Floer Talk

D. Zack Garza

Wednesday $15^{\text {th }}$ April, 2020

Contents

1 Background and Notation

2.1 8.3: The Space of Perturbations of H4
2.2 Review 8.2 8
2.3 8.4: Linearizing the Floer equation: The Differential of \mathcal{F} 8

1 Background and Notation

From the text:

- ($W, \omega \in \Omega_{2}(W)$) is a (compact?) symplectic manifold
- $C^{\infty}(A, B)$ is the space of smooth maps with the C^{∞} topology (idea: uniform convergence of a function and all derivatives on compact subsets)
- $C_{\text {loc }}^{\infty}(A, B)$ is the space with the C^{∞} uniform convergence topology on compact subsets of A
- $H \in C^{\infty}(W ; \mathbb{R})$ a Hamiltonian with X_{H} its vector field.
- $H \in C^{\infty}(W \times \mathbb{R} ; \mathbb{R})$ given by $H_{t} \in C^{\infty}(W ; \mathbb{R})$ is a time-dependent Hamiltonian.
- The action functional is given by

$$
\begin{aligned}
\mathcal{A}_{H}: \mathcal{L} W & \longrightarrow \mathbb{R} \\
x & \mapsto-\int_{\mathbb{D}} u^{*} \omega+\int_{0}^{1} H_{t}(x(t)) d t
\end{aligned}
$$

where $\mathcal{L} W$ is the contractible loop space of $W, u: \mathbb{D} \longrightarrow W$ is an extension of $x: S^{1} \longrightarrow W$ to the disc with $u(\exp (2 \pi i t))=x(t)$.

$$
\text { - Example: } W=\mathbb{R}^{2 n} \Longrightarrow A_{H}(x)=\int_{0}^{1}\left(H_{t} d t-p d q\right)
$$

- Critical points of the action functional \mathcal{A}_{H} are given by orbits, i.e. contractible loops $x, y \in \mathcal{L} W$
- In general, x, y are two periodic orbits of H of period 1 .
- The Floer equation is given by

$$
\frac{\partial u}{\partial s}+J(u) \frac{\partial u}{\partial t}+\operatorname{grad} H_{t}(u)=0 .
$$

This is a first-order perturbation of the Cauchy-Riemann equations, for which solutions would be J-holomorphic curves.

- Solutions are functions $u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)=C^{\infty}(\mathbb{R} ; \mathcal{L} W)$
- They correspond to "embedded cylinders" with sides u and contractible caps x, y regarded as loops in W.
- They also correspond to paths in $\mathcal{L} W$ from $x \longrightarrow y$ (precisely: trajectories of the vector field $-\operatorname{grad} \mathcal{A}_{H}$)

Fig. 6.5

Here $u(s) \in \mathcal{L} W$ is a loop with value at time t given by $u(s, t)$, and $\lim _{s \rightarrow-\infty} u_{s}(t)=$ $x, \lim _{s \longrightarrow} u_{s}(t)=y$.

- The energy of a solution is $E(u)=\int_{\mathbb{R} \times S^{1}}\left|\partial_{s} u\right|^{2} d s d t$.
- $\mathcal{M}=\left\{u \in C^{\infty}(\mathbb{R} ; \mathcal{L} W) \mid E(u)<\infty\right\}$ (contractible solutions of finite energy), which is compact.
- $\mathcal{M}(x, y)$ is the space of solutions of the Floer equation connecting orbits x and y.
- $C_{\searrow}(x, y)$:

$$
\begin{aligned}
C_{\downarrow}(x, y):=\left\{u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right) \mid\right. & \lim _{s \longrightarrow-\infty} u(s, t)=x(t), \quad \underset{s \xrightarrow[\longrightarrow]{ } u(s, t)=y(t),}{\lim _{\longrightarrow}}\left(\left|\frac{\partial u}{\partial s}(s, t)\right| \leq K e^{-\delta|s|}, \quad\left|\frac{\partial u}{\partial t}(s, t)-X_{H}(u)\right| \leq K e^{-\delta|s|}\right\}
\end{aligned}
$$

where $K, \delta>0$ are constants depending on u. So

$$
\left|\partial_{s} u(s, t)\right|,\left|\partial_{t} u(s, t)-X_{H}(u)\right| \sim e^{|s|} .
$$

From the Appendices

- Relatively compact: has compact closure.
- Compact operator: the image of bounded sets are relatively compact.
- Index of an operator: dim ker - dim coker.
- Fredholm operators: those for which the index makes sense, i.e. dim $\mathrm{ker}<\infty$, dim coker $<\infty$.
- Elliptic operators: generalize the Laplacian Δ, coefficients of highest order derivatives are positive, principal symbol is invertible (???)
- Locally integrable: integrable on every compact subset
- Sobolev spaces: in dimension 1, define $\|u(t)\|_{s, p}=\sum_{i=0}^{s}\left\|\partial_{t}^{i} u(t)\right\|_{L^{p}}$ on $C^{\infty}(\bar{U})$, then take the completion and denote $W^{s, p}(\bar{U})$. Yields a distribution space, elements are functions with weak derivatives.
- Distribution: $C_{c}^{\infty}(U)^{\vee}$, the dual of the space of smooth compactly supported functions on an open set $U \subset \mathbb{R}^{n}$.

2 Talk

Overview: Analyze the space $\mathcal{M}(x, y)$ of solutions to the Floer equation connecting two orbits x, y of H. Show $\mathcal{M}(x, y)$ is in fact a manifold of dimension $\mu(x)-\mu(y)$.
Strategy:

1. Describe $\mathcal{M}(x, y)$ as the zero set of a section of a vector bundle over the Banach manifold $\mathcal{P}(x, y)$.
2. Apply the Sard-Smale theorem: perturb H to make $\mathcal{M}(x, y)$ the inverse image of a regular value of some map.
3. Show that the tangent maps (?) are Fredholm operators of index $\mu(x)-\mu(y)=\operatorname{dim} \mathcal{M}(x, y)$. Goals:

- 8.3: Overview and big picture
- 8.4: Formula for linearization of \mathcal{F}.

2.1 8.3: The Space of Perturbations of H

Goal: given a fixed Hamiltonian $H \in C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$, perturb it (without modifying the periodic orbits) so that $\mathcal{M}(x, y)$ are manifolds of the expected dimension.
Start by trying to construct a subspace $\mathcal{C}_{\varepsilon}^{\infty}(H) \subset \mathcal{C}^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$, the space of perturbations of H depending on a certain sequence $\varepsilon=\left\{\varepsilon_{k}\right\}$, and show it is a dense subspace.

Idea: similar to how you build $L^{2}(\mathbb{R})$, define a norm $\|\cdot\|_{\varepsilon}$ on $C_{\varepsilon}^{\infty}(H)$ and take the subspace of finite-norm elements.

- Let $h(\mathbf{x}, t) \in C_{\varepsilon}^{\infty}(H)$ denote a perturbation of H.
- Fix $\varepsilon=\left\{\varepsilon_{k} \mid k \in \mathbb{Z}^{\geq 0}\right\} \subset \mathbb{R}^{>0}$ a sequence of real numbers, which we will choose carefully later.
- For a fixed $\mathbf{x} \in W, t \in \mathbb{R}$ and $k \in \mathbb{Z}^{\geq 0}$, define

$$
\left|d^{k} h(\mathbf{x}, t)\right|=\max \left\{d^{\alpha} h(\mathbf{x}, t)| | \alpha \mid=k\right\},
$$

the maximum over all sets of multi-indices α of length k.
Note: I interpret this as

$$
d^{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}} h=\frac{\partial^{k} h}{\partial x_{\alpha_{1}} \partial x_{\alpha_{2}} \cdots \partial x_{\alpha_{k}}}
$$

the partial derivatives wrt the corresponding variables.

- Define a norm on $C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$:

$$
\|h\|_{\varepsilon}=\sum_{k \geq 0} \varepsilon_{k} \sup _{(x, t) \in W \times S^{1}}\left|d^{k} h(x, t)\right|
$$

- Since $W \times S^{1}$ is assumed compact (?), fix a finite covering $\left\{B_{i}\right\}$ of $W \times S^{1}$ such that

$$
\bigcup_{i} B_{i}^{\circ}=W \times S^{1}
$$

- Choose them in such a way we obtain charts

$$
\Psi_{i}: B_{i} \longrightarrow \overline{B(0,1)} \subset \mathbb{R}^{2 n+1}(?)
$$

- Obtain the computable form

$$
\|h\|_{\varepsilon}=\sum_{k \geq 0} \varepsilon_{k} \sup _{(x, t) \in W \times S^{1}} \sup _{i, z \in B(0,1)}\left|d^{k}\left(h \circ \Psi_{i}^{-1}\right)(z)\right|
$$

- Define

$$
C_{\varepsilon}^{\infty}=\left\{h \in C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right) \mid\|h\|_{\varepsilon}<\infty\right\} \subset C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)
$$

which is a Banach space (normed and complete).

- Show that the sequence $\left\{\varepsilon_{k}\right\}$ can be chosen so that C_{ε}^{∞} is a dense subspace for the C^{∞} topology, and in particular for the C^{1} topology.

Proposition 2.1.

Such a sequence $\left\{\varepsilon_{k}\right\}$ can be chosen.

Lemma 2.2.

$C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$ with the C^{1} topology is separable as a topological space (contains a countable dense subset).

Proof (of Lemma, Sketch).

First prove for C^{0} :

- Idea: reduce to polynomials in \mathbb{R}^{m}.
- Embed $W \times S^{1} \hookrightarrow[-M, M]^{m} \cong I^{m} \subset \mathbb{R}^{m}$ for some large m, reduces to proving it for $C^{\infty}\left(I^{m} ; \mathbb{R}\right)$.
- Recall Stone-Weierstrass:

For $A \leq C^{0}(X ; \mathbb{R})$ a subalgebra with X compact Hausdorff and A containing a nonzero constant function, A is dense iff it separates points (for all $a \neq b \in X$ there exists $f \in A$ such that $f(a) \neq f(b))$

- Apply to $A=\mathbb{Q}\left[x_{1}, \cdots, x_{m}\right]$ the subalgebra of polynomial functions, the nonzero constant function $c(x)=1$, and show it separates points via $f(x)=x-a$, then $f(a)=0$ and $f(b)=a-b \neq 0$ by assumption.
- Thus A is a countable dense subset.

Then prove for C^{1} :

- Idea: Take polynomials convolved with a countable sequence of bump functions, which is still a countable dense subset.
- Choose a smooth bump function χ supported on $B(0,1)$
- Define the sequence $\chi_{k}(x):=k^{m} \chi(k x)$.
- Prove that $\left(f * \chi_{k}\right)^{k} \longrightarrow \infty$ in the $C_{\text {loc }}^{0}$ sense (?)
- Show that for a fixed k, any other sequence $g_{\ell} \longrightarrow f$ in $C_{\text {loc }}^{\infty}$, we have $g_{\ell} * \chi_{k} \longrightarrow f * \chi_{k}$ in the $C_{\text {loc }}^{0}$ sense using

$$
\left|g_{\ell}-f\right| \longrightarrow 0 \Longrightarrow \sup _{K}\left|\frac{\partial}{\partial x_{i}}\left(g_{\ell}-f\right) * \chi_{k}\right| \leq \sup _{k}\left|g_{\ell}-f\right| \cdot(\cdots) \longrightarrow 0 \quad \forall i
$$

- Conclude $\lim _{\ell} \lim _{k} g_{\ell} * \chi_{k}=f$.
- Taking g_{ℓ} to be polynomial approximations, the following subset is countable and dense:

$$
\bigcup_{k \in \mathbb{Z} \geq 0}\left\{P * \chi_{k} \mid P \in \mathbb{Q}\left[x_{1}, \cdots, x_{m}\right]\right\}
$$

which are pushed through the charts Ψ_{i} to actually compute.

The second part of this proof generalizes to C^{∞}.
Proof (of Proposition, Sketch).

- By the lemma, produce a sequence $\left\{f_{n}\right\} \subset C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$ dense for the C^{1} topology.
- Using the norm on $C^{n}\left(W \times S^{1} ; \mathbb{R}\right)$ for the f_{n}, define

$$
\frac{1}{\varepsilon_{n}}=2^{n} \max \left\{\left\|f_{k}\right\| \mid k \leq n\right\} \Longrightarrow \varepsilon_{n} \sup \left|d^{n} f_{k}(x, t)\right| \leq 2^{-n}
$$

which is summable.

Why does this imply density? I don't know.
The next proposition establishes a version of this theorem with compact support:

Proposition 2.3.

For any ($\mathbf{x}, t) \subset U \in W \times S^{1}$) there exists a $V \subset U$ such that every $h \in C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$ can be approximated in the C^{1} topology by functions in C_{ε}^{∞} supported in U.

Then fix a time-dependent Hamiltonian H_{0} with nondegenerate periodic orbits and consider

$$
\left\{h \in C_{\varepsilon}^{\infty}\left(H_{0}\right) \mid h(x, t)=0 \text { in some } U \supseteq \text { the 1-periodic orbits of } H_{0}\right\}
$$

Then $\operatorname{supp}(h)$ is "far" from $\operatorname{Per}\left(H_{0}\right)$, so

$$
\|h\|_{\varepsilon} \ll 1 \Longrightarrow \operatorname{Per}\left(H_{0}+h\right)=\operatorname{Per}\left(H_{0}\right)
$$

and are both nondegenerate.

2.2 Review 8.2

What is \mathcal{F} ?
We started with the unadorned Floer map:

$$
\begin{aligned}
\mathcal{F}: \mathcal{C}^{\infty}\left(\mathbb{R} \times S^{1} ; W\right) & \longrightarrow \mathcal{C}^{\infty}\left(\mathbb{R} \times S^{1} ; T W\right) \\
u & \mapsto \frac{\partial u}{\partial s}+J \frac{\partial u}{\partial t}+\operatorname{grad}_{u}\left(H_{t}\right)
\end{aligned}
$$

and promoted this to a map of Banach spaces

$$
\begin{aligned}
\mathcal{F}: \mathcal{P}^{1, p}(x, y) & \longrightarrow \mathcal{L}^{p}(x, y) \\
\mathcal{F}(u) & =\frac{\partial u}{\partial s}+J(u) \frac{\partial u}{\partial t}+\operatorname{grad} H_{t}(u) .
\end{aligned}
$$

What is the LHS? It is the space of maps

$$
\begin{aligned}
\mathcal{P}^{1, p}(x, y): ? & \longrightarrow ? \\
(s, t) & \mapsto \exp _{w(s, t)} Y(s, t) .
\end{aligned}
$$

where $Y \in W^{1, p}\left(w^{*} T W\right)$ and $w \in C_{\searrow}^{\infty}(x, y)$.

2.3 8.4: Linearizing the Floer equation: The Differential of \mathcal{F}

Choose $m>n=\operatorname{dim}(W)$ and embed $T W \hookrightarrow \mathbb{R}^{m}$ to identify tangent vectors (such as Z_{i}, tangents to W along u or in a neighborhood B of u) with actual vectors in \mathbb{R}^{m}.

Why? Bypasses differentiating vector fields and the Levi-Cevita connection.
We can then identify

$$
\operatorname{im} \mathcal{F}=C^{\infty}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{m}\right) \quad \text { or } \quad L^{p}\left(\mathbb{R} \times S^{1} ; W\right)
$$

and we seek to compute its differential $d \mathcal{F}$.
We've just replaced the codomain here.
Recall that

- x, y are contractible loops in W that are nondegenerate critical points of the action functional \mathcal{A}_{H},
- $u \in \mathcal{M}(x, y) \subset C_{\text {loc }}^{\infty}$ denotes a fixed solution to the Floer equation,
- $C \searrow(x, y)$ was the set of solutions $u: \mathbb{R} \times S^{1} \longrightarrow W$ satisfying some conditions.

Recall:

$$
\begin{aligned}
C_{\searrow}(x, y):=\left\{u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right) \mid\right. & \left.\lim _{s \longrightarrow-\infty} u(s, t)=x(t), \quad \lim _{s \longrightarrow \infty} u(s, t)=y(t)\right\} \\
& \left|\frac{\partial u}{\partial t}(s, t)\right| \text { and }\left|\frac{\partial u}{\partial t}(s, t)-X_{H}(u)\right| \sim \exp (|s|)
\end{aligned}
$$

Fix a solution

$$
u \in \mathcal{M}(x, y) \subset C_{\mathrm{loc}}^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)
$$

We lift each solution to a map

$$
\tilde{u}: S^{2} \longrightarrow W
$$

in the following way: the loops x, y are contractible, so they bound discs. So we extend by pushing these discs out slightly::

From earlier in the book, we have

Assumption (6.22):

For every $w \in C^{\infty}\left(S^{2}, W\right)$ there exists a symplectic trivialization of the fiber bundle $w^{*} T W$, i.e. $\left\langle c_{1}(T W), \pi_{2}(W)\right\rangle=0$ where c_{1} denotes the first Chern class of the bundle $T W$.

Note: I don't know what this pairing is. The top Chern class is the Euler class (obstructs nowhere zero sections) and are defined inductively:

$$
c_{1}(T W)=e\left(\Lambda^{n}(T W)\right) \in H^{2}(W ; \mathbb{Z})
$$

Assumption is satisfied when all maps $S^{2} \longrightarrow W$ lift to $B^{3} \Longleftrightarrow \pi_{2}(W)=0$.
We have a pullback that is a symplectic fiber bundle:

- Using the assumption, trivialize the pullback $\tilde{u}^{*} T W$ to obtain an orthonormal unitary frame

$$
\left\{Z_{i}\right\}_{i=1}^{2 n} \subset T_{u(s, t)} W
$$

where

- The frame depends smoothly on $(s, t) \in S^{2}$,
$-\lim _{s \longrightarrow \infty} Z_{i}$ exists for each i.

$$
\frac{\partial}{\partial s}, \quad \frac{\partial^{2}}{\partial s^{2}}, \quad \frac{\partial^{2}}{\partial s \partial t} \curvearrowright Z_{i} \xrightarrow{s \longrightarrow \pm \infty} 0 \quad \text { for each } i
$$

Claim: such trivializations exist, "using cylinders near the spherical caps in the figure".
Recall what $\mathcal{P}^{1, p}(x, y), J, X_{t}$ are here.

- Use this frame to define a chart centered at u of $\mathcal{P}^{1, p}(x, y)$ given by

$$
\begin{aligned}
\iota: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) & \longrightarrow \mathcal{P}^{1, p}(x, y) \\
\mathbf{y}=\left(y_{1}, \ldots, y_{2 n}\right) & \longmapsto \exp _{u}\left(\sum y_{i} Z_{i}\right)
\end{aligned}
$$

- Note that the derivative at zero is $\sum_{i=1}^{2 n} y_{i} Z_{i}$.
- Define and compute the differential of the composite map $\tilde{\mathcal{F}}$ defined as follows:

$$
\begin{gathered}
\mathcal{P}^{1, p}(x, y) \xrightarrow{\mathcal{F}} L^{p}\left(\mathbb{R} \times S^{1} ; T W\right) \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{m}\right) \\
u \xrightarrow{\tilde{\mathcal{F}}} \frac{\partial u}{\partial s}+J(u)\left(\frac{\partial u}{\partial t}-X_{t}(u)\right)
\end{gathered}
$$

- From now on, let \mathcal{F} denote $\tilde{\mathcal{F}}$.
- Take the vector

$$
Y(s, t):=\left(y_{1}(s, t), \cdots\right) \in \mathbb{R}^{2 n} \subset \mathbb{R}^{m}
$$

- View Y as a vector in \mathbb{R}^{m} tangent to W, given by $Y=\sum_{i=1}^{2 n} y_{i} Z_{i}$.
- Plug $u+Y$ into the equation for \mathcal{F}, directly yielding

$$
\begin{array}{ccc}
\mathcal{F}(u)= & \frac{\partial u}{\partial s} & +J(u) \frac{\partial u}{\partial t}
\end{array} \quad-J(u) X_{t}(u)
$$

- Extract the part that is linear in Y and collect terms:

$$
\begin{aligned}
(d \mathcal{F})_{u}(Y) & =\frac{\partial Y}{\partial s}+(d J)_{u}(Y) \frac{\partial u}{\partial t}+J(u) \frac{\partial Y}{\partial t}-(d J)_{u}(Y) X_{t}-J(u)\left(d X_{t}\right)_{u}(Y) \\
& =\left(\frac{\partial Y}{\partial s}+J(u) \frac{\partial Y}{\partial t}\right)+\left((d J)_{u}(Y) \frac{\partial u}{\partial t}-(d J)_{u}(Y) X_{t}-J(u)\left(d X_{t}\right)_{u}(Y)\right)
\end{aligned}
$$

- This is a sum of two differential operators:
* One of order 1 , one of order 2 (Perspective 1)
* The Cauchy-Riemann operator, and one of order zero (Perspective 2, not immediate from this form)
- Now compute in charts. Need a lemma:

Lemma 2.4(Leibniz Rule).

For any source space X and any maps

$$
\begin{array}{r}
J: X \longrightarrow \operatorname{End}\left(\mathbb{R}^{m}\right) \\
Y, v: X \longrightarrow \mathbb{R}^{m}
\end{array}
$$

we have

$$
(d J)(Y) \cdot v=d(J v)(Y)-J d v(Y)
$$

Proof .

Differentiate the map

$$
\begin{aligned}
J \cdot v: X & \longrightarrow \mathbb{R}^{m} \\
x & \mapsto J(x) \cdot v(x)
\end{aligned}
$$

to obtain

$$
\begin{aligned}
J(x+Y) v(x+y) & =\left(J(x)+(d J)_{x}(Y)\right) \cdot\left(v(x)+(d v)_{x}(Y)\right)+\cdots \\
& =J(x) \cdot v(x)+J(x) \cdot(d v)_{x}(Y)+(d J)_{x}(Y) \cdot v(x)+(d J)_{x}(Y) \cdot(d v)_{x}(Y)+\cdots \\
\Longrightarrow d(J \cdot v)_{x}(Y) & =(d J)_{x}(Y) \cdot v(x)+J(x) \cdot(d v)_{x}(Y)
\end{aligned}
$$

- Using the chart ι defined by $\left\{Z_{i}\right\}$ to write $Y=\sum_{i=1}^{2 n} y_{i} Z_{i}$ and thus

$$
(d \mathcal{F})_{u}(Y)=O_{0}+O_{1}
$$

where O_{0} are order 0 terms ("they do not differentiate the y_{i} ") and the O_{1} are order 1 terms:

$$
\begin{aligned}
O_{1} & =\sum_{i=1}^{2 n}\left(\frac{\partial y_{i}}{\partial s} Z_{i}+\frac{\partial y_{i}}{\partial t} J(u) Z_{i}\right) \\
O_{0} & =\sum_{i=1}^{2 n} y_{i}\left(\frac{\partial Z_{i}}{\partial s}+J(u) \frac{\partial Z_{i}}{\partial t}+(d J)_{u}\left(Z_{i}\right) \frac{\partial u}{\partial t}-J(u)\left(d X_{t}\right)_{u} Z_{i}-(d J)_{u}\left(Z_{i}\right) X_{t}\right) .
\end{aligned}
$$

Note: the book seems to be incorrect here, or at least ambiguously worded:

$$
\begin{aligned}
(d \mathcal{F})_{u}(Y)= & \sum\left(\frac{\partial y_{i}}{\partial s} Z_{i}+\frac{\partial y_{i}}{\partial t} J(u) Z_{i}\right) \\
+ & \sum y_{i}\left(\frac{\partial Z_{i}}{\partial s}+J(u) \frac{\partial Z_{i}}{\partial t}+(d J)_{u}\left(Z_{i}\right) \frac{\partial u}{\partial t}\right. \\
& \left.-J(u)\left(d X_{t}\right)_{u} Z_{i}-(d J)_{u}\left(Z_{i}\right) X_{t}\right)
\end{aligned}
$$

The terms on the first line are "of order 0 ", that is, they do not differentiate the y_{i}. We begin by studying the "order 1 " terms, the remaining ones. It is

- Study O_{1} first, which (claim) reduces to

$$
O_{1}=\sum_{i=1}^{2 n}\left(\frac{\partial y_{i}}{\partial s}+J_{0} \frac{\partial y_{i}}{\partial t}\right) Z_{i}=\bar{\partial}\left(y_{1}, \cdots, y_{2 n}\right) .
$$

where J_{0} is the standard complex structure on $\mathbb{R}^{2 n}=\mathbb{C}^{n}$

- The second equality follows from the assumption that the Z_{i} are symplectic and orthonormal.
- Note that this writes $(d \mathcal{F})_{u}(Y)=O_{0}+O_{C} R$, a sum of an order zero and a CauchyRiemann operator.
- Note that since we've computed in charts, we have actually computed the differential of \mathcal{F}_{u} in the following diagram

$$
\begin{aligned}
& \mathcal{F} u \\
& W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \xrightarrow{\iota} \mathcal{P}^{1, p}(x, y) \xrightarrow{\mathcal{F}} L^{p}\left(\mathbb{R} \times S^{1} ; T W\right) \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{m}\right) \\
& u \longrightarrow \frac{\tilde{\mathcal{F}}}{} \frac{\partial u}{\partial s}+J(u)\left(\frac{\partial u}{\partial t}-X_{t}(u)\right) \\
& \left(y_{1}, \ldots, y_{2 n}\right) \longrightarrow \exp _{u}\left(\sum y_{i} Z_{i}\right)
\end{aligned}
$$

So we've technically computed $\left(d F_{\mu}\right)_{0}$.

- Remark on the decomposition

$$
\begin{aligned}
(d \mathcal{F})_{u} & =\left(\frac{\partial Y}{\partial s}+J(u) \frac{\partial Y}{\partial t}\right)+\left((d J)_{u}(Y) \frac{\partial u}{\partial t}-(d J)_{u}(Y) X_{t}-J(u)\left(d X_{t}\right)_{u}(Y)\right) \\
& :=\bar{\partial} Y+S Y
\end{aligned}
$$

where $S \in C^{\infty}\left(\mathbb{R} \times S^{1} ; \operatorname{End}\left(\mathbb{R}^{n}\right)\right)$ is a linear operator of order 0 .

Proposition 2.5(8.4.4, CR + Symmetric in the Limit).

If u solves Floer's equation, then

$$
(d \mathcal{F})_{u}=\bar{\partial}+S(s, t)
$$

where

- S is linear
- S tends to a symmetric operator as $s \longrightarrow \pm \infty$, and

$$
\frac{\partial S}{\partial s}(s, t) \xrightarrow{s \longrightarrow \pm \infty} 0 \quad \text { uniformly in } t
$$

Proof .

Omitted $-S$ is exactly O_{0} from before:

$$
\begin{aligned}
O_{0} & =\sum_{i=1}^{2 n} y_{i}\left(\frac{\partial Z_{i}}{\partial s}+J(u) \frac{\partial Z_{i}}{\partial t}+(d J)_{u}\left(Z_{i}\right) \frac{\partial u}{\partial t}-J(u)\left(d X_{t}\right)_{u} Z_{i}-(d J)_{u}\left(Z_{i}\right) X_{t}\right) \\
& =\sum_{i=1}^{2 n} y_{i}\left(\frac{\partial Z_{i}}{\partial s}+(d J)_{u}\left(Z_{i}\right)\left(\frac{\partial u}{\partial t}-\left(Z_{i}\right) X_{t}\right)+J(u) \frac{\partial Z_{i}}{\partial t}-J(u)\left(d X_{t}\right)_{u} Z_{i}\right)
\end{aligned}
$$

- The term in blue vanishes as $s \longrightarrow \pm \infty$
- Using the fact that u is a solution
- Uses $\frac{\partial u}{\partial s} \longrightarrow 0$ uniformly (as do its derivatives?)
- Suffices to show the remaining part is symmetric in the limit, i.e. write as

$$
A\left(y_{1}, \cdots, y_{2 n}\right)=\cdots \Longrightarrow A_{i j}=A_{j i}
$$

using inner product calculations

- Uses the fact the Z_{i} needed to be chosen to be unitary and symplectic.
- Write O_{1} as a map $Y \mapsto S \cdot Y$, so $S \in C^{\infty}\left(\mathbb{R} \times S^{1} ; \operatorname{End}\left(\mathbb{R}^{2 n}\right)\right)$ and define the symmetric operators

$$
S^{ \pm}:=\lim _{s \longrightarrow \pm \infty} S(s, \cdot) \quad \text { respectively }
$$

Proposition 2.6.

The equation

$$
\partial_{t} Y=J_{0} S^{ \pm} Y
$$

linearizes Hamilton's equation

$$
\frac{\partial z}{\partial t}=X_{t}(z) \quad \text { at } \quad\left\{\begin{array}{ll}
x=\lim _{s \longrightarrow-\infty} u & \text { for } S^{-} \\
y=\lim _{s \longrightarrow \infty} u & \text { for } S^{+}
\end{array} \quad\right. \text { respectively. }
$$

Proof

Omitted. Sketch:

- Use the fact that $\frac{\partial Y}{\partial t}=\left(d X_{t}\right)_{x} Y$
- Expand $\sum \frac{\partial y_{i}}{\partial t} Z_{i}$ in the Z_{i} basis (roughly) to write $\frac{\partial y_{i}}{\partial t}=\sum b_{i j} y_{j}$ for some coefficients

$b_{i j}$.

- Collect terms into a matrix/operator B^{\mp} for x, y respectively to write

$$
\frac{\partial Y}{\partial t}=B^{-} \cdot Y
$$

- Write $(d \mathcal{F})_{u}=\bar{\partial}+S$ where S is zero order and symmetric in the limit
- Get the corresponding operator A in coordinates
- Expand in a basis (roughly) as $A\left(\sum y_{i} Z_{i}\right)=\sum s_{i j} y_{j} Z_{i}$
- Check that $s_{i j}= \pm b_{i \pm n, j}$
- This implies

$$
S^{-}=-J_{0} B^{-} \quad S^{+}=-J_{0} B^{+} \Longrightarrow \frac{\partial Y}{\partial t}=J_{0} S^{ \pm} Y
$$

- Given a solution u, we have a right \mathbb{R}-action, so for $s \in \mathbb{R}$,

$$
\begin{array}{r}
u \cdot s \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right) \\
\quad(\sigma, t) \mapsto u(\sigma+s, t)
\end{array}
$$

is also a solution, so $\mathcal{F}(u \cdot s)=0$ for all s.

- In other words: we can flow solutions?
- Punchline: $\frac{\partial u}{\partial s}$ is a solution of the linearized equation, since

$$
0=\frac{\partial}{\partial s} \mathcal{F}(u \cdot s)=(d \mathcal{F})_{u}\left(\frac{\partial u}{\partial s}\right) .
$$

- Along any nonconstant solution connecting x and $y, \operatorname{dim} \operatorname{ker}(d \mathcal{F})_{u} \geq 1$.

