsvia{\sim} \id_{\mfx'}$. ::: :::{.exercise title="Isomorphisms of prestacks can be checked on fibers"} Show that $\mfx \to \mfx'$ is an isomorphism iff $\mfx(S) \mapsvia{\sim} \mfx'(S)$ is an isomorphism on all fibers. ::: :::{.proposition title="2-Yoneda"} If $\mfx\in \prest {}\slice{\cat C}$ is a prestack over $\cat C$, then for any $S\in \Ob(\cat C)$, there is an equivalence of categories induced by the following functor: \[ \Mor(S, \mfx) & \mapsvia{\sim} \mfx(S) \\ f &\mapsto f_S(\id_S ) .\] ::: :::{.remark} For $S\in \Sch$, view $S$ as a prestack and consider a morphism $f:S\to \mfx$. How is this specified? For all $T\in \Sch$, the objects of $S\slice T$ are morphisms \[ f_T: \Mor(T, S) \to \mfx(T) \] and if $T=S$ this sends $\id_S$ to $f_S(\id_S)\in \mfx(S)$. What is the inverse? For $a\in \mfx(S)$ and for each $T \mapsvia{g} S$, **choose** a pullback $g^* a$. Then define $f: S \to \mfx$ by \[ f_T: \Mor(T, S) &\to \mfx(T) \\ g &\mapsto g^* a .\] ::: :::{.exercise title="?"} Define what this equivalence should do on morphisms. ::: :::{.remark} Next time: fiber products of prestacks. :::