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Recalling Notation

– The Floer equation is given by

∂u

∂s
+ J(u)

∂u

∂t
+ grad Ht (u) = 0.

– Critical points of the action functional AH are given by orbits,

i.e. contractible loops x , y ∈ LW

– In general, x , y are two periodic orbits of H of period 1.

– Solutions are functions u ∈ C∞(R× S1; W ) = C∞(R;LW )

– M(x , y) is the moduli space of solutions of the Floer equation

connecting orbits x and y .

– W 1,p(x , y) and P1,p(x , y) were completions of C∞(?) with

respect to certain norms.
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The “Program” for Chapter 8

– Show that M(x , y) is a manifold of dimension µ(x)− µ(y)
– Define M(x , y) as the inverse image of a regular value of some

map

– Perturb H to apply the Sard-Smale theorem

– Show the tangent maps are Fredholm operators and compute

their index.
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Goal

Goal: Given a fixed Hamiltonian H ∈ C∞(W × S1;R), perturb it

(without modifying the periodic orbits) so that M(x , y) are

manifolds of the expected dimension.
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Goal

Start by trying to construct a subspace C∞ε (H) ⊂ C∞(W × S1 ;R), the space of perturbations of H depending on a certain
sequence ε =

{
εk

}
, and show it is a dense subspace.
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Define an Absolute Value

Idea: similar to how you build L2(R), define a norm ‖ · ‖ε on C∞ε (H)
and take the subspace of finite-norm elements.

– Let h(x, t) ∈ C∞ε (H) denote a perturbation of H.

– Fix ε =
{
εk

∣∣∣ k ∈ Z≥0
}
⊂ R>0 a sequence of real numbers,

which we will choose carefully later.

– For a fixed x ∈W , t ∈ R and k ∈ Z≥0, define∣∣dk h(x, t)
∣∣ = max

{
dαh(x, t)

∣∣∣ |α| = k
}
,

the maximum over all sets of multi-indices α of length k .
Note: I interpret this as

dα1,α2,··· ,αk h =
∂k h

∂xα1 ∂xα2 · · · ∂xαk

,

the partial derivatives wrt the corresponding variables.
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Define a Norm

– Define a norm on C∞(W × S1;R):

‖h‖” =
∑
k≥0

εk sup
(x ,t)∈W×S1

∣∣dk h(x , t)
∣∣ .

– Since W × S1 is assumed compact (?), fix a finite covering

{Bi} of W × S1 such that⋃
i

B◦i = W × S1.

– Choose them in such a way we obtain charts

Ψi : Bi −→ B(0, 1) ⊂ R2n+1 (?).

– Obtain the computable form

‖h‖” =
∑
k≥0

εk sup
(x ,t)∈W×S1

sup
i ,z∈B(0,1)

∣∣dk (h ◦Ψ−1
i )(z)

∣∣.
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Define a Banach Space

– Define

C∞ε =
{

h ∈ C∞(W × S1;R)
∣∣∣ ‖h‖ε <∞} ⊂ C∞(W × S1;R),

which is a Banach space (normed and complete).

– Show that the sequence {εk} can be chosen so that C∞ε is a

dense subspace for the C∞ topology, and in particular for the

C 1 topology.

Theorem

Such a sequence {εk} can be chosen.

Lemma

C∞(W × S1;R) with the C 1 topology is separable as a topological

space (contains a countable dense subset).
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Sketch Proof of Theorem

– By the lemma, produce a sequence {fn} ⊂ C∞(W × S1;R)
dense for the C 1 topology.

– Using the norm on C n(W × S1;R) for the fn, define

1

εn
= 2n max

{
‖fk‖

∣∣∣ k ≤ n
}

=⇒ εn sup |dnfk (x , t)| ≤ 2−n

which is summable.

�
Why does this imply density? I don’t know.
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Modified Theorem

The next proposition establishes a version of this theorem with

compact support:

Theorem

For any (x, t) ⊂ U ∈W × S1) there exists a V ⊂ U such that every

h ∈ C∞(W × S1;R) can be approximated in the C 1 topology by

functions in C∞ε supported in U.

Then fix a time-dependent Hamiltonian H0 with nondegenerate

periodic orbits and consider{
h ∈ C∞ε (H0)

∣∣∣ h(x , t) = 0 in some U ⊇ the 1-periodic orbits of H0

}
Then supp(h) is “far” from Per(H0), so

‖h‖ε � 1 =⇒ Per(H0 + h) = Per(H0)

and are both nondegenerate.
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Equation: The Differential of F
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Goal

Choose m > n = dim(W ) and embed TW ↪→ Rm to identify

tangent vectors (such as Zi , tangents to W along u or in a

neighborhood B of u) with actual vectors in Rm.

Why? Bypasses differentiating vector fields and the Levi-

Cevita connection.

We can then identify

im F = C∞(R× S1;Rm) or Lp(R× S1; W ),

and we seek to compute its differential dF .

We’ve just replaced the codomain here.
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Definitions

Recall that

– x , y are contractible loops in W that are nondegenerate critical

points of the action functional AH ,

– u ∈M(x , y) ⊂ C∞loc denotes a fixed solution to the Floer

equation,

– C↘(x , y) ⊂
{

u ∈ C∞(R × S1; W )
}

is the set of smooth

solutions u : R× S1 −→W satisfying some conditions:

lim
s−→−∞

u(s, t) = x(t), lim
s−→∞

u(s, t) = y(t)

and

∣∣∣∣∂u

∂t
(s, t)

∣∣∣∣, ∣∣∣∣∂u

∂t
(s, t)− XH(u)

∣∣∣∣ ∼ exp(|s|)
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Compactify to Sphere

Fix a solution

u ∈M(x , y) ⊂ C∞loc(R× S1; W ).

We lift each solution to a map

ũ : S2 −→W

in the following way:

The loops x , y are contractible, so they bound discs. So we extend

by pushing these discs out slightly:
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Lift to 2-Sphere

u ∈ C∞(S1 × R; W ) 7→ ũ ∈ C∞(S2; W )
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Trivial the Pullback

From earlier in the book, we have

Assumption (6.22):

For every w ∈ C∞(S2,W ) there exists a symplectic trivialization of

the fiber bundle w ∗TW , i.e. 〈c1(TW ), π2(W )〉 = 0 where c1

denotes the first Chern class of the bundle TW .
Note: I don’t know what this pairing is. The top Chern class is the Euler class (obstructs nowhere zero sections)
and are defined inductively:

c1(TW ) = e(Λn (TW )) ∈ H2(W ;Z)

Assumption is satisfied when all maps S2 −→W lift to B3 ⇐⇒ π2(W ) = 0.

We have a pullback that is a symplectic fiber bundle:

ũ∗TW TW

S2 W

dũ

y
ũ

18
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Choose a Frame

– Using the assumption, trivialize the pullback ũ∗TW to obtain

an orthonormal unitary frame

{Zi}2n
i=1 ⊂ Tu(s,t)W

where
– The frame depends smoothly on (s, t) ∈ S2,

– lims−→∞ Zi exists for each i .

–

∂

∂s
,

∂2

∂s2
,

∂2

∂s ∂t
y Zi

s−→±∞−→ 0 for each i

Claim: such trivializations exist, “using cylinders near the spherical

caps in the figure”.
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Define “Banach Manifold Charts”

Recall we had W 1,p(x , y) a completion of C∞

M(x , y) ⊂ C∞↘ (x , y) ⊂ P1,p(x , y) ⊂
defn

{
(s, t)

ϕ−→ expw(s,t) Y (s, t)
}
.

where we restrict to

– Y ∈W 1,p(w ∗TW ),

– w ∈ C∞↘ (x , y)

Use the chosen frame {Zi} to define a chart centered at u of

P1,p(x , y) given by

ι : W 1,p
(
R× S1;R2n

)
−→ P1,p(x , y)

y = (y1, . . . , y2n) 7−→ expu

(∑
yi Zi

)
.

– Note that the derivative at zero is
∑2n

i=1 yi Zi .
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Define the Floer Map in Charts

Define and compute the differential of the composite map F̃
defined as follows:

P1,p(x , y) Lp
(
R× S1; TW

)
Lp
(
R× S1;Rm

)

u ∂u
∂s + J(u)

(
∂u
∂t − Xt (u)

)
F

F̃

F̃

– From now on, let F denote F̃ .
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Add a Tangent

– Take the vector

Y (s, t) := (y1(s, t), · · · ) ∈ R2n ⊂ Rm

– View Y as a vector in Rm tangent to W , given by Y =
∑2n

i=1 yi Zi .

– Plug u + Y into the equation for F , directly yielding
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Add a Tangent

F(u) = ∂u
∂s +J(u) ∂u

∂t −J(u)Xt (u)

F(u + Y ) = ∂(u+Y )
∂s +J(u + Y ) ∂(u+Y )

∂t −J(u + Y )Xt (u + Y )
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Extract Linear Part

Extract the part that is linear in Y and collect terms:

(dF)u(Y )

=
∂Y

∂s
+ (dJ)u(Y )

∂u

∂t
+ J(u)

∂Y

∂t
− (dJ)u(Y )Xt − J(u) (dXt )u (Y )

=

(
∂Y

∂s
+ J(u)

∂Y

∂t

)
+

(
(dJ)u(Y )

∂u

∂t
− (dJ)u(Y )Xt − J(u) (dXt )u (Y )

)
.

– This is a sum of two differential operators:
– One of order 1, one of order 0 (Perspective 1)

– The Cauchy-Riemann operator, and one of order zero (Perspective 2,

not immediate from this form)
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Leibniz Rule

– Now compute in charts. Need a lemma:

Lemma (Leibniz Rule)

For any source space X and any maps

J : X −→ End(Rm)

Y , v : X −→ Rm

we have

(dJ)(Y ) · v = d(Jv)(Y )− Jdv(Y ).
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Sketch: Proof of Leibniz Rule

Differentiate the map

J · v : X −→ Rm

x 7→ J(x) · v(x)

to obtain

J(x + Y )v(x + y)

= (J(x) + (dJ)x (Y )) · (v(x) + (dv)x (Y )) + · · ·
= J(x) · v(x) + J(x) · (dv)x (Y ) + (dJ)x (Y ) · v(x)

+ (dJ)x (Y ) · (dv)x (Y ) + · · ·

=⇒ d(J · v)x (Y ) = (dJ)x (Y ) · v(x) + J(x) · (dv)x (Y ).

�
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Decompose by Order

Using the chart ι defined by {Zi} to write Y =
∑2n

i=1 yi Zi and thus

(dF)u(Y ) = O0 + O1

where O0 are order 0 terms (“they do not differentiate the yi ”) and

the O1 are order 1 terms:

O1 =

2n∑
i=1

(
∂yi

∂s
Zi +

∂yi

∂t
J(u)Zi

)

O0 =

2n∑
i=1

yi

(
∂Zi

∂s
+ J(u)

∂Zi

∂t
+ (dJ)u(Zi )

∂u

∂t

− J(u)(dXt )uZi − (dJ)u(Zi )Xt

)
.
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Order One

– Study O1 first, which (claim) reduces to

O1 =

2n∑
i=1

(
∂yi

∂s
+ J0

∂yi

∂t

)
Zi = ∂(y1, · · · , y2n).

where J0 is the standard complex structure on R2n = Cn

– The second equality follows from the assumption that the Zi

are symplectic and orthonormal.

– Note that this writes (dF)u(Y ) = O0 + OCR , a sum of an

order zero and a Cauchy-Riemann operator.
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Recap

Note that since we’ve computed in charts, we have actually

computed the differential of Fu in the following diagram

So we’ve technically computed (dFµ)0.
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Order 0 Term is Linear

(dF)u =

(
∂Y

∂s
+ J(u)

∂Y

∂t

)
+

(
(dJ)u(Y )

∂u

∂t
− (dJ)u(Y )Xt − J(u) (dXt )u (Y )

)

:= ∂Y + SY

where S ∈ C∞(R× S1; End(Rn)) is a linear operator of order 0.
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Order 0 Symmetry in the Limit

Theorem (8.4.4, CR + Symmetric in the Limit)

If u solves Floer’s equation, then

(dF)u = ∂ + S(s, t)

where

– S is linear

– S tends to a symmetric operator as s −→ ±∞, and

–

∂S

∂s
(s, t)

s−→±∞−→ 0 uniformly in t
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Proof

Omitted – S is exactly O0 from before:

O0 =

2n∑
i=1

yi

(
∂Zi

∂s
+ J(u)

∂Zi

∂t
+ (dJ)u(Zi )

∂u

∂t

− J(u)(dXt )uZi − (dJ)u(Zi )Xt

)

=

2n∑
i=1

yi

(
)
∂Zi

∂s
+ (dJ)u(Zi )

(
∂u

∂t
− (Zi )Xt

)

+ J(u)
∂Zi

∂t
− J(u)(dXt )uZi

)
.

– The term in blue vanishes as s −→ ±∞
– Using the fact that u is a solution

– Uses ∂u
∂s
−→ 0 uniformly (as do its derivatives?)

– Suffices to show the remaining part is symmetric in the limit
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Proof

– Write the remaining part as

A(y1, · · · , y2n) = · · · =⇒ Aij = Aji

using inner product calculations

– Uses the fact the Zi needed to be chosen to be unitary and

symplectic.

�
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asdas

Write O1 as a map Y 7→ S · Y , so S ∈ C∞(R× S1; End(R2n)) and

define the symmetric operators

S± := lim
s−→±∞

S(s, · ) respectively

Theorem

The equation

∂t Y = J0S±Y

linearizes Hamilton’s equation

∂z

∂t
= Xt (z) at

{
x = lims−→−∞ u for S−

y = lims−→∞ u for S+
respectively.
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Image

Reminder the x , y were the top/bottom pieces of the original

cylinder/sphere:
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Proof Sketch

– Use the fact that ∂Y
∂t = (dXt )x Y

– Expand
∑ ∂yi

∂t Zi in the Zi basis (roughly) to write ∂yi

∂t =
∑

bij yj

for some coefficients bij .

– Collect terms into a matrix/operator B∓ for x , y respectively to

write

∂Y

∂t
= B− · Y

– Write (dF)u = ∂ + S where S is zero order and symmetric in

the limit
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Proof Sketch

– Get the corresponding operator A in coordinates

– Expand in a basis (roughly) as A(
∑

yi Zi ) =
∑

sij yj Zi

– Check that sij = ±bi±n,j

– This implies

S− = −J0B− S+ = −J0B+ =⇒
∂Y

∂t
= J0S±Y
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Final Remarks

– Given a solution u, we have a right R-action, so for s ∈ R,

u · s ∈ C∞(R× S1; W )

(σ, t) 7→ u(σ + s, t)

is also a solution, so F(u · s) = 0 for all s.

In other words: we can flow solutions?
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Final Remarks

Punchline: ∂u
∂s is a solution of the linearized equation, since

0 =
∂

∂s
F(u · s) = (dF)u

(
∂u

∂s

)
.

– Along any nonconstant solution connecting x and y ,

dim ker(dF)u ≥ 1.
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