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Recalling Notation
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The Floer equation is given by
Review
ou ou

— 4+ J(uv) T

Bs + grad He(u) = 0.

— Critical points of the action functional Ay are given by orbits,
i.e. contractible loops x,y € LW

— In general, x, y are two periodic orbits of H of period 1.

— Solutions are functions u € C*®(R x St; W) = C>®(R; LW)

— M(x, y) is the moduli space of solutions of the Floer equation
connecting orbits x and y.

- WP(x,y) and PLP(x, y) were completions of C°(?) with
respect to certain norms.
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The “Program” for Chapter 8
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Show that M(x, y) is a manifold of dimension u(x) — p(y)
Define M(x, y) as the inverse image of a regular value of some
map

Perturb H to apply the Sard-Smale theorem

Show the tangent maps are Fredholm operators and compute

their index.
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Perturbations of

Goal: Given a fixed Hamiltonian H € C>°(W x S;R), perturb it
(without modifying the periodic orbits) so that M(x, y) are
manifolds of the expected dimension.



Goal

Start by trying to construct a subspace C2°(H) C C™° (W x Sl;Pi)‘ the space of perturbations of H depending on a certain
sequence € = {&, }, and show it is a dense subspace
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Space of
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The Differential
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Define an Absolute Value

SR |dea: similar to how you build L2(R), define a norm ||+ ||, on C2°(H)

Transversality

51, 2o G and take the subspace of finite-norm elements.

— Let h(x, t) € C(H) denote a perturbation of H.

Section 8.3: The
Space

e e — Fix e = {ek ‘ k € ZZO} C R>9 a sequence of real numbers,
H . .

which we will choose carefully later.
— For a fixed x € W, t € R and k € Z=2°, define

’dkh(x, t)| = max{d"‘h(x, t) ‘ la| = k} .

the maximum over all sets of multi-indices o of length k.
Note: | interpret this as

okh
OXoy OXay +++ OXa,

Joe2 K —

the partial derivatives wrt the corresponding variables.



Define a Norm

Linearization ai .
e — Define a norm on C®(W x S R):

lAll = €k  sup d*h(x, t)|.
; (x.t)eW xSt | |

Perturbations of

— Since W x St is assumed compact (?), fix a finite covering
{B;} of W x S? such that

s =wxs.
i

— Choose them in such a way we obtain charts
v, : B, — B(0,1) C R?"1 (7).

— Obtain the computable form

[lA]]- :Zsk sup sup |dk(ho‘~|!,-_1)(z)|.
k>0 (x,t)eWxSti,zeB(0,1)



Define a Banach Space
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C* = {h € C®(W x SLR) ‘ 1A, < oo} C C®(W x SLR),
Section 8.3: The
Space of

Perturations of which is a Banach space (normed and complete).

— Show that the sequence {ex} can be chosen so that C2° is a
dense subspace for the C* topology, and in particular for the
C' topology.

Theorem

Such a sequence {ex} can be chosen.

Lemma

C>®(W x S R) with the C! topology is separable as a topological
space (contains a countable dense subset).




Sketch Proof of Theorem

Linearization and
Transversality

— By the lemma, produce a sequence {f,} C C®°(W x S1;R)
SEEiER B3 Tie dense for the C! topology.

Space of
— Using the norm on C"(W x S%;R) for the f,, define

Perturbations of

1
E—:Z”max{”fkﬂ ‘ kgn} — e,sup|dfi(x, )] < 27"
n

which is summable.

Why does this imply density? | don't know.

11



Modified Theorem

Linearization and The next proposition establishes a version of this theorem with

Transversality

B ek G compact support:

Theorem

Section 8.3: The

Eo  [or any (x,t) C U € W x St) there exists a V. C U such that every
erturbations of . .

h e C®(W x S, R) can be approximated in the C* topology by
functions in CZ° supported in U.

Then fix a time-dependent Hamiltonian Hy with nondegenerate
periodic orbits and consider

{h € C°(Ho) | h(x,t) =0 insome U D the 1-periodic orbits of Ho}
Then supp(h) is “far” from Per(Hp), so
|lhll, < 1 = Per(Ho + h) = Per(Hp)

and are both nondegenerate.
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Choose m > n = dim(W) and embed TW — R™ to identify
tangent vectors (such as Z;, tangents to W along v or in a
neighborhood B of u) with actual vectors in R™.

cecron o Why? Bypasses differentiating vector fields and the Levi-
Linearizing the Cevita connection.

Floer Equation
The Differential

o We can then identify

imF=C®(Rx SHR™) or LP(R xS, W),

and we seek to compute its differential d.F.
We've just replaced the codomain here.
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Definitions

Linearization and

Transversality Recall that

— X,y are contractible loops in W that are nondegenerate critical
points of the action functional Ay,
— u € M(x,y) C C2 denotes a fixed solution to the Floer

loc
equation,
Unearzing the — G (x.y) C {ue C®(R x S'; W)} is the set of smooth
Floer Equation . . . s
The Differenti solutions v : R x ST — W satisfying some conditions:

of F

lim wu(s, t) =x(t), lim u(s, t)=y(t)

S——00 S—0o0

Ou Ou
and (s,t)‘, ’8

- L(5. £) = Xu(w)| ~ exp(ls))



Compactify to Sphere
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Fix a solution

u€E M(x,y) C G2(R x St W).

Section 8.4:
Linearizing the

Floer Equation We lift each solution to a map
The Differential
of F

0.5 —w
in the following way:

The loops x, y are contractible, so they bound discs. So we extend
by pushing these discs out slightly:

16



Lift to 2-Sphere
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ue CO(S* xR, W)

Section 8.4:
Linearizing the
Floer Equation
The Differential
of F




Trivial the Pullback

Linearization and From earlier in the book, we have
Assumption (6.22):

For every w € C>(S?, W) there exists a symplectic trivialization of
the fiber bundle w*TW, i.e. (ci(TW), m(W)) = 0 where ¢
denotes the first Chern class of the bundle TW.

Note: | don't know what this pairing is. The top Chern class is the Euler class (obstructs nowhere zero sections)
and are defined inductively:
Floer Equation

The Differential n 2
of F c1(TW) = e(N(TW)) € HS(W; Z)

Assumption is satisfied when all maps S2 — W lift to B3 = (W) =0.

We have a pullback that is a symplectic fiber bundle:

rTW 45 TW

L=
2L w



Choose a Frame

Linearization and
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— Using the assumption, trivialize the pullback &* TW to obtain
an orthonormal unitary frame

{Z}Y" C TysnW

Section 8.4:

Linearizing the

Floer Equation Where

The Differential 2
o — The frame depends smoothly on (s, t) € 52,
— lims— Zj exists for each /.

o B2 B?
3 B2 Beat r\Z,S_E)OOO for each i

Claim: such trivializations exist, “using cylinders near the spherical
caps in the figure” .

19



Define “Banach Manifold Charts”

Linearization and Reca” we had Wle(X'y) a Complet|on Of COO

Transversality

M(x.y) € C2(x,y) € P(x,y) € {(5.8) % expuger Y(5.8)}

where we restrict to

Section 8.4:

Linearizing the - Y c Wl’p( W* TW),
Floer Eguat\on e

The Differential - w E C\( (X, _y)

of F
Use the chosen frame {Z;} to define a chart centered at u of
PLP(x,y) given by

L WHP (R x ST R — PLP(x, y)
Y=, y2n) — exp, (Z y/Z,-) :

— Note that the derivative at zero is 2,2:"1 YiZ;.
20



Define the Floer Map in Charts

Linearization and
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Define and compute the differential of the composite map F
defined as follows:

A

Section 8.4:

Linearizing the
Floer Equation . .
The Differential -
of F A

PLo(x,y) —E 1P (R x S, TW) —— [P (R x SL;R™)

u F % 4 J(u) (2 — Xe(u))

— From now on, let F denote F.



Add a Tangent
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— Take the vector

Section 8.4: on m
Linearizing tt — PN

B Y(st)=M(st) ) eRTCR
The Differential
of F

— View Y as a vector in R™ tangent to W, given by Y = Z, 1 YiZi.

— Plug v+ Y into the equation for F, directly yielding

22



Add a Tangent
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ou
ot

du
Os

+J(u) —J(u)Xe(u)

Section 8.4:
Linearizing the

Floer Egu?twig
OTfhED\tFeren | f(U"_ Y) — % +J(U+ Y)% _J(u —|— Y)Xt(u + Y)

N
w



Extract Linear Part

Linearization and

Transversality Extract the part that is linear in Y and collect terms:

(dF)u(Y)
= T (@Y ) ge () G ()uY)Xe = J(0) (@), (Y)
Section 8.4: a Y 8 Y
o | ((’5‘5 + (u)6t>
OTfhE Differential au
(@015 ~ (@0 - @) (@), (1)

— This is a sum of two differential operators:
— One of order 1, one of order 0 (Perspective 1)

not immediate from this form)

— The Cauchy-Riemann operator, and one of order zero (Perspective 2,




Leibniz Rule
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— Now compute in charts. Need a lemma:

Lemma (Leibniz Rule)

cection 8a For any source space X and any maps
ection ©.4:
Linearizing the

The Differenta J: X — End(R™)
of F
Y, v:X —R"

we have

(dI)(Y) - v = d(Iv)(Y) — Jdv(Y).



Sketch: Proof of Leibniz Rule

Differentiate the map

Jov:X—R"
x = J(x) - v(x)

to obtain

en J(x+ Y)v(x+y)

= (J(x) + (d)«(Y)) - (v(x) + (dv)«(Y)) + - -

= J(x) - v(x) + J(x) - (dv)x(Y) + (d))«(Y) - v(X)
+ (d)x(Y) - (dv)x(Y) + -

= d(J-V)x(Y) = (d)x(Y) - v(x) + J(x) - (dV)x(Y).



Decompose by Order

Linearization and Using the chart ¢ defined by {Z;} to write Y = 2,2:"1 yiZ; and thus

Transversality

(dF)u(Y) = 0o+ O1

where Op are order 0 terms ( “they do not differentiate the y;") and
the O; are order 1 terms:

Section 8.4:
Linearizing the
Floer Eguat\on ay ay
OTfhE Differential O, = E <6 ’Z + 'J(U)Z)
i=1
2n
07z 0Z; ou
;:1 y/( B u) ot + (dJ)u( ')at

— J(u)(dXt)uZ; = (dS)u(Z1)X )



Order One

Linearization and
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— Study O first, which (claim) reduces to

oy; oy _
Sect\oy\ 8.4: Ol Z ( 8 JO at - a(y]_, : ,YQn).
Linearizing the =1
Floer Equation
The Differential .
il where Jy is the standard complex structure on R?" = C”

— The second equality follows from the assumption that the Z;
are symplectic and orthonormal.

— Note that this writes (dF),(Y) = Og + Ocg, a sum of an
order zero and a Cauchy-Riemann operator.

N
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Section 8.4:
Linearizing the
Floer

The Differential
of F

Note that since we've computed in charts, we have actually
computed the differential of F, in the following diagram

WhP(R x LR — L P2y

U o




Order O Term is Linear

Linearization and
Transversality

oY oY
Section 8.4: (df)u N <6S + J(U) at)
o du
OTfhED\fFerent\a + (dJ)u(Y)a - (dJ)u(Y)Xt - J(U) (dXt)u(Y)

=0Y + SY

where S € C*®(R x S;End(R")) is a linear operator of order 0.



Order 0 Symmetry in the Limit
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ot eE Theorem (8.4.4, CR + Symmetric in the Limit)

If u solves Floer's equation, then

(dF), =0+ S(s, t)

Section 8.4:

Linearizing the

Floer Equation Where
The Differential

ofF — S is linear
— S tends to a symmetric operator as s —» +oo, and

oS 0o . .
g(s, t) S50 uniformly in t
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Section 8.4:
Linearizing the
Floer Equation
The Differential
of F

Omitted — S is exactly O from before:

2n
oZ; oZ; ou
O =) yl< + ()5, + (d)u(Z) 5,
i=1

— J(u)(dXt)uZ; = (d))u(Z1)X )

- Zy,< + () (Z)( - (@)x)

- J(u)(dXt)uZ,).

— The term in blue vanishes as s — £oco

— Using the fact that v is a solution
— Uses 6“ — 0 uniformly (as do its derivatives?)

— Suffices to show the remaining part is symmetric in the limit




Linearization and
Transversality

— Write the remaining part as

Ay, oo yan) =0 = Aj = Aji

Section 8.4:
Linearizing the
Floer Equation . . .
The Differenta using inner product calculations
— Uses the fact the Z; needed to be chosen to be unitary and
symplectic.

w
[N



R \\ritc O, asamap Y > S-Y,s0S ¢ C*®(R x S'; End(R?")) and
D. Zack Garz define the symmetric operators

St = lim S(s, -) respectively
s—rFo0
Cmeariing the Theorem
Floer Equation
The Differential The equat/on
of F
— +
0tY = JSTY

linearizes Hamilton's equation

0z x=limg_, u forS- )
— = . respectively.
ot y=lims_,oou for ST

Xe(z) at {
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Section 8.4:
Linearizing the
Floer Equation
The Differential
of F

Image

Reminder the x, y were the top/bottom pieces of the original
cylinder/sphere:




Proof Sketch

Linearization and
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Use the fact that &% = (dX¢)x Y
— Expand 3" 24 Z; in the Z; basis (roughly) to write 24 = 3" b;y;
for some coefficients b;;.

Unearzing the — Collect terms into a matrix/operator B for x, y respectively to
Floer Jatior .
The DEwgr;fetn‘z;\ write
of F
oY
_— = Bi . Y
ot

— Write (dF), = 0+ S where S is zero order and symmetric in
the limit



Proof Sketch

Linearization and
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Get the corresponding operator A in coordinates
Expand in a basis (roughly) as A(>"viZi) = > sy Zi

Section 8.4:

Linearizing the — Check that Sl_'j — j:bi:tn_j
Floer Equation . . . h
OTfhE Differential — Th|S |mp|leS
oY
ST =-UhB" St=-UB" = — =4Sty

ot

w
~l



Final Remarks
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— Given a solution u, we have a right R-action, so for s € R,

Section 8.4: u-sec COO(R X Sl; W)

Linearizing the

Floer Equation

The Differential (U, t) — U(O’ + S, t)
of F

is also a solution, so F(u-s) =0 for all s.

In other words: we can flow solutions?

@



Final Remarks

Linearization and
Transversality

Punchline:% is a solution of the linearized equation, since

Section 8.4:

Linearizing the 8 au
Floer Equation O — 7?( u- 5) — (df) ()
The Differential u '
Of; ifferentia as as

— Along any nonconstant solution connecting x and y,
dimker(dF), > 1.
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