Background in scissors congruence

Remark 0.1. How do we assign a number to area? In ancient Greece, numbers
were things which were associated to lengths, so asking for area to correspond to
a number didn’t really make sense. Euclid defined area as “that which does not
change under decomposition.” In more modern langnage, we have the following
definition:

Definition 0.2 (Scissors congruence). Two polygons P and () are scissors
congruent if P = UP; and Q = WUQ; such that P; = (); for all i. That is, there
is an isometry g; € Isom(E?) such that g;P; = Q;.

Notation. By P = WF;, we mean that P = UP; and the intersections P; N P;
have measure zero.

Theorem 0.3. P and Q are scissors congruent iff area(P) = area(Q).

Remark 0.4. This theorem tells us Euclid’s notion of area was well-defined.
The forward implication of the theorem is not too bad so we will focus on the
converse.

any triangle into a basex EZBE rectangle like this:

Question 0.7 (Hilbert’s 3rd Problem). Is scissors congruence a well-defined
notion of volume? That is, if two polyhedra' have the same volume, are they
scissors congruent? Can we find a counterexample?

Remark 0.8. The first question to ask is how many cuts we're allowed to
make. If we allow infinitely many cuts, then the techniques of caleulus tell us
yes, that two polyhedra of the same volume are scissors congruent. But what
if we only allow finitely many cuts? In 1901, shortly(!) after Hilbert proposed
this problem, it was answered by his student(!!) Dehn.

Theorem 0.9 (Dehn, 1901). The cube and the reqular tetrahedron are not
scissors congruent.

Remark 0.10. To prove this, Dehn constructs something called the Dehn
invariant D and shows that D(cube) = 0 but D(tetrahedon) # 0.

Dehn invariant
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Definition 0.11 (Dehn invariant). The Dehn invariant of a polyhedron P is

D(P) = z length(e) ® angle(e) /.
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Remark 0.12. This invariant D(P) lives in the tensor product R @z R/Z, but
tensor products were not defined until 1938! In 1965, [Syd65] showed that the
Dehn invariant and volume completely characterize scissors congruence:

Theorem 0.13 (Sydler, 1965). If vol(P) = vol(Q) and D(P) = D(Q) then P

is scissors congruent to Q.2

Definition 0.14 (The polytope algebra). Let X be a geometry, usually hyper-
bolic H", spherical §", or Euclidean E™, and let G be a group of isometries, for
example G = Isom(X)). The polytope algebra is defined as

P(X,G) := Z[Polytopes in X|/ ~

where [P Q] ~ [P] + [Q] and [P] ~ [gP] for all g € G.

Remark 0.15. The first relation lets us decompose elements into smaller pieces
and the second relation lets us consider isomorphism classes under the group
action.

Theorem 0.16. If X is FEuclidean, spherical, or hyperbolic, then P and @) are
scissors congruent iff [P] = [Q)] in P(X, G).

Question 0.18 (Generalized Hilbert’s 3rd Problem). Can we understand P(X,G)
for X =E" 8" H" and G < Isom(X) a subgroup of isometries?

Goncharov's conjecture

Conjecture 0.20 (Goncharov’s Conjecture). In dimension 2n + 1, we have 2n
Dehn invariants [J;. We can intersect their kernels and map into R via volume,

vol

ﬁ ker D; — R.

i=1

If the Dehn invariants and volume tell us everything about scissors congruence,
the volume map should be injective. Goncharov conjectured that the volume
factored through a somewhat mysterious group:

(ker D; ———— (7.1 Kan+1(C) @ e(n + 1))~

i=1

B,
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where B, is the Borel regulator. We have have the following conjectures
concerning this diagram:

e The map f exists®,
e f is injective, and
e The Borel regulator B, is injective for C.

The Borel regulator is injective in many cases, e.g. if C is replaced with a
number field, although injectivity over C is currently unknown.

Remark 0.21. The formula for scissors congruence naturally leads us into the
world of algebraic K-theory, where we have the definition for any (commutative)
ring R with unit

Ko(R) := Zl[finitely generated projective R-modules|/ ~

where [B] = [A] + [C] for every exact sequence A — B —» C. In particular,
notice that this implies [A] = [A'] if A = A’, so this should be reminiscent of
Definition 0.14.
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A breakthrough came when Quillen constructed a space (really, a spectrum)
K(R) and defines K, (R) := 7,K(R). To construct this space, we make two
observations:

K theory of varieties

Definition 7.1 (Grothendieck ring of varieties). The Grothendieck ring of
varieties Ky(Var,s) = (Isog)/ ~ is the free abelian group generated by isomor-
phism classes of S-varieties, modulo the relation [X] = [Y]+[X \ Y], where Y is
a closed subscheme of X, a representative of a class in Isog. The ring structure
on Ko(Var,g) is given by [X]-[V] = [X X Y.

Notation. If S = Spec k for a field k, we will denote Ky(Vary) := Kg(Var,g).
The Lefschetz motive is L := [A]].

Constructing from assemblers:

Definition 8.5 (The Grothendieck ring of varieties). Let Sp be a category of
spectra — concretely, one can take the category of symmetric spectra of simplicial
sets along with its stable model structure with levelwise cofibrations. Let Vj. to
be the assembler whose objects are the objects of Var,, and whose morphisms
are closed inclusions of varieties, or equivalently locally closed embeddings of
schemes. Since the field & will be fixed in the statements of most theorems, we
will suppress the base field and write V.

Let K(V) be its associated K-theory spectrum. The group Ko(V) := moK(V)
has a ring structure and can be shown to coincide with the Grothendieck
ring of varieties as in Michael's talk. We will write elements in this ring using
square brackets, so if X is a variety, [X] denotes its equivalence class in Kg(V).
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Examples in this ring

Remark 7.2. Ky(Var,s) has the following properties.
1. [@] =0 and [S] = 1.

2. [Phs]=1+L+ L2 +--- +L", which can be shown inductively.
¢ [Gm] = [A"\{0}] = L — [pt],

o [P =L+ [pt],
e For £ —+ X arank n vector bundle'’, [£] = [X]- [A"] = [X]-L".

The last example shows that Kg()) does not distinguish between trivial and
nontrivial bundles. [Borl5] profitably uses this fact and similar computations to
prove that a cut-and-paste conjecture of Larsen-Lunts fails, which conjecturally

has applications to rationality of motivic zeta functions.

Ring structure
(.5 1hne ring structure or Rglvarg)
Remark 7.6. Ky(Vary) is a badly behaved ring:
e Ky(Vary) is infinite,
e Ky(Vary) is not Noetherian (Lin-Sebag '10),
e Ky(Vary) is not an integral domain (Poonen '02),

e Ko(Var,)/L = Z[SB|, where SB denotes stably birational equivalence
classes of k-varieties (birational after multiplication by a large projective
space),

e L is a zero divisor over C (Borisov '18). Borisov constructs varieties X, Y
over C such that

[X](L? ~ 1)(L - DL = [Y](L? — (L - DL’

but [X] # [Y].

Birationality and PW iso
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Definition 7.3 (Piecewise isomorphic varieties). We say that two S-varieties

X and Y are piecewise isomorphic if there exist locally closed subvarieties
{Xi}ier of X and {Y;};e 0f Y such that X = J; X;, Y = [J; Y;, and there is
a bijection o: I — .J such that X; = Y.

Notation. Denote

Ko(Vars)[L™"] = Ms.
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Definition 8.9 (Birational varieties). Two varieties X,Y are birational if
and only there is an isomorphism of ¢ : U — V' of nonempty dense'! open
subschemes. Note that ¢ need not extend to a well-defined function on all of X
and Y, and does not generally imply X =Y.

]

Definition 8.11 (Stable birationality). Two varieties X,Y are stably bira-
tional if and only if there is a birational isomorphism

X xPY 5y x PM
for some N, M large enough.

Remark 8.12. Many interesting invariants of birational geometry are in fact
stable birational invariants. Some examples include:

e The Hodge number
hﬂ,l (X) — dimcHU°1 {Xan)

where X" as the analytic space associated to X and HP9(X?") := HO( X Q..),

e the (analytic) fundamental group m; (X*"), and
e the zeroth Chow group CHg(X).

A recent exposition of other applications of stable birationality is given in
[Voil6].

Remark 8.14. This definition of a piecewise isomorphism is meant to capture
the notion of cut-and-paste equivalence of varieties. To see how this relates to
K-theory, note that if X and Y are piecewise isomorphism, then their classes are
equal in Kg(V). On the other hand, if X and Y are birational, it is not generally
the case that their classes are equal in Ko(V). However, if there is a birational
morphism X --+ Y defined on U C X and V' C Y and one additionally requires
that X \ U =2 Y \ V, then X and Y are in fact piecewise isomorphic and thus
have equal classes in Kg(V).
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Motivating questions:

Question 8.15 (Motivating question 1). When is the canonical ring localization
morphism Kgo(V) — Ko(V)[1/L] injective? In particular, when can equations in
the localization be pulled back to valid equations in the original ring?

More philosophically, what does equality in Ky(V) actually mean geomet-
rically? What geometric information is the Grothendieck ring capturing, and
what conclusions can be drawn from equations in this ring?

Question 8.16 (Motivating question 2). When is Ann(LL) nonzero?

o s e

Conjecture 8.20 (A cut-and-paste conjecture of Larsen-Lunts). If [X]| = [Y]
is an equality the Grothendieck ring Ky, then there is a piecewise isomorphism
XY,

pw
Remark 8.21. This conjecture is now known to be false — Borisov and Karzhe-
manov construct counterexamples for fields k that embed in C, and [Zak17]
shows that this additionally fails for a wider class of convenient!'® fields.

Conjecture 8.22. This is almost true, and the only obstructions come from

Ann(L).

Conjecture 8.23. For certain varieties, equality [X]| = [Y] in the Grothendieck
ring implies that X,Y are stably birational.

Remark 8.24. For the second motivating question, why might one care about
this particular ring-theoretic property? Recall that this condition is equivalent
to the injectivity of the map -L, so one answer is that having a nonzero annihila-
tor allows cancellation of LL in equations. Thus computations like the following
can be carried out:

[X]-L=[¥]-L = (X]-[¥])-L=0""87[X]-[y] =0 = [X]=1v],

and so equality “up to a power of .” implies honest equality. A separate mo-
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The latter ring appears in conjectures concerning rationality of motivic zeta
functions (x(t). The recent paper [LL20] exhibits a K3 surface X in such that
Cx () is not rational over Ko(V), and discuss the possibility of its rationality as
a formal power series in Ko(V)[1/L] instead.

Result using mirror symmetry (Grassmannian-Pfaffian correspondence)

a colnclaence at all.

Proposition 8.1 (Borisov). The cut-and-paste conjecture of Larsen and Lunts
is false.

13This is a technical condition to be described later.

Inna’s theorem
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8.3 Theorems and proof sketches

Theorem 8.28 ([Zakl7] Theorem A). There is a homotopical enrichment of
Ko(V) with a simple associated graded. Let

o V(™) be the nth filtered assembler of V generated by varieties of dimension
d<n,

o Auty k(X) be the group of birational automorphisms of the variety X,

e B, be the set of birational isomorphism classes of varieties of dimension
d=n.

There is a spectrum K(V) such that Ko(V) := moK(V) coincides with the previ-
ously defined Grothendieck group of varieties, and V'™ induces a filtration on
K(V) such that

gr,KV) = \/ ETBAut, k(X),
[X]eB.

with an associated spectral sequence

El,= \/ (mEZBAut, k(X) & m,S) = K,(V)
[X]eB.,

Remark 8.29. Note that the p = 0 column converges to Ky(V).
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