Linearization and Transversality

Sections 8.3 and 8.4
D. Zack Garza

April 2020

D. Zack Garza

Review

Recalling Notation

- The Floer equation is given by

$$
\frac{\partial u}{\partial s}+J(u) \frac{\partial u}{\partial t}+\operatorname{grad} H_{t}(u)=0
$$

- Critical points of the action functional \mathcal{A}_{H} are given by orbits, i.e. contractible loops $x, y \in \mathcal{L} W$
- In general, x, y are two periodic orbits of H of period 1.
- Solutions are functions $u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)=C^{\infty}(\mathbb{R} ; \mathcal{L} W)$
$-\mathcal{M}(x, y)$ is the moduli space of solutions of the Floer equation connecting orbits x and y.
- $W^{1, p}(x, y)$ and $\mathcal{P}^{1, p}(x, y)$ were completions of $C^{\infty}(?)$ with respect to certain norms.

The "Program" for Chapter 8

- Show that $\mathcal{M}(x, y)$ is a manifold of dimension $\mu(x)-\mu(y)$
- Define $\mathcal{M}(x, y)$ as the inverse image of a regular value of some map
- Perturb H to apply the Sard-Smale theorem
- Show the tangent maps are Fredholm operators and compute their index.

Section 8.3: The Space of Perturbations of

Goal

Goal: Given a fixed Hamiltonian $H \in C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$, perturb it (without modifying the periodic orbits) so that $\mathcal{M}(x, y)$ are manifolds of the expected dimension.

Goal

Linearization and
Transversality
D. Zack Garza

Review
Section 8.3: The Space of
Perturbations of H

Section 8.4
Linearizing the
Floer Equation: The Differential of F

Start by trying to construct a subspace $\mathcal{C}_{\varepsilon}^{\infty}(H) \subset \mathcal{C}^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$, the space of perturbations of H depending on a certain sequence $\varepsilon=\left\{\varepsilon_{k}\right\}$, and show it is a dense subspace.

Define an Absolute Value

Section 8.3: The

Idea: similar to how you build $L^{2}(\mathbb{R})$, define a norm $\|\cdot\|_{\varepsilon}$ on $C_{\varepsilon}^{\infty}(H)$ and take the subspace of finite-norm elements.

- Let $h(\mathbf{x}, t) \in C_{\varepsilon}^{\infty}(H)$ denote a perturbation of H.
- Fix $\varepsilon=\left\{\varepsilon_{k} \mid k \in \mathbb{Z}^{\geq 0}\right\} \subset \mathbb{R}^{>0}$ a sequence of real numbers, which we will choose carefully later.
- For a fixed $\mathbf{x} \in W, t \in \mathbb{R}$ and $k \in \mathbb{Z}^{\geq 0}$, define

$$
\left|d^{k} h(\mathbf{x}, t)\right|=\max \left\{d^{\alpha} h(\mathbf{x}, t)| | \alpha \mid=k\right\},
$$

the maximum over all sets of multi-indices α of length k.
Note: I interpret this as

$$
d^{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}} h=\frac{\partial^{k} h}{\partial x_{\alpha_{1}} \partial x_{\alpha_{2}} \cdots \partial x_{\alpha_{k}}},
$$

the partial derivatives wrt the corresponding variables.

Define a Norm

- Define a norm on $C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$:

$$
\|h\|^{\prime \prime}=\sum_{k \geq 0} \varepsilon_{k} \sup _{(x, t) \in W \times S^{1}}\left|d^{k} h(x, t)\right|
$$

- Since $W \times S^{1}$ is assumed compact (?), fix a finite covering $\left\{B_{i}\right\}$ of $W \times S^{1}$ such that

$$
\bigcup_{i} B_{i}^{\circ}=W \times S^{1}
$$

- Choose them in such a way we obtain charts

$$
\begin{equation*}
\Psi_{i}: B_{i} \longrightarrow \overline{B(0,1)} \subset \mathbb{R}^{2 n+1} \tag{?}
\end{equation*}
$$

- Obtain the computable form

$$
\|h\|_{n}=\sum_{k \geq 0} \varepsilon_{k} \sup _{(x, t) \in W \times S^{1}} \sup _{i, z \in B(0,1)}\left|d^{k}\left(h \circ \Psi_{i}^{-1}\right)(z)\right|
$$

Define a Banach Space

- Define

$$
C_{\varepsilon}^{\infty}=\left\{h \in C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right) \mid\|h\|_{\varepsilon}<\infty\right\} \subset C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)
$$

which is a Banach space (normed and complete).

- Show that the sequence $\left\{\varepsilon_{k}\right\}$ can be chosen so that C_{ε}^{∞} is a dense subspace for the C^{∞} topology, and in particular for the C^{1} topology.

Theorem

Such a sequence $\left\{\varepsilon_{k}\right\}$ can be chosen.

Lemma

$C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$ with the C^{1} topology is separable as a topological space (contains a countable dense subset).

Sketch Proof of Theorem

Review

Section 8.3: The Space of
Perturbations of

- By the lemma, produce a sequence $\left\{f_{n}\right\} \subset C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$ dense for the C^{1} topology.
- Using the norm on $C^{n}\left(W \times S^{1} ; \mathbb{R}\right)$ for the f_{n}, define

$$
\frac{1}{\varepsilon_{n}}=2^{n} \max \left\{\left\|f_{k}\right\| \mid k \leq n\right\} \Longrightarrow \varepsilon_{n} \sup \left|d^{n} f_{k}(x, t)\right| \leq 2^{-n}
$$

which is summable.

Why does this imply density? I don't know.

Modified Theorem

The next proposition establishes a version of this theorem with compact support:

Theorem

For any $\left.(\mathbf{x}, t) \subset U \in W \times S^{1}\right)$ there exists a $V \subset U$ such that every $h \in C^{\infty}\left(W \times S^{1} ; \mathbb{R}\right)$ can be approximated in the C^{1} topology by functions in C_{ε}^{∞} supported in U.

Then fix a time-dependent Hamiltonian H_{0} with nondegenerate periodic orbits and consider
$\left\{h \in C_{\varepsilon}^{\infty}\left(H_{0}\right) \mid h(x, t)=0\right.$ in some $U \supseteq$ the 1-periodic orbits of $\left.H_{0}\right\}$
Then $\operatorname{supp}(h)$ is "far" from $\operatorname{Per}\left(H_{0}\right)$, so

$$
\|h\|_{\varepsilon} \ll 1 \Longrightarrow \operatorname{Per}\left(H_{0}+h\right)=\operatorname{Per}\left(H_{0}\right)
$$

and are both nondegenerate.

Section 8.4: Linearizing the Floer Equation: The Differential of F

Goal

Choose $m>n=\operatorname{dim}(W)$ and embed $T W \hookrightarrow \mathbb{R}^{m}$ to identify tangent vectors (such as Z_{i}, tangents to W along u or in a neighborhood B of u) with actual vectors in \mathbb{R}^{m}.

Why? Bypasses differentiating vector fields and the LeviCevita connection.

We can then identify

$$
\operatorname{im} \mathcal{F}=C^{\infty}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{m}\right) \quad \text { or } \quad L^{p}\left(\mathbb{R} \times S^{1} ; W\right)
$$

and we seek to compute its differential $d \mathcal{F}$.
We've just replaced the codomain here.

Definitions

Recall that

- x, y are contractible loops in W that are nondegenerate critical points of the action functional \mathcal{A}_{H},
- $u \in \mathcal{M}(x, y) \subset C_{\text {loc }}^{\infty}$ denotes a fixed solution to the Floer equation,
- $C_{\searrow}(x, y) \subset\left\{u \in C^{\infty}\left(R \times S^{1} ; W\right)\right\}$ is the set of smooth solutions $u: \mathbb{R} \times S^{1} \longrightarrow W$ satisfying some conditions:

$$
\begin{aligned}
& \lim _{s \longrightarrow-\infty} u(s, t)=x(t), \quad \lim _{s \rightarrow \infty} u(s, t)=y(t) \\
& \text { and }\left|\frac{\partial u}{\partial t}(s, t)\right|,\left|\frac{\partial u}{\partial t}(s, t)-X_{H}(u)\right| \sim \exp (|s|)
\end{aligned}
$$

Compactify to Sphere

Fix a solution

$$
u \in \mathcal{M}(x, y) \subset C_{\mathrm{loc}}^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)
$$

We lift each solution to a map

$$
\tilde{u}: S^{2} \longrightarrow W
$$

in the following way:
The loops x, y are contractible, so they bound discs. So we extend by pushing these discs out slightly:

Lift to 2-Sphere

Transversality
D. Zack Garza

Review
Section 8.3: The Space of
Perturbations of H

Section 8.4:
Linearizing the Floer Equation: The Differential of F

$$
u \in C^{\infty}\left(S^{1} \times \mathbb{R} ; W\right) \quad \mapsto \quad \tilde{u} \in C^{\infty}\left(S^{2} ; W\right)
$$

Trivial the Pullback

From earlier in the book, we have
Assumption (6.22):
For every $w \in C^{\infty}\left(S^{2}, W\right)$ there exists a symplectic trivialization of the fiber bundle $w^{*} T W$, i.e. $\left\langle c_{1}(T W), \pi_{2}(W)\right\rangle=0$ where c_{1} denotes the first Chern class of the bundle TW.

Note: I don't know what this pairing is. The top Chern class is the Euler class (obstructs nowhere zero sections) and are defined inductively:

$$
c_{1}(T W)=e\left(\Lambda^{n}(T W)\right) \in H^{2}(W ; \mathbb{Z})
$$

Assumption is satisfied when all maps $S^{2} \longrightarrow$ W lift to $B^{3} \Longleftrightarrow \pi_{2}(W)=0$.
We have a pullback that is a symplectic fiber bundle:

Choose a Frame

- Using the assumption, trivialize the pullback $\tilde{u}^{*} T W$ to obtain an orthonormal unitary frame

$$
\left\{Z_{i}\right\}_{i=1}^{2 n} \subset T_{u(s, t)} W
$$

where

- The frame depends smoothly on $(s, t) \in S^{2}$,
- $\lim _{s \rightarrow \infty} Z_{i}$ exists for each i.

$$
\frac{\partial}{\partial s}, \quad \frac{\partial^{2}}{\partial s^{2}}, \quad \frac{\partial^{2}}{\partial s \partial t} \curvearrowright Z_{i} \xrightarrow{s \rightarrow \pm \infty} 0 \text { for each } i
$$

Claim: such trivializations exist, "using cylinders near the spherical caps in the figure".

Define "Banach Manifold Charts"

Linearization and

Transversality
D. Zack Garza

Review
Section 8.3: The
Space of
Perturbations of H

Section 8.4 :
Linearizing the Floer Equation: The Differential of F

Recall we had $W^{1, p}(x, y)$ a completion of C^{∞}

$$
\mathcal{M}(x, y) \subset C_{\searrow}^{\infty}(x, y) \subset \mathcal{P}^{1, p}(x, y) \underset{\text { defn }}{\subset}\left\{(s, t) \xrightarrow{\varphi} \exp _{w(s, t)} Y(s, t)\right\} .
$$

where we restrict to

$$
\begin{aligned}
& -Y \in W^{1, p}\left(w^{*} T W\right), \\
& -w \in C_{\searrow}^{\infty}(x, y)
\end{aligned}
$$

Use the chosen frame $\left\{Z_{i}\right\}$ to define a chart centered at u of $\mathcal{P}^{1, p}(x, y)$ given by

$$
\begin{aligned}
\iota: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) & \longrightarrow \mathcal{P}^{1, p}(x, y) \\
\mathbf{y}=\left(y_{1}, \ldots, y_{2 n}\right) & \longmapsto \exp _{u}\left(\sum y_{i} z_{i}\right) .
\end{aligned}
$$

- Note that the derivative at zero is $\sum_{i=1}^{2 n} y_{i} Z_{i}$.

Define the Floer Map in Charts

Linearization and

Transversality

D. Zack Garza

Define and compute the differential of the composite map $\tilde{\mathcal{F}}$ defined as follows:

Review

Section 8.3: The Space of
Perturbations of H

Section 8.4:
Linearizing the Floer Equation: The Differential of F

$$
\begin{gathered}
\mathcal{P}^{1, p}(x, y) \xrightarrow{\mathcal{F}} L^{p}\left(\mathbb{R} \times S^{1} ; T W\right) \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{m}\right) \\
u \longrightarrow \frac{\partial u}{\partial s}+J(u)\left(\frac{\partial u}{\partial t}-X_{t}(u)\right)
\end{gathered}
$$

- From now on, let \mathcal{F} denote $\tilde{\mathcal{F}}$.

Add a Tangent

```
Linearization and
    Transversality
D. Zack Garza
```


Review

```
Section 8.3: The
Space of
Perturbations of
- Take the vector
\[
Y(s, t):=\left(y_{1}(s, t), \cdots\right) \in \mathbb{R}^{2 n} \subset \mathbb{R}^{m}
\]
- View \(Y\) as a vector in \(\mathbb{R}^{m}\) tangent to \(W\), given by \(Y=\sum_{i=1}^{2 n} y_{i} Z_{i}\).
- Plug \(u+Y\) into the equation for \(\mathcal{F}\), directly yielding

\section*{Add a Tangent}

\section*{Linearization and}

Transversality
D. Zack Garza

\section*{Review}

Section 8.3: The Space of
Perturbations of H

\section*{Section 8.4}

Linearizing the Floer Equation: The Differential of F
\[
\begin{array}{cccc}
\mathcal{F}(u)= & \frac{\partial u}{\partial s} & +J(u) \frac{\partial u}{\partial t} & -J(u) X_{t}(u) \\
\mathcal{F}(u+Y)= & \frac{\partial(u+Y)}{\partial s} & +J(u+Y) \frac{\partial(u+Y)}{\partial t} & -J(u+Y) X_{t}(u+Y)
\end{array}
\]

\section*{Extract Linear Part}

Extract the part that is linear in \(Y\) and collect terms:
\[
\begin{aligned}
& (d \mathcal{F})_{u}(Y) \\
& =\frac{\partial Y}{\partial s}+(d J)_{u}(Y) \frac{\partial u}{\partial t}+J(u) \frac{\partial Y}{\partial t}-(d J)_{u}(Y) X_{t}-J(u)\left(d X_{t}\right)_{u}(Y) \\
& =\left(\frac{\partial Y}{\partial s}+J(u) \frac{\partial Y}{\partial t}\right) \\
& \quad+\left((d J)_{u}(Y) \frac{\partial u}{\partial t}-(d J)_{u}(Y) X_{t}-J(u)\left(d X_{t}\right)_{u}(Y)\right)
\end{aligned}
\]
- This is a sum of two differential operators:
- One of order 1, one of order 0 (Perspective 1)
- The Cauchy-Riemann operator, and one of order zero (Perspective 2, not immediate from this form)

\section*{Leibniz Rule}
- Now compute in charts. Need a lemma:

Lemma (Leibniz Rule)
For any source space \(X\) and any maps
\[
\begin{aligned}
J: X & \operatorname{End}\left(\mathbb{R}^{m}\right) \\
Y, v: X & \mathbb{R}^{m}
\end{aligned}
\]
we have
\[
(d J)(Y) \cdot v=d(J v)(Y)-J d v(Y) .
\]

\section*{Sketch: Proof of Leibniz Rule}

\section*{Linearization and}

Transversality
D. Zack Garza

Review
Section 8.3: The
Space of
Perturbations of H

Section 8.4:
Linearizing the Floer Equation: The Differential of F

Differentiate the map
\[
\begin{aligned}
J \cdot v: & X \longrightarrow \mathbb{R}^{m} \\
x & \mapsto J(x) \cdot v(x)
\end{aligned}
\]
to obtain
\[
\begin{aligned}
& J(x+Y) v(x+y) \\
& =\left(J(x)+(d J)_{x}(Y)\right) \cdot\left(v(x)+(d v)_{x}(Y)\right)+\cdots \\
& =J(x) \cdot v(x)+J(x) \cdot(d v)_{x}(Y)+(d J)_{x}(Y) \cdot v(x) \\
& \quad+(d J)_{x}(Y) \cdot(d v)_{x}(Y)+\cdots \\
& \Longrightarrow d(J \cdot v)_{x}(Y)=(d J)_{x}(Y) \cdot v(x)+J(x) \cdot(d v)_{x}(Y) .
\end{aligned}
\]

\section*{Decompose by Order}

Using the chart \(\iota\) defined by \(\left\{Z_{i}\right\}\) to write \(Y=\sum_{i=1}^{2 n} y_{i} Z_{i}\) and thus
\[
(d \mathcal{F})_{u}(Y)=O_{0}+O_{1}
\]
where \(O_{0}\) are order 0 terms ("they do not differentiate the \(y_{i}\) ") and the \(O_{1}\) are order 1 terms:
\[
\begin{aligned}
O_{1}= & \sum_{i=1}^{2 n}\left(\frac{\partial y_{i}}{\partial s} z_{i}+\frac{\partial y_{i}}{\partial t} J(u) z_{i}\right) \\
O_{0}=\sum_{i=1}^{2 n} y_{i}( & \frac{\partial z_{i}}{\partial s}+J(u) \frac{\partial z_{i}}{\partial t}+(d J)_{u}\left(Z_{i}\right) \frac{\partial u}{\partial t} \\
& \left.-J(u)\left(d X_{t}\right)_{u} Z_{i}-(d J)_{u}\left(Z_{i}\right) X_{t}\right)
\end{aligned}
\]

\section*{Order One}
- Study \(O_{1}\) first, which (claim) reduces to
\[
O_{1}=\sum_{i=1}^{2 n}\left(\frac{\partial y_{i}}{\partial s}+J_{0} \frac{\partial y_{i}}{\partial t}\right) z_{i}=\bar{\partial}\left(y_{1}, \cdots, y_{2 n}\right)
\]
where \(J_{0}\) is the standard complex structure on \(\mathbb{R}^{2 n}=\mathbb{C}^{n}\)
- The second equality follows from the assumption that the \(Z_{i}\) are symplectic and orthonormal.
- Note that this writes \((d \mathcal{F})_{u}(Y)=O_{0}+O_{C R}\), a sum of an order zero and a Cauchy-Riemann operator.

\section*{Recap}

\section*{Review}

Section 8.3: The Space of
Perturbations of H

Section 8.4
Linearizing the
Floer Equation: The Differential of F

Note that since we've computed in charts, we have actually computed the differential of \(\mathcal{F}_{u}\) in the following diagram


\section*{Order 0 Term is Linear}

\section*{Linearization and}

Transversality
D. Zack Garza

\section*{Review}

Section 8.3: The Space of
Perturbations of H

Section 8.4 :
Linearizing the Floer Equation: The Differential of F
\[
\begin{aligned}
(d \mathcal{F})_{u}= & \left(\frac{\partial Y}{\partial s}+J(u) \frac{\partial Y}{\partial t}\right) \\
& +\left((d J)_{u}(Y) \frac{\partial u}{\partial t}-(d J)_{u}(Y) X_{t}-J(u)\left(d X_{t}\right)_{u}(Y)\right) \\
:= & \bar{\partial} Y+S Y
\end{aligned}
\]
where \(S \in C^{\infty}\left(\mathbb{R} \times S^{1} ; \operatorname{End}\left(\mathbb{R}^{n}\right)\right)\) is a linear operator of order 0 .

\section*{Order 0 Symmetry in the Limit}

\section*{Linearization and}

Transversality
D. Zack Garza

Review
Section 8.3: The Space of Perturbations of H

Section 8.4
Linearizing the Floer Equation: The Differential of F

Theorem (8.4.4, CR + Symmetric in the Limit)
If \(u\) solves Floer's equation, then
\[
(d \mathcal{F})_{u}=\bar{\partial}+S(s, t)
\]
where
- \(S\) is linear
- \(S\) tends to a symmetric operator as \(s \longrightarrow \pm \infty\), and
-
\[
\frac{\partial S}{\partial s}(s, t) \xrightarrow{s \longrightarrow \pm \infty} 0 \quad \text { uniformly in } t
\]

\section*{Proof}

Omitted \(-S\) is exactly \(O_{0}\) from before:
\[
\begin{aligned}
O_{0}=\sum_{i=1}^{2 n} y_{i} & \left(\frac{\partial Z_{i}}{\partial s}+J(u) \frac{\partial Z_{i}}{\partial t}+(d J)_{u}\left(Z_{i}\right) \frac{\partial u}{\partial t}\right. \\
& \left.-J(u)\left(d X_{t}\right)_{u} Z_{i}-(d J)_{u}\left(Z_{i}\right) X_{t}\right) \\
=\sum_{i=1}^{2 n} y_{i}( & () \frac{\partial Z_{i}}{\partial s}+(d J)_{u}\left(Z_{i}\right)\left(\frac{\partial u}{\partial t}-\left(Z_{i}\right) X_{t}\right) \\
& \left.+J(u) \frac{\partial Z_{i}}{\partial t}-J(u)\left(d X_{t}\right)_{u} Z_{i}\right)
\end{aligned}
\]
- The term in blue vanishes as \(s \longrightarrow \pm \infty\)
- Using the fact that \(u\) is a solution
- Uses \(\frac{\partial u}{\partial s} \longrightarrow 0\) uniformly (as do its derivatives?)
- Suffices to show the remaining part is symmetric in the limit

\section*{Proof}
- Write the remaining part as
\[
A\left(y_{1}, \cdots, y_{2 n}\right)=\cdots \Longrightarrow A_{i j}=A_{j i}
\]
using inner product calculations
- Uses the fact the \(Z_{i}\) needed to be chosen to be unitary and symplectic.

\section*{asdas}

Write \(O_{1}\) as a map \(Y \mapsto S \cdot Y\), so \(S \in C^{\infty}\left(\mathbb{R} \times S^{1} ; \operatorname{End}\left(\mathbb{R}^{2 n}\right)\right)\) and define the symmetric operators
\[
S^{ \pm}:=\lim _{s \longrightarrow \pm \infty} S(s, \cdot) \quad \text { respectively }
\]

\section*{Theorem}

The equation
\[
\partial_{t} Y=J_{0} S^{ \pm} Y
\]
linearizes Hamilton's equation
\[
\frac{\partial z}{\partial t}=X_{t}(z) \quad \text { at } \quad\left\{\begin{array}{ll}
x=\lim _{s \rightarrow-\infty} u & \text { for } S^{-} \\
y=\lim _{s \rightarrow \infty} u & \text { for } S^{+}
\end{array} \quad\right. \text { respectively. }
\]

\section*{Image}

Transversality
D. Zack Garza

Review

\section*{Section 8.3: The} Space of
Perturbations of H

Section 8.4
Linearizing the Floer Equation: The Differential of F

Reminder the \(x, y\) were the top/bottom pieces of the original cylinder/sphere:


\section*{Proof Sketch}
- Use the fact that \(\frac{\partial Y}{\partial t}=\left(d X_{t}\right)_{X} Y\)
- Expand \(\sum \frac{\partial y_{i}}{\partial t} Z_{i}\) in the \(Z_{i}\) basis (roughly) to write \(\frac{\partial y_{i}}{\partial t}=\sum b_{i j} y_{j}\) for some coefficients \(b_{i j}\).
- Collect terms into a matrix/operator \(B^{\mp}\) for \(x, y\) respectively to write
\[
\frac{\partial Y}{\partial t}=B^{-} \cdot Y
\]
- Write \((d \mathcal{F})_{u}=\bar{\partial}+S\) where \(S\) is zero order and symmetric in the limit

\section*{Proof Sketch}
- Get the corresponding operator \(A\) in coordinates
- Expand in a basis (roughly) as \(A\left(\sum y_{i} Z_{i}\right)=\sum s_{i j} y_{j} Z_{i}\)
- Check that \(s_{i j}= \pm b_{i \pm n, j}\)
- This implies
\[
S^{-}=-J_{0} B^{-} \quad S^{+}=-J_{0} B^{+} \Longrightarrow \frac{\partial Y}{\partial t}=J_{0} S^{ \pm} Y
\]

\section*{Final Remarks}
- Given a solution \(u\), we have a right \(\mathbb{R}\)-action, so for \(s \in \mathbb{R}\),
\[
\begin{array}{r}
u \cdot s \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right) \\
(\sigma, t) \mapsto u(\sigma+s, t)
\end{array}
\]
is also a solution, so \(\mathcal{F}(u \cdot s)=0\) for all \(s\).
In other words: we can flow solutions?

\section*{Final Remarks}

\section*{Review}

Section 8.3: The Space of
Perturbations of H

Punchline: \(\frac{\partial u}{\partial s}\) is a solution of the linearized equation, since
\[
0=\frac{\partial}{\partial s} \mathcal{F}(u \cdot s)=(d \mathcal{F})_{u}\left(\frac{\partial u}{\partial s}\right) .
\]
- Along any nonconstant solution connecting \(x\) and \(y\), \(\operatorname{dim} \operatorname{ker}(d \mathcal{F})_{u} \geq 1\).```

