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Definitions

Linearization

Continued The Floer equation is given by

o ou ou
Review & —|— J(U)E + grad Ht(u) = O

— We fixed a solution and lifted it to a sphere:

ue CO(S'xR; W) = ©ie C®(S% W)

We use the assumption:

For every w € C>®(S?, W) there exists a symplectic trivial-
ization of the fiber bundle w* TW, i.e. (ci(TW), mo(W)) =
0 where ¢, denotes the first Chern class of the bundle TW .

— We use this trivialize the pullback o* TW to obtain an
orthonormal unitary frame

{Zi}?:nl - Tu(s,t) 44

w



Linearization
Continued

D. Zack Garza

Review

— We used the chosen frame {Z;} to define a chart centered at u
of P1P(x,y) given by

L WP (R X Sl;RZ”) — ’Pl'p(x,y)
Y =01 ....y20) — exp, (Z y,-Z/) :

— We regard Y(s, t) as a tangent vector to W in some Euclidean
embedding.
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Review — We seek to compute the composite map in charts:

L : : “u
WEP(R x 85 B2 o PU () — T 17 (R x 8L TW) s 1P (B x S1R™)

(&



Add a Tangent
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- Flu+Y)= 29 4 ju+v)2eD g+ Y)Xe(u+ Y)

Extract the part that is linear in Y and collect terms:

(dF)u(Y) (o

oy Ou oYy
= S+ (@) 5p + ) 51— (@YX — J() (@X0), (V)

oY oY
:<65+J(u)at>
= (@5~ @X ~ J0) (0%), (1)
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Leibniz Rule

Linearization Reca“ the |_e|bn|Z I’u|e

Continued

0.2 o (d)(Y) v = d)(Y) ~ Jan(Y)
e
8. Leibriz (d]:) (Y) ((?;S/ n J(U)aa\t/)

N ((dJ)u(v)a” -

- Z (6”2 + %J( )z)

+Zy,-<%f’+J(u)aZ (@(2) 3

()oY )Xe — J(u) (a0, (Y))

= J(u)(dXt)uZi = (d))u(Zi)X )

Use the fact that this is O; + Og in Y.


Unknown


Unknown



Order 1
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Study O first, which (claim) reduces to

oy, oy, ~
O = Z(ay J°8t> Zi=0(y1." -+ . ¥2n)-

i=1

8.4.1: Leibniz
Rule

where Jg is the standard complex structure on R2" = C"

Use this to write
(dF), =0Y + SY

where S € C*®(R x S;End(R")) is a linear operator of order 0.
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8.4.4: Order 0 Part is Symmetric in the Limit
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Theorem (8.4.4, CR + Symmetric in the Limit)

If u solves Floer's equation, then

Order 0 Part is (df)u == é+5(5, t)

Symmetric in the
Limit

where

S is linear
S tends to a symmetric operator as s —» oo, and
We have the limiting behavior

oS s—rtoo

g(s, t)"— 0 uniformly in t



Linearization Collect terms in the order zero part:

Continued

e Oo = S(y1.""* y2n) =§:y, 82 + (dJ )U(Z,)%
i=1
— J(u)(AXe)uZi — ()l Z)X:
- Zy, (@ (Z>(‘Zj (2)x)
+J(u)aazt’ (u)(0Xe)uZ

— Claim: the terms in blue and orange vanish in the limit

symmetric operator.

s — o0, so it suffices to prove that the red term limits to a




Proof: Blue Term Vanishes
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Sl ® B The term in blue vanishes: since u is a solution and
Symmetric in the
Limit

OU s— 40
— =

0s

0 uniformly

as do its derivatives, we have

ou s—rtoo
(20 x) =50

This seems to be the full argument for the blue term.



Proof: Orange Term Vanishes (1 and 3)
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—

0s 0

Follows since the frame Z; was chosen such that
Order 0 Part is

Symmetric in the

Limit

> >
%, % % A Z 2520 foreach i

This also implies

oS s—*doo
— — O

0s
This shows parts (1) and (3) of the theorem: linearity and
limits to zero uniformly in t7

14



Proof: Symmetry
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Order 0 Part is
Symmetric in the
Limit

Extract the jth component:

A —Zy,<

We'll show that

Jim {107 (9%),(2).2))
)

<J( )22 ) (9%, 2, Z

I
o



Proof: Symmetry
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Use the fact that the frame {Z;} is unitary:

Symmetric n the o

Limit 0= a <J(U)Z,’, ZJ>
B du oz 07
- ou GZ, A ZJ

16



Proof: Symmetry
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Therefore it suffices to show

SRl — (J(u) (aX0), (Z), Z)
Limit +<J(U)(dXt)u (ZJ) , Zl>
ou
- u e Z,, Z
(@ (5)2 2)
50,

17
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ou s—rFo0
(at —Xt(U)> — 0

Order 0 Part is .
SNSRI \we can equivalently show

— (J(u) (dX),(Z).  Z))
+(J(u) (dX), (Z).  Zi)
—{(d)u (Xe) Zi, Z)

s—too
—

0

For a fixed (s, t), this expression only depends on Z; at the
point u(s, t).
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Lemma: For p € W, {Z} a unitary basis of T,W,

— (J(p) (dX),(Z). Z)
+(JI(p) (Xe),(Z) . Z)

—((d)p (X2) Z, Z;)
=0.

Claim: This lemma immediately concludes the previous proof?



Proof of Lemma
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Extend {Z;} to a chart containing p and use the Leibniz rule to
rewrite

= (J(p) (dX2), (Z)) . Zj) + (I(p) (dX¢), (Z)) . Zi) — ((d)p (Xe) Zi, Zj) = O

Lemma That
Concludes the

Proof as
= (J(@X)(Z)). Z) +{J (dXe) (Z)) . Zi) + (I (dZ)) (Xe) . Z;) = (d (JZ)) (X2) . Z))
= (X Z1. Z) + (J(dXe) (Z) . Z3) = (4 (JZ) (X2) . Z).

where we'll rewrite the red terms.



Proof of Lemma

Linearization

s Xe(JZ Z) =0 = (d(JZ) (%), Z) + (JZ,,(dZ) (X)) = 0.

We now rewrite the RHS from before:

JIXe. 2], Zj)y + (J(dXe) (Z) . Zi) + (IZ;, (dZ;) (Xe))

= (X Z]. Z) + (I (dXe) (Z)) — J(dZ;) (Xt) . Z))
=X, 2], Z) — (J[Xe, Z)]. Z3)
Conchutes e = w (X 2].2) ~w (X Z). Z).
Proof
The symmetry follows from w being closed and
0=dw(X:.Z. 2Z)
=Xt w(Z,Z)—-Zi - w(Xe, Z)) + Z; - w(Xe, Z))
—w([Xe, Z]. Z)) + w([X:. Z]. Z) —w([Z. Z]. Xt)

=—=Xi-(Z;,JZ)) + Z; - (dH:) (Z)) = Z; - (dH:) (Z)
—(dH:) ([2i Z]]) — w ([Xe, 2], Z)) + w ([Xe, 2] Z)

=d(dH:)(Zi. Z)) — w([Xe. Zi] . Z)) + w ([X:. Z]. Zi)
:7w([Xt,Z,],Zj)+w([Xthj]rZ/)- n

22
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Linearization of Hamilton's Equation
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. Zack Garza (dF),=0Y +SY=(0+S)Y

Now think of Sasamap Y+ S-Y,s0 S € C®(R x St; End(R?"))
and define the symmetric operators

S*¥:= lim S(s,-) respectively
s—+oo
" Theorem
Linearizati f .
Hamiton's The equation
Equation
oY = JhStY

is a linearization of Hamilton's equation

16) x=Ilims_,_u forS— .
Z_ Xe(z) at { Ms— respectively.

at y=lime_oou for ST



UGz We first linearize Hamilton's equation at x:

Continued

D. Zack Garza 0z linearized oYy
a = Xt(Z) — Gt

So write Y =Yy, Z; to obtain

, ay’z Z ( dXt)(Z)>
=22 (-5 +@02).3) 2
—Zzyj< +(0X)(2).2) Z

= (dX)xY.

Hamilton’s

Equation

Ay 8z



Linearization Thus we can rewrite the linearized equation as

Continued oy 0z
D. Zack Garza =@y =5y, b= (- @x0,(2) ).

Recall

A=A0r, ..., Yon) = Z Yi (

() (dX0), (z,)) .

Now take s — —oo and look at the order zero part of (dF),. By
the proof of 8.4.4, we have

8.4.6:

it A(Xrz) =3 (0%
Equation i

—ZZy,< 9% _ J(ax)(2). >zj
=S (5 0@ 2) 2
= ZZ<—— +(dX:) (Z), JZ> Zi.

() (dX0), (z,))
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Deduce that

L\:etanzation of JZI = I+n ] Slj _ I+n,J .
Hamilton's ~Z ., i>n+1 = —b,'_,,j P> n41
Equation .

<— 57 — _JO B*
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