# Lecture 3: Groupoids and Prestacks (Monday, September 06) ## Groupoids :::{.remark} Last time: functors, sheaves on sites, descent, and Artin approximation. Today: groupoids and stacks. Recall that a **site** $\cat{S}$ is a category such that for all $U\in \Ob(\cat{S})$, there exists a set $\Cov(U) \da \ts{U_i \to U}_{i\in I}$ (a *covering family*) such that - $\id_U \in \Cov(U)$, - $\Cov(U)$ is closed under composition. - $\Cov(U)$ is closed under pullbacks: \begin{tikzcd} {\exists U_i\fiberprod{U}V} && {U_i} \\ \\ V && U \arrow["{\in \Cov(U)}", from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \arrow[dashed, from=1-1, to=1-3] \arrow[dashed, from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.025}, draw=none, from=1-1, to=3-3] \arrow["{\in\Cov(U)}"{description}, curve={height=-12pt}, dashed, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMiwyLCJVIl0sWzAsMiwiViJdLFsyLDAsIlVfaSJdLFswLDAsIlxcZXhpc3RzIFVfaVxcZmliZXJwcm9ke1V9ViJdLFsyLDAsIlxcaW4gXFxDb3YoVSkiXSxbMSwwXSxbMywyLCIiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMywxLCIiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMywwLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbMywwLCJcXGluXFxDb3YoVSkiLDEseyJjdXJ2ZSI6LTIsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) ::: :::{.example title="The big étale site"} Take $\cat{S} \da \Sch_{\Et}$ to be the big étale site: the category of all schemes, with covering families given by étale morphisms $\ts{U_i\to U}_{i\in I}$ such that $\Disjoint_i U_i \surjects U$. Note that there is a special covering family given by *surjective* etale morphisms. \todo[inline]{Reducing to case of single surjective etale cover somehow?} ::: :::{.definition title="Sheaves on sites"} Let $\cat{C}$ be a category (e.g. $\cat C \da \Set$) and recall that a *presheaf* on a category $\cat S$ is a contravariant functor $\cat{S}\to \cat{C}$. A $\cat{C}\dash$valued **sheaf** on a site $\cat{S}$ is a presheaf \[ \mcf:\cat{S} \to \cat{C} \] such that for all $U_i, U_j\in \Cov(U)$, the following equalizer diagram is exact in $\cat{C}$ \begin{tikzcd} 0 \stackarr{1}[r] & F(U) \stackarr{3}[r] & \prod\limits_{i} F(U_i) \stackarr{5}[r] & \prod\limits_{i, j} F(U_i \fiberprod{U} U_j) \end{tikzcd} ::: :::{.exercise title="Criterion for sheaves on the big etale site"} Show that a presheaf $F$ is a sheaf on $\Sch_\Et$ iff - $F$ is a sheaf on $\Sch_\Zar$ and - For all etale surjections $U' \surjects_{\et} U$ of affines, the equalizer diagram is exact. ::: :::{.proposition title="Yoneda"} For $X\in \Sch$, the presheaf \[ h_X \da \Mor(\wait, X): \Sch \to \Set \] is a sheaf on $\Sch_{\Et}$. ::: :::{.remark} We'll often consider *moduli functors*: functors $F: \Sch \to \Set$ where $F(S)$ is a family of objects over $S$. Then $F$ will be a sheaf iff families glue uniquely in the étale topology, and representability of such functors will imply they are sheaves. ::: :::{.example title="A non-sheaf"} Consider the following moduli functor: \begin{tikzpicture} \node {% \(\begin{aligned} F_{\Alg}: \Sch &\to \Set \\ S &\mapsto \left\{ \begin{tikzcd} \mathcal{C} \ar[d] \\ S \end{tikzcd} \right. \begin{aligned} \text{Smooth families of}\\ \text{genus $g$ curves.} \end{aligned} \end{aligned}\) }; \end{tikzpicture} This is *not* representable by a scheme and not a sheaf. ::: :::{.remark} Why care about representability? Suppose there were a scheme $M$, so \[ F_{\Alg}(S) \simeq \Mor(S, M) .\] Then taking $\id_M \in \Mor(M, M)$ should yield a universal family $\mcu \to M$: ![](figures/2021-09-06_14-50-50.png) Then the points of $M$ would correspond to isomorphism classes of curves, and every family of curves would be a pullback of this. For any $S\in\Sch$ and a family $\mcc \mapsvia{f} S$, the fiber $f\inv(s)\in\mcc$ is a curve for any $s\in S$, so one could define a map \[ g: S &\to M \\ s &\mapsto [s] ,\] where we send a curve to its isomorphism class. Then $\mcc$ would fit into a pullback diagram: \begin{tikzcd} \mcc && \mcu \\ \\ S && M \arrow[from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \arrow[from=1-1, to=3-1] \arrow[dashed, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1jYyJdLFsyLDAsIlxcbWN1Il0sWzAsMiwiUyJdLFsyLDIsIk0iXSxbMSwzXSxbMiwzXSxbMCwyXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMCwzLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) If $S$ was itself a curve, then $g: S\to M$ would be a path in $M$ deforming a base curve. ::: ## Groupoids :::{.remark} Recall that a **groupoid** is a category where every morphism is an isomorphism. Morphisms of groupoids are functors, and isomorphisms of groupoids are equivalences of categories. ::: :::{.example title="Groupoid of a set"} A basic example is the category of sets where \[ \Mor(A, B) \da \begin{cases} \id_A & A=B \\ \emptyset & \text{else}. \end{cases} \] A similar construction: for any set $\Sigma$, one can form a groupoid $\mcc_\Sigma$: - Object: Elements $x\in \Sigma$. - Morphisms: $\id_x$ ::: :::{.example title="Moduli of curves"} Define a category $\mg(\CC)$: - Objects: smooth projective curves over $\CC$ of genus $g$. - Morphisms: \[ \Mor(C, C') = \Isom_{\Sch\slice\CC}(C, C') \subseteq \Mor_{\Sch\slice\CC}(C, C') .\] ::: :::{.example title="Equivalence of groupoids"} Groupoids are equivalent iff they are equivalent as categories. The following is an example of mapping the quotient groupoid $[C_2/C_4]$ to $\B C_2$: ![](figures/2021-09-06_19-13-21.png) ::: :::{.example title="Groupoids equivalent to sets"} If a groupoid $\mfx$ is equivalent to $\cat{C}_{\Sigma}$ for any $\Sigma \in \Set$, we say $\mfx$ is **equivalent to a set**. For example, the following groupoid is equivalent to a 2-element set: ![](figures/2021-09-06_19-15-23.png) ::: :::{.example title="Quotient groupoids"} For $G\actson \Sigma$ a group acting on any set, define the **quotient groupoid** $[\Sigma/G]$ in the following way: - Objects: $x\in \Sigma$, i.e. one object for each element of the set $\Sigma$. - Morphisms: $\Mor(x, x') = \ts{g\in G \st gx' = x}$. ::: :::{.exercise title="Groupoids equivalent to sets"} Show that $[\Sigma/G]$ is equivalent to a set iff $G\actson \Sigma$ is a free action. ::: :::{.example title="Classifying stacks"} For $\Sigma = \ts{\pt}$, we obtain \[ \B G \da [\pt/ G] ,\] where there is one object $\pt$ and $\Mor(\pt, \pt) = G$. ::: :::{.example title="from representation stability"} Define $\Finset$ to be the category of finite sets where the morphisms are set bijections. Then $\Finset = \Disjoint_{n\in \ZZ_{\geq 0}} \B S_n$ for $S_n$ the symmetric group. ::: :::{.definition title="Fiber products of groupoids"} For $C, D' \to D$ morphisms of groupoids, we can construct their **fiber product** as the cartesian diagram: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{C\fiberprod{D}D'} && {D'} \\ \\ C && D \arrow["f"', from=3-1, to=3-3] \arrow["{g}", from=1-3, to=3-3] \arrow["{\pr_1}"', from=1-1, to=3-1] \arrow["{\pr_2}", from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwyLCJDIl0sWzIsMiwiRCJdLFsyLDAsIkQnIl0sWzAsMCwiQ1xcZmliZXJwcm9ke0R9RCciLFsyNDAsNjAsNjAsMV1dLFswLDEsImYiLDJdLFsyLDEsImYnIl0sWzMsMCwiXFxwcl8xIiwyXSxbMywyLCJcXHByXzIiXV0=) It can be constructed as the following category: \[ \Ob(C\fiberprod{D} D') \da \left\{ \begin{array}{l} (c, d', \alpha) \end{array} \middle\vert \begin{array}{l} c\in C, d'\in D', \\ \\ \alpha: f(c) \mapsvia{\sim} g(d') \end{array} \right\} \] \includegraphics{figures/BigDiagram1.pdf} ::: :::{.exercise title="Universal property of pullbacks in Groupoids"} Describe the universal property of the pullback in the 2-category of groupoids. ::: :::{.example title="$G$ is a pullback of $\B G$"} $G$ regarded as a groupoid is the pullback over inclusions of points into $\B G$: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{G} && \pt \\ \\ \pt && {\B G} \arrow[from=3-1, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=3-1] \arrow[from=1-3, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJHIixbMjQwLDYwLDYwLDFdXSxbMiwwLCJcXHB0Il0sWzAsMiwiXFxwdCJdLFsyLDIsIlxcQiBHIl0sWzIsM10sWzAsMiwiIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFsxLDNdLFswLDEsIiIsMix7ImNvbG91ciI6WzI0MCw2MCw2MF19XSxbMCwzLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) ::: :::{.example title="Orbit/Stabilizer"} Let $G\actson \Sigma$ and $x\in \Sigma$, and let $Gx$ be the orbit and $G_x$ be the stabilizer. Then there is a morphism of groupoids $f \in \Mor(\B G_x, [\Sigma/G])$ inducing a pullback: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{G_x} & {} & \Sigma \\ \\ {\B G_x} && {[\Sigma/G]} \\ \pt && x \arrow["{\exists f}", from=3-1, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=3-1] \arrow[from=1-3, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, color={rgb,255:red,92;green,92;blue,214}, draw=none, from=1-1, to=3-3] \arrow[maps to, from=4-1, to=4-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwwLCJHX3giLFsyNDAsNjAsNjAsMV1dLFsxLDBdLFsyLDAsIlxcU2lnbWEiXSxbMCwyLCJcXEIgR194Il0sWzIsMiwiW1xcU2lnbWEvR10iXSxbMCwzLCJcXHB0Il0sWzIsMywieCJdLFszLDQsIlxcZXhpc3RzIGYiXSxbMCwzLCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfV0sWzIsNF0sWzAsMiwiIiwyLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFswLDQsIiIsMSx7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dLFs1LDYsIiIsmfx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=) ::: ## Prestacks :::{.remark} Motivation: to specify a moduli functor, we'll need the data of - Families over $S$, - How to pull back families under morphisms, and - *How* objects are isomorphic. As a first attempt, we might try to define a 2-functor $F: \Sch \to \Grpd$ between 2-categories, where the latter is the category of groupoids. For this, we need the following data: - For all $S\in \Sch$, an assignment of a groupoid $F(S)$, - For all morphisms $f\in \Mor_{\Sch}(S, T)$, an assignment of morphisms of groupoids \[ f^* \in \Mor_{\Grpd}(F(T), F(S)) .\] - For compositions of morphisms of schemes $S \mapsvia{f} T \mapsvia{g} U$, an isomorphism of functors \[ \psi_{fg}: g^* \circ f^* \mapsvia{\sim} (g \circ f)^* .\] - Compatibility of these isomorphisms on chains of compositions $S \to T \to U \to V \to \cdots$. [^lasfunctors] This is a lot of data to track, so instead we'll construct a large category $\mfx$ that encodes all of this, along with a fibration \begin{tikzcd} \mfx \da \Disjoint_{S\in \Sch} F(S) \ar[d, "p"] & (S, \alpha \in F(S)) \ar[d, maps to] \\ \Sch & S \end{tikzcd} Here $S \in \Sch$ and $F(S) \in \Grpd$, so the "fibers" above $S$ are groupoids. [^lasfunctors]: This leads to the notion of **lax** or **pseudofunctors**. ::: :::{.definition title="Prestack"} Let $p:\mfx \to \cat{C}$ be a functor between two 1-categories, so we have the following data: \begin{tikzcd} \mfx && a && b & {\in \Ob(\mfx)} \\ \\ \cat{C} && S && T & {\in \Ob(\cat C)} \arrow["f", from=3-3, to=3-5] \arrow["p"', from=1-1, to=3-1] \arrow[maps to, from=1-3, to=3-3] \arrow[maps to, from=1-5, to=3-5] \arrow["\alpha", from=1-3, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCwwLCJcXG1meCJdLFswLDIsIlMiXSxbMiwwLCJhIl0sWzQsMCwiYiJdLFsyLDIsIlMiXSxbNCwyLCJUIl0sWzUsMCwiXFxpbiBcXE9iKFxcbWZ4KSJdLFs1LDIsIlxcaW4gXFxPYihTKSJdLFs0LDUsImYiXSxbMCwxLCJwIiwyXSxbMiw0LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV0sWzMsNSwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dLFsyLDNdXQ==) Then $\mfx, p$ define a **prestack** over $\cat C$ iff - Pullbacks exist: for $S \mapsvia{f} T$, there exists a (not necessarily unique) map $f^*b$, sometimes denoted $\ro{b}{f}$, yielding a cartesian square: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{\exists a} && b \\ \\ S && T \arrow[from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow["{f^* b = \ro{b}{f}}", color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=1-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, color={rgb,255:red,92;green,92;blue,214}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXGV4aXN0cyBhIixbMjQwLDYwLDYwLDFdXSxbMiwwLCJiIl0sWzAsMiwiUyJdLFsyLDIsIlQiXSxbMiwzXSxbMSwzXSxbMCwxLCJmXiogYiA9IFxccm97Yn17Zn0iLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19LFsyNDAsNjAsNjAsMV1dLFswLDIsIiIsMCx7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDMsIiIsMSx7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==) - A universal property making $\mfx$ a *fibered category*: every arrow in $\mfx$ is a pullback, so there are always lifts of the following form: \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{a} && b && c \\ \\ R && S && R \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[maps to, from=1-3, to=3-3] \arrow[maps to, from=1-5, to=3-5] \arrow[from=1-3, to=1-5] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, maps to, from=1-1, to=3-1] \arrow["{\exists !}", color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwwLCJhIixbMjQwLDYwLDYwLDFdXSxbMiwwLCJiIl0sWzQsMCwiYyJdLFswLDIsIlIiXSxbMiwyLCJTIl0sWzQsMiwiUiJdLFszLDRdLFs0LDVdLFsxLDQsIiIsmfx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XSxbMiw1LCIiLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV0sWzEsMl0sWzAsMywiIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9LCJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMCwxLCJcXGV4aXN0cyAhIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fSxbMjQwLDYwLDYwLDFdXSxbMCw0LCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) ::: :::{.slogan} An alternative definition: a prestack is a category *fibered in groupoids*. ::: :::{.warnings} We often conflate $\mfx$ and the functor $\mfx \mapsvia{p} S$, and don't spell out the composition law in $\mfx$. Moreover, we write $f^*b$ or $\ro{b}{f}$ for a *choice* of a pullback. ::: :::{.definition title="Fiber Categories"} For $p: \mfx\to \cat{C}$ a functor and $S\in \Ob(\cat C)$ any fixed object, the associated **fiber category over $S$**, denoted $\mfx(S)$, is the subcategory of $\mfx$ defined by: - Objects: $a\in \Ob(\mfx)$ such that $a \mapsvia{p} S$, - Morphisms: $\Mor(a, a')$ are morphisms $f\in \Mor_{\mfx}(a, a')$ over $\id_S$: \begin{tikzcd} a \ar[rd, ""] \ar[rr, "f"] & & a' \ar[ld, ""] \\ & S & \end{tikzcd} ::: :::{.remark} We can now equivalently define presheaves as categories fibered in sets. ::: :::{.exercise title="Justifying 'category fibered in groupoids'"} Show that if $\mfx \to \cat{C}$ is a prestack, then for all $S\in \cat{C}$, all maps in $\mfx(S)$ are invertible. Conclude that the fiber categories $\mfx(S)$ are all groupoids. ::: :::{.example title="Presheaves"} Every presheaf forms a prestack. Let $F \in \Presh(\Sch, \Set)$ be a presheaf of sets, and define $\mfx_F$ as the following category: - Objects: Pairs $(S, a \in F(S))$ where $S\in \Sch$ and $F(s) \in \Set$. - Morphisms: \[ \Mor( (S, a), (T, b) ) \da \ts{ S \mapsvia{f} T \st a = f^* b} .\] Note that we'll often conflate $F$ and $\mfx_F$. This yields the fibration \begin{tikzcd} {\mfx_F} && {(S, a)} \\ \\ \Sch && S \arrow[from=1-1, to=3-1, "p"] \arrow[maps to, from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1jeF9GIl0sWzAsMiwiXFxTY2giXSxbMiwwLCIoUywgYSkiXSxbMiwyLCJTIl0sWzAsMV0sWzIsMywiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) ::: :::{.example title="Schemes"} For $X\in \Sch$, take its Yoneda functor $h_X: \Sch \to \Set$. Then define the category $\mfx_X$: - Objects: Morphisms $S\to X$ of schemes. - Morphisms: $\Mor(S\to X, T\to X)$ are morphisms over $X$: \begin{tikzcd} S \ar[rd, ""] \ar[rr, ""] & & T \ar[ld, ""] \\ & X & \end{tikzcd} This yields the fibration \begin{tikzcd} {\mfx_X} && {(S\to X)} \\ \\ \Sch && S \arrow[from=1-1, to=3-1, "p"] \arrow[maps to, from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1jeF9GIl0sWzAsMiwiXFxTY2giXSxbMiwwLCIoUywgYSkiXSxbMiwyLCJTIl0sWzAsMV0sWzIsMywiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) ::: :::{.example title="Moduli of curves"} Define $\mg$ as the following category: - Objects: families $\mcc\to S$ of smooth genus $g$ curves, - Morphisms: $\Mor(\mcc \to S, \mcc'\to S')$: cartesian squares \begin{tikzcd} \mcc && {\mcc'} \\ \\ S && S' \arrow[from=3-1, to=3-3] \arrow[from=1-1, to=3-1] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJDIl0sWzAsMiwiUyJdLFsyLDIsIlMiXSxbMiwwLCJDJyJdLFsxLDIsIlxcaWRfUyIsMl0sWzAsMV0sWzMsMl0sWzAsM10sWzAsMiwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV1d) This yields a fibration \begin{tikzcd} {\mg} && {(\mcc \to S)} \\ \\ \Sch && S \arrow[from=1-1, to=3-1] \arrow[maps to, from=1-3, to=3-3] \end{tikzcd} ::: :::{.example title="Bundles"} For $C$ a smooth connected projective curve over $k$ a field, define $\Bun(C)$ as the following category: - Objects: pairs $(S, F)$ where $F$ is a vector bundle over $C\times S$. - Morphisms: \[ \Mor((S, F), (S', F')) = \left\{ \begin{array}{l} f\in \Mor_{\Sch}(S, S') \\ \text{and a chosen isomorphism} \\ \alpha: (f\times \id)^* \circ F' \mapsvia{\sim} F \end{array} \right\} .\] :::{.remark} A technical point: the choice of pushforward here is not necessarily canonical. However, as part of the data, one can take morphisms $F' \to (f\cross \id)_* \circ F$ such that the adjunction yields an isomorphism. ::: ::: :::{.example title="Quotient prestack"} Let $X\slice S\in \Grp\Sch$ where $G\actson X$. Then define a category $[X/G]^\pre$: - Objects: Morphisms over $\id_S$: \begin{tikzcd} T \ar[rd, ""] \ar[rr, ""] & & X \ar[ld, ""] \\ & S & \end{tikzcd} - Morphisms: \[ \Mor(T\to X, T'\to X) \da \left\{ \begin{array}{l} T\to T' \end{array} \,\, \middle\vert \begin{array}{l} (T \to T' \to X ) = g(T \to X) \\ g\in G(T) \\ G(T) \actson X(T) \end{array} \right\} .\] ::: :::{.remark} A group scheme can alternatively be thought of as a functor with a factorization through $\Grp$. ::: :::{.exercise title="Quotient prestacks and quotient groupoids"} Show that for $T\in \Sch$, there is an equivalence \[ [X/G]^\pre(T) \mapsvia{\sim} [X(T) / G(T)] ,\] where the left-hand side is a fibered category over $T$ and the right-hand side is a quotient groupoid. ::: ### Morphisms of Prestacks :::{.definition title="Morphisms of prestacks"} A **morphism of prestacks** is a functor $\mfx \mapsvia{f} \mfx'$ such that there is a (strictly) commutative triangle \begin{tikzcd} \mfx && \mfx' \\ \\ & \cat{C} \arrow["f", from=1-1, to=1-3] \arrow["{p_X}"', from=1-1, to=3-2] \arrow["{p_Y}", from=1-3, to=3-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXG1jeCJdLFsyLDAsIlxcbWN5Il0sWzEsMiwiXFxTY2giXSxbMCwxLCJmIl0sWzAsMiwicF9YIiwyXSxbMSwyLCJwX1kiXV0=) Here we require a strict equality $p_X(a) = p_Y(f(a))$ for any $a\in \mfx$ A **2-morphism** $\alpha$ between morphisms $f, g$ is a natural transformation: \begin{tikzcd} \mfx &&& \mfx' \arrow[""{name=0, anchor=center, inner sep=0}, "f", curve={height=-30pt}, from=1-1, to=1-4] \arrow[""{name=1, anchor=center, inner sep=0}, "g"', curve={height=30pt}, from=1-1, to=1-4] \arrow["\alpha", shorten <=8pt, shorten >=8pt, Rightarrow, from=0, to=1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMixbMCwwLCJcXG1meCJdLFszLDAsIlxcbWZ5Il0sWzAsMSwiZiIsMCx7ImN1cnZlIjotNX1dLFswLDEsImciLDIseyJjdXJ2ZSI6NX1dLFsyLDMsIlxcYWxwaGEiLDAseyJzaG9ydGVuIjp7InNvdXJjZSI6MjAsInRhcmdldCI6MjB9fV1d) such that for all $a\in \mfx$, the following triangle $\alpha_a\in \Mor_{\mfx'}(f(a), g(a))$ is a morphisms over $\id_S$ for any $S\in \cat{C}$: \begin{tikzcd} f(a) \ar[rd, ""] \ar[rr, ""] & & g(a) \ar[ld, ""] \\ & S & \end{tikzcd} We define a category $\Mor(\mfx, \mfx')$ by: - Objects: morphisms of prestacks. - Morphisms: 2-morphisms of prestacks. ::: :::{.exercise title="?"} Show that $\Mor(\mfx, \mfx')$ is a groupoid. ::: :::{.definition title="2-commutativity"} A diagram is **2-commutative** iff there exists a 2-morphism $\alpha: g \circ f' \mapsvia{\sim} f\circ g'$ which is an isomorphism: \begin{tikzcd} {\mfx \fiberprod{\mfx'} \mfx''} && {\mfx''} \\ \\ \mfx && \mfx' \arrow["g", from=1-3, to=3-3] \arrow["f"', from=3-1, to=3-3] \arrow["{g'}"', from=1-1, to=3-1] \arrow["{f'}", from=1-1, to=1-3] \arrow["\alpha", Rightarrow, from=3-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1meCBcXGZpYmVycHJvZHtcXG1meX0gXFxtZnknIl0sWzIsMCwiXFxtZnknIl0sWzIsMiwiXFxtZnkiXSxbMCwyLCJcXG1meCJdLFsxLDIsImciXSxbMywyLCJmIiwyXSxbMCwzLCJnJyIsMl0sWzAsMSwiZiciXSxbMywxLCJcXGFscGhhIiwwLHsibGV2ZWwiOjJ9XV0=) ::: :::{.definition title="Isomorphisms of prestacks"} An **isomorphism** of prestacks is a 1-isomorphism of prestacks $f: \mfx \to \mfx'$ along with 2-isomorphisms $g\circ f \mapsvia{\sim} \id_{\mfx}$ and $f\circ g \mapsvia{\sim} \id_{\mfx'}$. ::: :::{.exercise title="Isomorphisms of prestacks can be checked on fibers"} Show that $\mfx \to \mfx'$ is an isomorphism iff $\mfx(S) \mapsvia{\sim} \mfx'(S)$ is an isomorphism on all fibers. ::: :::{.proposition title="2-Yoneda"} If $\mfx\in \prest {}\slice{\cat C}$ is a prestack over $\cat C$, then for any $S\in \Ob(\cat C)$, there is an equivalence of categories induced by the following functor: \[ \Mor(S, \mfx) & \mapsvia{\sim} \mfx(S) \\ f &\mapsto f_S(\id_S ) .\] ::: :::{.remark} For $S\in \Sch$, view $S$ as a prestack and consider a morphism $f:S\to \mfx$. How is this specified? For all $T\in \Sch$, the objects of $S\slice T$ are morphisms \[ f_T: \Mor(T, S) \to \mfx(T) \] and if $T=S$ this sends $\id_S$ to $f_S(\id_S)\in \mfx(S)$. What is the inverse? For $a\in \mfx(S)$ and for each $T \mapsvia{g} S$, **choose** a pullback $g^* a$. Then define $f: S \to \mfx$ by \[ f_T: \Mor(T, S) &\to \mfx(T) \\ g &\mapsto g^* a .\] ::: :::{.exercise title="?"} Define what this equivalence should do on morphisms. ::: :::{.remark} Next time: fiber products of prestacks. :::