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1 Background and Notation
From the text:

• (W,ω ∈ Ω2(W )) is a (compact?) symplectic manifold

• C∞(A,B) is the space of smooth maps with the C∞ topology (idea: uniform convergence of a
function and all derivatives on compact subsets)

• C∞loc(A,B) is the space with the C∞ uniform convergence topology on compact subsets of A

• H ∈ C∞(W ;R) a Hamiltonian with XH its vector field.

• H ∈ C∞(W × R;R) given by Ht ∈ C∞(W ;R) is a time-dependent Hamiltonian.

• The action functional is given by

AH : LW −→ R

x 7→ −
∫
D
u∗ω +

∫ 1

0
Ht(x(t)) dt

where LW is the contractible loop space of W , u : D −→W is an extension of x : S1 −→W
to the disc with u(exp(2πit)) = x(t).

– Example: W = R2n =⇒ AH(x) =
∫ 1

0
(Ht dt− p dq).

• Critical points of the action functional AH are given by orbits, i.e. contractible loops x, y ∈ LW

• In general, x, y are two periodic orbits of H of period 1.
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• The Floer equation is given by

∂u

∂s
+ J(u)∂u

∂t
+ gradHt(u) = 0.

This is a first-order perturbation of the Cauchy-Riemann equations, for which solutions would
be J-holomorphic curves.

• Solutions are functions u ∈ C∞(R× S1;W ) = C∞(R;LW )

– They correspond to “embedded cylinders” with sides u and contractible caps x, y regarded
as loops in W .

– They also correspond to paths in LW from x −→ y (precisely: trajectories of the vector
field −gradAH)
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Here u(s) ∈ LW is a loop with value at time t given by u(s, t), and lim
s−→−∞

us(t) =
x, lim

s−→∞
us(t) = y.

• The energy of a solution is E(u) =
∫
R×S1

|∂su|2 dsdt.

• M =
{
u ∈ C∞(R;LW )

∣∣∣ E(u) <∞
}
(contractible solutions of finite energy), which is com-

pact.

• M(x, y) is the space of solutions of the Floer equation connecting orbits x and y.

• C↘(x, y):

C↘(x, y) := {u ∈ C∞(R× S1;W )
∣∣∣ lim
s−→−∞

u(s, t) = x(t), lim
s−→∞

u(s, t) = y(t),∣∣∣∣∂u∂s (s, t)
∣∣∣∣ ≤ Ke−δ|s|, ∣∣∣∣∂u∂t (s, t)−XH(u)

∣∣∣∣ ≤ Ke−δ|s|}
where K, δ > 0 are constants depending on u. So

|∂su(s, t)|, |∂tu(s, t)−XH(u)| ∼ e|s|.

From the Appendices

• Relatively compact: has compact closure.
• Compact operator: the image of bounded sets are relatively compact.
• Index of an operator: dim ker−dim coker.
• Fredholm operators: those for which the index makes sense, i.e. dim ker <∞, dim coker <∞.
• Elliptic operators: generalize the Laplacian ∆, coefficients of highest order derivatives are

positive, principal symbol is invertible (???)
• Locally integrable: integrable on every compact subset
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• Sobolev spaces: in dimension 1, define ‖u(t)‖s,p =
s∑
i=0

∥∥∥∂itu(t)
∥∥∥
Lp

on C∞(U), then take the

completion and denote W s,p(U). Yields a distribution space, elements are functions with weak
derivatives.
• Distribution: C∞c (U)∨, the dual of the space of smooth compactly supported functions on an

open set U ⊂ Rn.
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Overview: Analyze the spaceM(x, y) of solutions to the Floer equation connecting two orbits x, y
of H. ShowM(x, y) is in fact a manifold of dimension µ(x)− µ(y).

Strategy:

1. DescribeM(x, y) as the zero set of a section of a vector bundle over the Banach manifold
P(x, y).

2. Apply the Sard-Smale theorem: perturb H to makeM(x, y) the inverse image of a regular
value of some map.

3. Show that the tangent maps (?) are Fredholm operators of index µ(x)− µ(y) = dimM(x, y).

Goals:

• 8.3: Overview and big picture
• 8.4: Formula for linearization of F .

2.1 8.3: The Space of Perturbations of H

Goal: given a fixed Hamiltonian H ∈ C∞(W × S1;R), perturb it (without modifying the periodic
orbits) so thatM(x, y) are manifolds of the expected dimension.

Start by trying to construct a subspace C∞ε (H) ⊂ C∞(W × S1;R), the space of perturbations of H
depending on a certain sequence ε = {εk}, and show it is a dense subspace.
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2.1 8.3: The Space of Perturbations of H

Idea: similar to how you build L2(R), define a norm ‖ · ‖ε on C∞ε (H) and take the subspace of
finite-norm elements.

• Let h(x, t) ∈ C∞ε (H) denote a perturbation of H.

• Fix ε =
{
εk
∣∣∣ k ∈ Z≥0

}
⊂ R>0 a sequence of real numbers, which we will choose carefully

later.

• For a fixed x ∈W, t ∈ R and k ∈ Z≥0, define∣∣∣dkh(x, t)
∣∣∣ = max

{
dαh(x, t)

∣∣∣ |α| = k
}
,

the maximum over all sets of multi-indices α of length k.

Note: I interpret this as

dα1,α2,··· ,αkh = ∂kh

∂xα1 ∂xα2 · · · ∂xαk

,

the partial derivatives wrt the corresponding variables.
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2.1 8.3: The Space of Perturbations of H

• Define a norm on C∞(W × S1;R):

‖h‖ε =
∑
k≥0

εk sup
(x,t)∈W×S1

∣∣∣dkh(x, t)
∣∣∣ .

• Since W × S1 is assumed compact (?), fix a finite covering {Bi} of W × S1 such that⋃
i

B◦i = W × S1.

– Choose them in such a way we obtain charts

Ψi : Bi −→ B(0, 1) ⊂ R2n+1 (?).

• Obtain the computable form

‖h‖ε =
∑
k≥0

εk sup
(x,t)∈W×S1

sup
i,z∈B(0,1)

∣∣∣dk(h ◦Ψ−1
i )(z)

∣∣∣.
• Define

C∞ε =
{
h ∈ C∞(W × S1;R)

∣∣∣ ‖h‖ε <∞} ⊂ C∞(W × S1;R),

which is a Banach space (normed and complete).

• Show that the sequence {εk} can be chosen so that C∞ε is a dense subspace for the C∞
topology, and in particular for the C1 topology.

Proposition 2.1.
Such a sequence {εk} can be chosen.

Lemma 2.2.
C∞(W × S1;R) with the C1 topology is separable as a topological space (contains a countable
dense subset).

Proof (of Lemma, Sketch).

First prove for C0:
• Idea: reduce to polynomials in Rm.
• Embed W × S1 ↪→ [−M,M ]m ∼= Im ⊂ Rm for some large m, reduces to proving it for
C∞(Im;R).

• Recall Stone-Weierstrass:
For A ≤ C0(X;R) a subalgebra with X compact Hausdorff and A containing a
nonzero constant function, A is dense iff it separates points (for all a 6= b ∈ X
there exists f ∈ A such that f(a) 6= f(b))

• Apply to A = Q[x1, · · · , xm] the subalgebra of polynomial functions, the nonzero constant
function c(x) = 1, and show it separates points via f(x) = x − a, then f(a) = 0 and
f(b) = a− b 6= 0 by assumption.
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2.1 8.3: The Space of Perturbations of H

• Thus A is a countable dense subset.

Then prove for C1:
• Idea: Take polynomials convolved with a countable sequence of bump functions, which

is still a countable dense subset.
• Choose a smooth bump function χ supported on B(0, 1)
• Define the sequence χk(x) := kmχ(kx).
• Prove that (f ∗ χk)

k−→∞−→ f in the C0
loc sense (?)

• Show that for a fixed k, any other sequence g` −→ f in C∞loc, we have g` ∗ χk −→ f ∗ χk
in the C0

loc sense using

|g` − f | −→ 0 =⇒ sup
K

∣∣∣∣ ∂∂xi (g` − f) ∗ χk
∣∣∣∣ ≤ sup

k
|g` − f | · (· · · ) −→ 0 ∀i

• Conclude lim̀ lim
k
g` ∗ χk = f .

• Taking g` to be polynomial approximations, the following subset is countable and dense:⋃
k∈Z≥0

{
P ∗ χk

∣∣∣ P ∈ Q[x1, · · · , xm]
}

which are pushed through the charts Ψi to actually compute.
�

The second part of this proof generalizes to C∞.

Proof (of Proposition, Sketch).

• By the lemma, produce a sequence {fn} ⊂ C∞(W × S1;R) dense for the C1 topology.
• Using the norm on Cn(W × S1;R) for the fn, define

1
εn

= 2n max
{
‖fk‖

∣∣∣ k ≤ n} =⇒ εn sup |dnfk(x, t)| ≤ 2−n

which is summable.
�

Why does this imply density? I don’t know.

The next proposition establishes a version of this theorem with compact support:

Proposition 2.3.
For any (x, t) ⊂ U ∈W × S1) there exists a V ⊂ U such that every h ∈ C∞(W × S1;R) can
be approximated in the C1 topology by functions in C∞ε supported in U .

Then fix a time-dependent Hamiltonian H0 with nondegenerate periodic orbits and consider{
h ∈ C∞ε (H0)

∣∣∣ h(x, t) = 0 in some U ⊇ the 1-periodic orbits of H0
}
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2.2 Review 8.2

Then supp(h) is “far” from Per(H0), so

‖h‖ε � 1 =⇒ Per(H0 + h) = Per(H0)

and are both nondegenerate.

2.2 Review 8.2
What is F?

We started with the unadorned Floer map:

F : C∞
(
R× S1;W

)
−→ C∞

(
R× S1;TW

)
u 7→ ∂u

∂s
+ J

∂u

∂t
+ gradu (Ht)

and promoted this to a map of Banach spaces

F : P1,p(x, y) −→ Lp(x, y)

F(u) = ∂u

∂s
+ J(u)∂u

∂t
+ gradHt(u).

What is the LHS? It is the space of maps

P1,p(x, y) :? −→?
(s, t) 7→ expw(s,t) Y (s, t).

where Y ∈W 1,p(w∗TW ) and w ∈ C∞↘ (x, y).

2.3 8.4: Linearizing the Floer equation: The Differential of F
Choose m > n = dim(W ) and embed TW ↪→ Rm to identify tangent vectors (such as Zi, tangents
to W along u or in a neighborhood B of u) with actual vectors in Rm.

Why? Bypasses differentiating vector fields and the Levi-Cevita connection.

We can then identify

im F = C∞(R× S1;Rm) or Lp(R× S1;W ),

and we seek to compute its differential dF .

We’ve just replaced the codomain here.

Recall that

• x, y are contractible loops in W that are nondegenerate critical points of the action functional
AH ,
• u ∈M(x, y) ⊂ C∞loc denotes a fixed solution to the Floer equation,
• C↘(x, y) was the set of solutions u : R× S1 −→W satisfying some conditions.
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2.3 8.4: Linearizing the Floer equation: The Differential of F

Recall:

C↘(x, y) := {u ∈ C∞(R× S1;W )
∣∣∣ lim
s−→−∞

u(s, t) = x(t), lim
s−→∞

u(s, t) = y(t)}∣∣∣∣∂u∂t (s, t)
∣∣∣∣ and

∣∣∣∣∂u∂t (s, t)−XH(u)
∣∣∣∣ ∼ exp(|s|)

Fix a solution

u ∈M(x, y) ⊂ C∞loc(R× S1;W ).

We lift each solution to a map

ũ : S2 −→W

in the following way: the loops x, y are contractible, so they bound discs. So we extend by pushing
these discs out slightly::

From earlier in the book, we have

Assumption (6.22):

For every w ∈ C∞(S2,W ) there exists a symplectic trivialization of the fiber bundle w∗TW ,
i.e. 〈c1(TW ), π2(W )〉 = 0 where c1 denotes the first Chern class of the bundle TW .

Note: I don’t know what this pairing is. The top Chern class is the Euler class (obstructs
nowhere zero sections) and are defined inductively:

c1(TW ) = e(Λn(TW )) ∈ H2(W ;Z)

Assumption is satisfied when all maps S2 −→W lift to B3 ⇐⇒ π2(W ) = 0.

We have a pullback that is a symplectic fiber bundle:

ũ∗TW TW

S2 W

dũ

y
ũ
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2.3 8.4: Linearizing the Floer equation: The Differential of F

• Using the assumption, trivialize the pullback ũ∗TW to obtain an orthonormal unitary frame

{Zi}2ni=1 ⊂ Tu(s,t)W

where
– The frame depends smoothly on (s, t) ∈ S2,
– lim

s−→∞
Zi exists for each i.

–

∂

∂s
,

∂2

∂s2 ,
∂2

∂s ∂t
y Zi

s−→±∞−→ 0 for each i

Claim: such trivializations exist, “using cylinders near the spherical caps in the figure”.

Recall what P1,p(x, y), J,Xt are here.

• Use this frame to define a chart centered at u of P1,p(x, y) given by

ι : W 1,p
(
R× S1;R2n

)
−→ P1,p(x, y)

y = (y1, . . . , y2n) 7−→ expu
(∑

yiZi
)
.

– Note that the derivative at zero is
2n∑
i=1

yiZi.

• Define and compute the differential of the composite map F̃ defined as follows:

P1,p(x, y) Lp
(
R× S1;TW

)
Lp
(
R× S1;Rm

)

u
∂u

∂s
+ J(u)

(
∂u

∂t
−Xt(u)

)
F

F̃

F̃

– From now on, let F denote F̃ .

• Take the vector

Y (s, t) := (y1(s, t), · · · ) ∈ R2n ⊂ Rm

– View Y as a vector in Rm tangent to W , given by Y =
2n∑
i=1

yiZi.

• Plug u+ Y into the equation for F , directly yielding

F(u) = ∂u

∂s
+J(u)∂u

∂t
−J(u)Xt(u)

=⇒ F(u+ Y ) = ∂(u+ Y )
∂s

+J(u+ Y )∂(u+ Y )
∂t

−J(u+ Y )Xt(u+ Y )
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2.3 8.4: Linearizing the Floer equation: The Differential of F

• Extract the part that is linear in Y and collect terms:

(dF)u(Y ) = ∂Y

∂s
+ (dJ)u(Y )∂u

∂t
+ J(u)∂Y

∂t
− (dJ)u(Y )Xt − J(u) (dXt)u (Y )

=
(
∂Y

∂s
+ J(u)∂Y

∂t

)
+
(

(dJ)u(Y )∂u
∂t
− (dJ)u(Y )Xt − J(u) (dXt)u (Y )

)
.

– This is a sum of two differential operators:
∗ One of order 1, one of order 2 (Perspective 1)
∗ The Cauchy-Riemann operator, and one of order zero (Perspective 2, not immediate
from this form)

• Now compute in charts. Need a lemma:

Lemma 2.4(Leibniz Rule).
For any source space X and any maps

J : X −→ End(Rm)
Y, v : X −→ Rm

we have

(dJ)(Y ) · v = d(Jv)(Y )− Jdv(Y ).

Proof .
Differentiate the map

J · v : X −→ Rm

x 7→ J(x) · v(x)

to obtain

J(x+ Y )v(x+ y) = (J(x) + (dJ)x(Y )) · (v(x) + (dv)x(Y )) + · · ·
= J(x) · v(x) + J(x) · (dv)x(Y ) + (dJ)x(Y ) · v(x) + (dJ)x(Y ) · (dv)x(Y ) + · · ·

=⇒ d(J · v)x(Y ) = (dJ)x(Y ) · v(x) + J(x) · (dv)x(Y ).

�

• Using the chart ι defined by {Zi} to write Y =
2n∑
i=1

yiZi and thus

(dF)u(Y ) = O0 +O1
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2.3 8.4: Linearizing the Floer equation: The Differential of F

where O0 are order 0 terms (“they do not differentiate the yi”) and the O1 are order 1 terms:

O1 =
2n∑
i=1

(
∂yi
∂s

Zi + ∂yi
∂t
J(u)Zi

)

O0 =
2n∑
i=1

yi

(
∂Zi
∂s

+ J(u)∂Zi
∂t

+ (dJ)u(Zi)
∂u

∂t
− J(u)(dXt)uZi − (dJ)u(Zi)Xt

)
.

Note: the book seems to be incorrect here, or at least ambiguously worded:

• Study O1 first, which (claim) reduces to

O1 =
2n∑
i=1

(
∂yi
∂s

+ J0
∂yi
∂t

)
Zi = ∂(y1, · · · , y2n).

where J0 is the standard complex structure on R2n = Cn

– The second equality follows from the assumption that the Zi are symplectic and orthonor-
mal.

– Note that this writes (dF)u(Y ) = O0 + OCR, a sum of an order zero and a Cauchy-
Riemann operator.

• Note that since we’ve computed in charts, we have actually computed the differential of Fu in
the following diagram

2 TALK 12



2.3 8.4: Linearizing the Floer equation: The Differential of F

W 1,p(R× S1;R2n) P1,p(x, y) Lp
(
R× S1;TW

)
Lp
(
R× S1;Rm

)

u
∂u

∂s
+ J(u)

(
∂u

∂t
−Xt(u)

)

(y1, . . . , y2n) expu
(∑

yiZi
)

Fu

ι F

F̃

F̃

So we’ve technically computed (dFµ)0.

• Remark on the decomposition

(dF)u =
(
∂Y

∂s
+ J(u)∂Y

∂t

)
+
(

(dJ)u(Y )∂u
∂t
− (dJ)u(Y )Xt − J(u) (dXt)u (Y )

)

:= ∂Y + SY

where S ∈ C∞(R× S1; End(Rn)) is a linear operator of order 0.

Proposition 2.5(8.4.4, CR + Symmetric in the Limit).
If u solves Floer’s equation, then

(dF)u = ∂ + S(s, t)

where
• S is linear
• S tends to a symmetric operator as s −→ ±∞, and
•

∂S

∂s
(s, t) s−→±∞−→ 0 uniformly in t

Proof .
Omitted – S is exactly O0 from before:

O0 =
2n∑
i=1

yi

(
∂Zi
∂s

+ J(u)∂Zi
∂t

+ (dJ)u(Zi)
∂u

∂t
− J(u)(dXt)uZi − (dJ)u(Zi)Xt

)

=
2n∑
i=1

yi

(
∂Zi
∂s

+ (dJ)u(Zi)
(
∂u

∂t
− (Zi)Xt

)
+ J(u)∂Zi

∂t
− J(u)(dXt)uZi

)
.

• The term in blue vanishes as s −→ ±∞
– Using the fact that u is a solution
– Uses ∂u

∂s
−→ 0 uniformly (as do its derivatives?)
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2.3 8.4: Linearizing the Floer equation: The Differential of F

• Suffices to show the remaining part is symmetric in the limit, i.e. write as

A(y1, · · · , y2n) = · · · =⇒ Aij = Aji

using inner product calculations
• Uses the fact the Zi needed to be chosen to be unitary and symplectic.

�

• Write O1 as a map Y 7→ S · Y , so S ∈ C∞(R × S1; End(R2n)) and define the symmetric
operators

S± := lim
s−→±∞

S(s, · ) respectively

Proposition 2.6.
The equation

∂tY = J0S
±Y

linearizes Hamilton’s equation

∂z

∂t
= Xt(z) at

x = lim
s−→−∞

u for S−

y = lim
s−→∞

u for S+ respectively.
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2.3 8.4: Linearizing the Floer equation: The Differential of F

Proof .
Omitted. Sketch:
• Use the fact that ∂Y

∂t
= (dXt)xY

• Expand
∑ ∂yi

∂t
Zi in the Zi basis (roughly) to write ∂yi

∂t
=
∑

bijyj for some coefficients
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2.3 8.4: Linearizing the Floer equation: The Differential of F

bij .
• Collect terms into a matrix/operator B∓ for x, y respectively to write

∂Y

∂t
= B− · Y

• Write (dF)u = ∂ + S where S is zero order and symmetric in the limit
• Get the corresponding operator A in coordinates
• Expand in a basis (roughly) as A(

∑
yiZi) =

∑
sijyjZi

• Check that sij = ±bi±n,j
• This implies

S− = −J0B
− S+ = −J0B

+ =⇒ ∂Y

∂t
= J0S

±Y

�

• Given a solution u, we have a right R-action, so for s ∈ R,

u · s ∈ C∞(R× S1;W )
(σ, t) 7→ u(σ + s, t)

is also a solution, so F(u · s) = 0 for all s.

– In other words: we can flow solutions?

• Punchline: ∂u
∂s

is a solution of the linearized equation, since

0 = ∂

∂s
F(u · s) = (dF)u

(
∂u

∂s

)
.

– Along any nonconstant solution connecting x and y, dim ker(dF)u ≥ 1.
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