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1 Background and Notation

From the text:
o (W,w e Qo(W)) is a (compact?) symplectic manifold

e C°°(A, B) is the space of smooth maps with the C°° topology (idea: uniform convergence of a
function and all derivatives on compact subsets)

e (X (A, B) is the space with the C°° uniform convergence topology on compact subsets of A
e H € C*°(W;R) a Hamiltonian with X its vector field.
o H e C®(W x R;R) given by Hy € C°°(W;R) is a time-dependent Hamiltonian.

e The action functional is given by
.AH LW — R

x —/Du*w-i-/ol Hi(z(t)) dt

where LW is the contractible loop space of W, u: D —s W is an extension of z : S — W
to the disc with u(exp(2mit)) = ().

1
— Example: W =R*" = Ag(z) = /0 (Hy dt — p dq).

e Critical points of the action functional Ag are given by orbits, i.e. contractible loops x,y € LW

e In general, z,y are two periodic orbits of H of period 1.



e The Floer equation is given by

ou ou

P + grad Hy(u) = 0.

This is a first-order perturbation of the Cauchy-Riemann equations, for which solutions would
be J-holomorphic curves.
e Solutions are functions u € C®(R x S1; W) = C®(R; LW)

— They correspond to “embedded cylinders” with sides v and contractible caps z, y regarded
as loops in W.

— They also correspond to paths in LW from x — y (precisely: trajectories of the vector
field —grad.Ag)
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Fig. 6.5

Here u(s) € LW is a loop with value at time ¢ given by u(s,t), and lim wus(t) =

S§——>—00

x, lim us(t) =y.

§—00

The energy of a solution is E(u) = / |Osul? dsdt.
Rx St

M= {u € C(R; LW) ’ E(u) < oo} (contractible solutions of finite energy), which is com-
pact.

M(z,y) is the space of solutions of the Floer equation connecting orbits x and y.
O\ (z,y):

O\ (7,y) = {u e C®(R x SH, W) lim wu(s,t) ==(t), lim wu(s,t) =y(t),

§——00 5§—00
ou 5ls| ou 5|s|
< — — <
S(S,t)‘ Ke R t(S,t) XH(’LL) Ke }

where K, ¢ > 0 are constants depending on u. So

|8su(s, )], |0pu(s, t) — X (u)| ~ el

From the Appendices

Relatively compact: has compact closure.

Compact operator: the image of bounded sets are relatively compact.

Index of an operator: dim ker — dim coker.

Fredholm operators: those for which the index makes sense, i.e. dim ker < oo, dim coker < oo.
Elliptic operators: generalize the Laplacian A, coefficients of highest order derivatives are
positive, principal symbol is invertible (777)

Locally integrable: integrable on every compact subset
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e Sobolev spaces: in dimension 1, define [lu(?)|, , = Z ‘ Gfu(t)HLp on C®(U), then take the
i=0

completion and denote W*P(U). Yields a distribution space, elements are functions with weak
derivatives.

e Distribution: C2°(U)Y, the dual of the space of smooth compactly supported functions on an
open set U C R".

2 Talk

Overview: Analyze the space M (z,y) of solutions to the Floer equation connecting two orbits z,y
of H. Show M(z,y) is in fact a manifold of dimension p(x) — u(y).

Strategy:

1. Describe M(x,y) as the zero set of a section of a vector bundle over the Banach manifold

Pz, y).

2. Apply the Sard-Smale theorem: perturb H to make M(x,y) the inverse image of a regular
value of some map.

3. Show that the tangent maps (?7) are Fredholm operators of index u(z) — p(y) = dim M(z, y).

Goals:

e 8.3: Overview and big picture
e 8.4: Formula for linearization of F.

2.1 8.3: The Space of Perturbations of H

Goal: given a fixed Hamiltonian H € C*°(W x S';R), perturb it (without modifying the periodic
orbits) so that M(x,y) are manifolds of the expected dimension.

Start by trying to construct a subspace C2°(H) C C*(W x S 1, R), the space of perturbations of H
depending on a certain sequence € = {g;}, and show it is a dense subspace.
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2.1 8.3: The Space of Perturbations of H

on CZ°(H) and take the subspace of

Idea: similar to how you build L?(R), define a norm || - ||
finite-norm elements.

€

o Let h(x,t) € CZ°(H) denote a perturbation of H.

e Fix ¢ = {5k ’ ke ZZO} C R”Y a sequence of real numbers, which we will choose carefully

later.

e For afixed x € W,t € R and k € Z=°, define
’dkh(x,t)‘ = max {dah(x,t) ‘ la| = k‘},

the maximum over all sets of multi-indices « of length k.
Note: I interpret this as

okh

dorazyakp
0o, Oxay -+ OTq,

the partial derivatives wrt the corresponding variables.
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2.1 8.3: The Space of Perturbations of H

Define a norm on C*®°(W x S*;R):

Ihlle =) er  sup

k>0 (z,t)eW xSt

dkh(m,t)‘ .

Since W x S! is assumed compact (?), fix a finite covering {B;} of W x S* such that

By =w x S

— Choose them in such a way we obtain charts

U, : B; — B(0,1) c R**1 (7).

Obtain the computable form

17|l = Z€k sup sup ‘dk(ho\yi—l)(z)“
k>0  (zt)eWxStizeB(0,1)

Define

c ={he =W x S5R) | |h]. < 0o} c C(W x S5 R),

which is a Banach space (normed and complete).

Show that the sequence {e;} can be chosen so that CZ° is a dense subspace for the C*°
topology, and in particular for the C! topology.

Proposition 2.1.
Such a sequence {e;} can be chosen.

Lemma 2.2.
C®(W xS 1, R) with the C' ! topology is separable as a topological space (contains a countable
dense subset).

Proof (of Lemma, Sketch).

First prove for C°:
e Idea: reduce to polynomials in R™.
e Embed W x S! < [—M, M]™ = "™ c R™ for some large m, reduces to proving it for
C*(I™;R).
e Recall Stone-Weierstrass:
For A < C°(X;R) a subalgebra with X compact Hausdorff and A containing a
nonzero constant function, A is dense iff it separates points (for all @ # b € X
there exists f € A such that f(a) # f(b))
e Apply to A = Q[z1, - , x| the subalgebra of polynomial functions, the nonzero constant
function c¢(x) = 1, and show it separates points via f(x) = z — a, then f(a) = 0 and
f(b) =a — b # 0 by assumption.
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2.1 8.3: The Space of Perturbations of H

e Thus A is a countable dense subset.

Then prove for C:

e Idea: Take polynomials convolved with a countable sequence of bump functions, which
is still a countable dense subset.

e Choose a smooth bump function x supported on B(0, 1)

e Define the sequence yi(z) = k™ x(kz).

e Prove that (f * xx) g f in the C2 . sense (?)

e Show that for a fixed k, any other sequence gy — f in C}y., we have gg * xx — f * xx
in the C_ . sense using

(9e — f) * xx

0 :
\gg—f|—>O:>sup‘a <suplge—f|- () —0 Vi
K Z k

e Conclude 11?1 hin gexxe=f.

e Taking gy to be polynomial approximations, the following subset is countable and dense:

U {P*Xk‘PGQ[xh'--,me]}

kEZ=20

which are pushed through the charts ¥; to actually compute.

The second part of this proof generalizes to C°.

Proof (of Proposition, Sketch).

e By the lemma, produce a sequence {f,} € C®(W x S';R) dense for the C'! topology.
e Using the norm on C™(W x S';R) for the f,, define

1
- :2"max{kaH ‘ k< n} = epsup |d" fy(z,t)| <277

n

which is summable.

Why does this imply density? I don’t know.

The next proposition establishes a version of this theorem with compact support:

Proposition 2.3.
For any (x,t) C U € W x S') there exists a V' C U such that every h € C®°(W x S';R) can
be approximated in the C* topology by functions in C2° supported in U.

Then fix a time-dependent Hamiltonian Hy with nondegenerate periodic orbits and consider

{h € C°(Hy) ‘ h(z,t) = 0 in some U D the 1-periodic orbits of Ho}
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2.2 Review 8.2

Then supp(h) is “far” from Per(Hp), so
||, <1 = Per(Hy + h) = Per(Hy)

and are both nondegenerate.

2.2 Review 8.2
What is F?
We started with the unadorned Floer map:
F.C® (R x sl;W) NS (]R x Sl;TW)

ou ou

and promoted this to a map of Banach spaces

F ,PLp(x7y) — Ep(x7y)

F(u) = ZZSL—FJ(u)

du

ot + grad Hy(u).

What is the LHS? It is the space of maps

PLP(x,y) 17 —?

(s,t) — €XPyy(s,) Y (s,t).
where Y € WP (w*TW) and w € C(z,y).

2.3 8.4: Linearizing the Floer equation: The Differential of F

Choose m > n = dim(W) and embed TW < R™ to identify tangent vectors (such as Z;, tangents
to W along u or in a neighborhood B of u) with actual vectors in R"™.

Why? Bypasses differentiating vector fields and the Levi-Cevita connection.

We can then identify
im F = C®R x SL,R™) or LP(R x S W),

and we seek to compute its differential dF.
We’ve just replaced the codomain here.
Recall that

e z,y are contractible loops in W that are nondegenerate critical points of the action functional
AH7

o u e M(x,y) C Ch. denotes a fixed solution to the Floer equation,

o C\ (z,y) was the set of solutions u : R x § L' W satisfying some conditions.
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2.3 8.4: Linearizing the Floer equation: The Differential of F

Recall:

O\ (z,y) = {u € C®R x SH; W)

s—l—lfgoo u(s,t) = z(t), sliinoo u(s,t) = y(t)}
gl;(s,t)‘ and ‘gl:(s,t) — Xy (u)| ~ exp(|s])

Fix a solution

u € M(z,y) C CR2(R x SL ).

We lift each solution to a map

0:8% — W

in the following way: the loops z,y are contractible, so they bound discs. So we extend by pushing
these discs out slightly::

From earlier in the book, we have

Assumption (6.22):

For every w € C™(S?, W) there exists a symplectic trivialization of the fiber bundle w*TW,

ie. (ci(TW), me(W)) = 0 where ¢; denotes the first Chern class of the bundle TW.

Note: I don’t know what this pairing is. The top Chern class is the Euler class (obstructs

nowhere zero sections) and are defined inductively:
c1(TW) = e(A(TW)) € H*(W;7Z)
Assumption is satisfied when all maps S? — W lift to B3 <= (W) = 0.
We have a pullback that is a symplectic fiber bundle:
@ TW —2 TW
L=
52 U

— W
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2.3 8.4: Linearizing the Floer equation: The Differential of F

e Using the assumption, trivialize the pullback @*T'W to obtain an orthonormal unitary frame

{Zz}zzzl - Tu(s,t)W

where
— The frame depends smoothly on (s,t) € S,

lim Z; exists for each i.
S— 00

0 82 82 s—too .
%, @, m Zz — 0 for each ¢

Claim: such trivializations exist, “using cylinders near the spherical caps in the figure”.

Recall what PYP(z,y), J, X, are here.
e Use this frame to define a chart centered at u of P1P(z,y) given by
L WP (R X SI;RM) — PLP(z,9)
y =1, 1on) — exp, (D wii).-

2n
— Note that the derivative at zero is Z YiZi.

i=1

e Define and compute the differential of the composite map F defined as follows:

P (z,y) —Lo 1P (R x $HTW) ———— L7 (R x S R™)
P ou ou
f J—

— From now on, let F denote F.

e Take the vector
Y(S7t) = (yl(s7t)7 o ) S R2n CR™
2n

— View Y as a vector in R tangent to W, given by Y = Z Yi L.

=1

e Plug u 4 Y into the equation for F, directly yielding

Flu) = ou ok (W) Xi(u)
NI a2 y)xusy)

10
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2.3 8.4: Linearizing the Floer equation: The Differential of F

e Extract the part that is linear in Y and collect terms:

oy du oY

(@F)u¥) = 5+ @G+ 700) T = @DV )X; = ) (@), (1)
= (5 + 75 ) + (@G — @)X~ I (@50, (1))

— This is a sum of two differential operators:
« One of order 1, one of order 2 (Perspective 1)
« The Cauchy-Riemann operator, and one of order zero (Perspective 2, not immediate
from this form)

e Now compute in charts. Need a lemma:

Lemma 2.4 (Leibniz Rule).
For any source space X and any maps

J: X — End(R™)
Y,v: X — R"

we have

dI)(Y) - v = d(Jv)(Y) — Jdu(Y).

Proof .
Differentiate the map

J-v: X —R"
z— J(x) - v(x)
to obtain

Jx+Y)o(z+y) = (J(2) 4+ (d])(Y)) - (v(z) + (dv)o(Y)) +- -

= J(@) v(x) + J(2) - (dv)o(Y) + (d])o(Y) - v(2) + (d])2(Y) - (dv)2(Y) + - -

= d(J - 0)(Y) = (dJ])(Y) - v(z) + J(x) - (dv).(Y).

2n
e Using the chart ¢ defined by {Z;} to write Y = Z yiZ; and thus

i=1

(dF)u(Y) = Op + O1
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2.3 8.4: Linearizing the Floer equation: The Differential of F

where O are order 0 terms (“they do not differentiate the y;”) and the O; are order 1 terms:

2n ) .
O = Z (8% Z; + Dy J(’U,)ZZ)

= 0s ot
2
07, 07, P
Or=3us ( + I 22 4 (@22 — Ty dX)uZi — (dJ)u(Z,-)Xt>.
= 0s ot ot

Note: the book seems to be incorrect here, or at least ambiguously worded:

(dT)u(Y) :Z (%Z} + i’:f .I{'M]Zf)

623' (‘}Zt du
+ Zy‘i’ (I + J(u) 57 + (ﬂ!J)u(Zﬂa

— J(u)(dX,)uZi — (d)u(Z: }J:,,) .

The terms on the first line are “of order 07, that is, they do not differentiate
the y;. We begin by studying the “order 17 terms, the remaining ones. It is

e Study O first, which (claim) reduces to

as 6t 1 9 Y n

i=1

where Jj is the standard complex structure on R?® = C"

— The second equality follows from the assumption that the Z; are symplectic and orthonor-
mal.

— Note that this writes (dF),(Y) = Og + O¢cR, a sum of an order zero and a Cauchy-
Riemann operator.

e Note that since we’ve computed in charts, we have actually computed the differential of F, in
the following diagram
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2.3 8.4: Linearizing the Floer equation: The Differential of F

- - }\\\)

-

WP(R x §LR) s PUP(2,y) —T s L7 (Rx 8 TW) ——— [7 (R x §';R™)

Al

" % L I (Mxt

Js ot

(Y1, Yon) —— €xp, (Z ini)

So we’ve technically computed (dF},)o.

e Remark on the decomposition

oY 5)4 ou

(@7, = (- + 75 ) + (@) ~ @Du¥)X: = I (@X0),, (1)

=0JY + SY
where S € C*°(R x S*; End(R™)) is a linear operator of order 0.

Proposition 2.5(8.4.4, CR + Symmetric in the Limit).
If u solves Floer’s equation, then

(dF), =0+ S(s,t)

where
e S is linear
e S tends to a symmetric operator as s — +00, and
[ ]

aS( ,t) sjoo

(358

0 uniformly in ¢

Proof .
Omitted — S is exactly Og from before:

2 .
00 =3 (G2 + 70055+ (@1)u(2) 5 = Tu)(@Xi)uZi - (@) 2% )

197 ou 0Z;
= i\ = + (dI)u(Zi)| = — (Zi) Xy J(u — J(u)(dX¢)uZ; |-
Sy + @) (G~ (20%) + 90w G I @X0u2%)

e The term in blue vanishes as s — o0
— Using the fact that u is a solution

u
— Uses — — 0 uniformly (as do its derivatives?)

Os
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2.3 8.4: Linearizing the Floer equation: The Differential of F

e Suffices to show the remaining part is symmetric in the limit, i.e. write as
Ay, - y2m) =0 = Ay = Ay

using inner product calculations

e Uses the fact the Z; needed to be chosen to be unitary and symplectic.
[ |

e Write O asamap Y — S-Y, s0 S € C°(R x S'; End(R?*")) and define the symmetric

operators

S*:= lim S(s,-) respectively

s—too
Proposition 2.6.
The equation
oY = JoS*Y
linearizes Hamilton’s equation
Oz ( x = gm u for S~
— = Xy¢(2) at §TToo respectively.
ot ) y= lim v for ST
S§—>00
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2.3 8.4: Linearizing the Floer equation: The Differential of F

Proof .
Omitted. Sketch:

Y
o Use the fact that 5 = (dX1).Y

0y; 0y
e Expand Z %ZZ- in the Z; basis (roughly) to write % = Z bijy; for some coefficients
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2.3 8.4: Linearizing the Floer equation: The Differential of F

bij.
e Collect terms into a matrix/operator BT for z,y respectively to write
oY
- _B .Y
ot

Write (dF), = 0 + S where S is zero order and symmetric in the limit
Get the corresponding operator A in coordinates

Expand in a basis (roughly) as A(Z viZ;) = Z 8ijY; Zi

Check that Sij = ibi:l:n,j

This implies

Y
S~ =—-JyB~ St=-J,Bt = %t = JoSTY

e Given a solution u, we have a right R-action, so for s € R,
u-s€C®RxSHW)
(0,t) — u(o + s,t)

is also a solution, so F(u-s) =0 for all s.

— In other words: we can flow solutions?

ou
e Punchline: — is a solution of the linearized equation, since

Os

0= %]—"(u L5) = (d]—")u<gZ>.

— Along any nonconstant solution connecting x and y, dim ker(dF), > 1.
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