Section 8.6: The Solutions of the Floer Equation are "Somewhere Injective".

D. Zack Garza
Thursday $14^{\text {th }}$ May, 2020

Contents

0.1 Outline 2
0.2 Outline of Statements 2
0.3 Notation 3
0.4 Goal 1: Discrete Critical Points and Dense Regular Points 4
0.5 8.6.1: Transform to Cauchy-Riemann 5
0.6 Splitting the Main Theorem 9
0.7 Regular Points Are Open 10
0.8 Sequence is Bounded 11
0.9 Reaching a Contradiction 12
1 Goal 2: Continuation Principle 14

0.1 Outline

Two Goals:

1. Critical points are discrete and regular points are open/dense.
2. The continuation principle (used elsewhere, see diagram later)

- Idea: For \mathbb{C}, a holomorphic function with all derivatives vanishing on a line is identically zero.

0.2 Outline of Statements

What we'll try to prove:

- 8.6.1: Reduction to Cauchy-Riemann equations on \mathbb{R}^{2} (short)
- 8.6.3 (Partial): $R(v)$ is open.

Statements of "big" theorems for the chapter, in reverse order of implication:

- 8.1.5: $(d \mathcal{F})_{u}$ is a Fredholm operator of index $\mu(x)-\mu(y)$.
- 8.1.4: $\Gamma: W^{1, p} \times C_{\varepsilon}^{\infty} \longrightarrow L^{p}$ has a continuous right-inverse and is surjective
- 8.1.3: $\mathcal{Z}(x, y, J)$ is a Banach manifold
- 8.1.1: For $h \in \mathcal{H}_{\text {reg }}, H_{0}+h$ is nondegenerate and $(d \mathcal{F})_{u}$ is surjective for every $u \in$ $\mathcal{M}\left(H_{0}+h, J\right)$.
- 8.1.2: For $h \in \mathcal{H}_{\text {reg }}$ and all contractible orbits x, y of $H_{0}, \mathcal{M}\left(x, y, H_{0}+h\right)$ is a manifold of dimension $\mu(x)-\mu(y)$.

0.3 Notation

- The Floer equation and its linearization:

$$
\begin{aligned}
\mathcal{F}(u) & =\frac{\partial u}{\partial s}+J \frac{\partial u}{\partial t}+\operatorname{grad}_{u}(H)=0 \\
(d \mathcal{F})_{u}(Y) & =\frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S \cdot Y \\
Y & \in u^{*} T W, S \in C^{\infty}\left(\mathbb{R} \times S^{1} ; \operatorname{End}\left(\mathbb{R}^{2 n}\right)\right) .
\end{aligned}
$$

- $X(t, u): S^{1} \times W \longrightarrow W$ is a time-dependent periodic vector field on $\mathbb{R}^{2 n}, J$ an almost-complex structure, both smooth
- $u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)$ is a solution to the equation

$$
\frac{\partial u}{\partial s}+J(t, u)\left(\frac{\partial u}{\partial t}-X(t, u)\right)=0
$$

Note: not sure why we've replaced $\operatorname{grad}_{u}(H)$ with $-J(t, u) \cdot X(t, u)$ in the Floer equation.

- $C(u)$ the set of critical points and $R(u)$ the set of regular points of u :

$$
\begin{aligned}
& \left(s_{0}, t_{0}\right) \in C(u) \subseteq \mathbb{R} \times S^{1} \Longleftrightarrow \frac{\partial u}{\partial s}\left(s_{0}, t_{0}\right)=0 \\
& \left(s_{0}, t_{0}\right) \in R(u) \subset \mathbb{R} \times S^{1} \Longleftrightarrow\left(s_{0}, t_{0}\right) \notin C(u) \& s \neq s_{0} \Longrightarrow u\left(s_{0}, t_{0}\right) \neq u\left(s, t_{0}\right)
\end{aligned}
$$

0.4 Goal 1: Discrete Critical Points and Dense Regular Points

Goal 1: prove the following theorem
Theorem 0.1(8.5.4).

1. $C(u)$ is discrete and
2. $R(u) \hookrightarrow \mathbb{R} \times S^{1}$ is open and dense.

Outline of the proof:

- Prove 8.6.1: Reduction to CR
- (direct, short) which transforms the Floer(?) equation

$$
\frac{\partial u}{\partial s}+J(t, u)\left(\frac{\partial u}{\partial t}-X(t, u)\right)=0 \quad \text { where } \quad u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)
$$

to a Cauchy-Riemann equation on \mathbb{R}^{2} :

$$
\frac{\partial v}{\partial s}+J \frac{\partial v}{\partial t}=0 \quad \text { where } \quad v \in C^{\infty}\left(\mathbb{R}^{2} ; W\right)
$$

- Reduce 8.5.4 (Discrete/Open/Dense) to two statements
- 8.6.2: $C(v)$ (and thus $C(u)$) is discrete Proved later using 8.6.8: Similarity Principle.
- 8.6.3 (Injectivity): If v is a smooth periodic solution of CR with $\frac{\partial v}{\partial s} \neq 0$ then $R(v) \subseteq \mathbb{R}^{2}$ is open and dense.
- Prove 8.6.3 (Injectivity)
- Show open (easier)
- Show dense (delicate!)
- Prove 8.6.8: Similarity Principle
- Use similarity principle to prove 8.6.6: Continuation Principle. Yields theorem.

0.5 8.6.1: Transform to Cauchy-Riemann

Proposition 0.2(8.6.1, Transform to CR-equation on R2).
If u is a solution to the following equation:

$$
\frac{\partial u}{\partial s}+J(t, u)\left(\frac{\partial u}{\partial t}-X(t, u)\right)=0
$$

Then there exists

- An almost complex structure J_{1}
- A diffeomorphism φ on W ?
- A map $v \in C^{\infty}\left(\mathbb{R}^{2} ; W\right)$
satisfying

$$
\frac{\partial v}{\partial s}+J_{1}(v) \frac{\partial v}{\partial t}=0
$$

where

1. $v(s, t+1)=\varphi(v(s, t))$
2. $C(u)=C(v)$, i.e. u, v have the same critical points
3. $R(u)=R(v)$.

Proof

- Recall the vector field was defined as $X(t, u): S^{1} \times W \longrightarrow W$.
- Since $W \times S^{1}$ is compact, the flow ψ_{t} of X_{t} is defined on all of W
- We thus have a map $\psi_{t}: W \longrightarrow W$ such that

$$
\frac{\partial}{\partial t} \psi_{t}=X_{t} \circ \psi_{t}, \quad \psi_{0}=\mathrm{id}
$$

- Define the (important!) map

$$
v(s, t):=\left(\psi_{t}^{-1} \circ u\right)(s, t)
$$

- Since $W \times S^{1}$ is compact, the flow ψ_{t} of X_{t} is defined on all of W
- We thus have a map $\psi_{t}: W \longrightarrow W$ such that

$$
\frac{\partial}{\partial t} \psi_{t}=X_{t} \circ \psi_{t}, \quad \psi_{0}=\mathrm{id}
$$

- Define the (important!) map

$$
v(s, t):=\left(\psi_{t}^{-1} \circ u\right)(s, t)
$$

- We can then compute

$$
\begin{aligned}
\frac{\partial u}{\partial s} & =\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial s}\right) \\
\frac{\partial u}{\partial t} & =\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial t}\right)+X_{t}(u) .
\end{aligned}
$$

- Attempt at explanation: rearrange, use chain rule, and known derivative of ψ_{t} :

$$
\begin{aligned}
u(s, t)=\left(\psi_{t} \circ v\right)(s, t) & \Longrightarrow \frac{\partial u}{\partial s}(s, t)=\frac{\partial \psi_{t}}{\partial s}(v(s, t)) \cdot \frac{\partial v}{\partial s}(s, t) \\
? & \Longrightarrow \frac{\partial u}{\partial s}=\left(d \psi_{t}\right) \cdot\left(\frac{\partial v}{\partial s}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial u}{\partial t}(s, t) & =\frac{\partial \psi_{t}}{\partial t}(v(s, t)) \cdot \frac{\partial v}{\partial t}(s, t) \\
& =\left(X_{t} \circ \psi_{t}\right)(v(s, t)) \cdot \frac{\partial v}{\partial t}(s, t) \\
& =\left(X_{t} \circ \psi_{t} \circ v\right)(s, t) \cdot \frac{\partial v}{\partial t}(s, t) \\
& =X_{t}(u(s, t)) \cdot \frac{\partial v}{\partial t}(s, t) \\
& =X_{t}(u)\left(\frac{\partial v}{\partial t}\right) \cdots ? ? ? ?
\end{aligned}
$$

Note sure how to relate partial derivatives $\frac{\partial}{\partial .} \psi_{t}$ to differential $d \psi_{t}$. Not sure why we're picking up addition in the t derivative.

- Given that result, we can compute,

$$
\begin{array}{rlr}
0 & =\frac{\partial u}{\partial s}+J\left(\frac{\partial u}{\partial t}-X_{t}(u)\right) & \text { since } u \text { is a solution } \\
& =\frac{\partial u}{\partial s}+J \frac{\partial u}{\partial t}-J X_{t}(u) & \text { expanding terms } \\
& =\left(\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial s}\right)\right)+J\left(\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial t}\right)+X_{t}(u)\right)-J X_{t}(u) & \text { by substitution } \\
& =\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial s}\right)+J(u)\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial t}\right) & \text { cancelling } \\
& =\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial s}+\left(d \psi_{t}\right)^{-1} J(u)\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial t}\right)\right) & \text { collecting terms } \\
& =\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial s}+\psi_{t}^{*} J(v)\right) & \text { by definition. }
\end{array}
$$

- Conclude that v is a solution of

$$
\frac{\partial v}{\partial s}+\psi_{t}^{\star} J(v) \frac{\partial v}{\partial t}=0
$$

- Set $\varphi:=\psi_{1}$ and $J_{1}(v):=\psi_{1}^{*} J(v)$ to obtain

$$
\frac{\partial v}{\partial s}+J_{1}(v) \frac{\partial v}{\partial t}=0
$$

of which v is still a solution

- Property 1, Periodicity: attempt to check directly, using $\psi_{t+1}=\psi_{t} \circ \psi_{1}$:

$$
\begin{aligned}
v(s, t+1) & :=\left(\psi_{t}^{-1} \circ u\right)(s, t+1) \\
? & =\left(\psi_{1} \circ \psi_{t}^{-1} \circ u\right)(s, t) \\
& =\psi_{1}(v(s, t)) \\
& :=\varphi(v(s, t)) .
\end{aligned}
$$

Just a guess. If the 1-parameter group is commutative then proving $\varphi(v(s, t-1))=v(s, t)$ might work.

- Recall definition of v :

$$
v(s, t):=\psi_{t}^{-1}(u(s, t))
$$

- Verifying that $C(v)=C(u)$: not spelled out. Property of flow?
- Need to check that

$$
\frac{\partial u}{\partial s}\left(s_{0}, t_{0}\right)=0 \Longrightarrow \frac{\partial v}{\partial s}\left(s_{0}, t_{0}\right)=0
$$

where

$$
\frac{\partial u}{\partial s}=\left(d \psi_{t}\right)\left(\frac{\partial v}{\partial s}\right)
$$

- How: ?
- Verifying that $R(v)=R(u)$
- Need to check that for $\left(s_{0}, t_{0}\right) \notin C(u)$ and $s \neq s_{0}$ we have

$$
u\left(s_{0}, t_{0}\right) \neq u\left(s, t_{0}\right) \Longrightarrow v\left(s_{0}, t_{0}\right) \neq v\left(s, t_{0}\right)
$$

- Follows directly:

$$
\begin{aligned}
v\left(s_{0}, t_{0}\right) \neq v\left(s, t_{0}\right) & \Longleftrightarrow \psi_{t}^{-1}\left(u\left(s_{0}, t_{0}\right)\right) \neq \psi_{t}^{-1}\left(u\left(s, t_{0}\right)\right) \quad \text { by definition } \\
& \Longleftrightarrow\left(\psi_{t} \circ \psi_{t}^{-1}\right)\left(u\left(s_{0}, t_{0}\right)\right) \neq\left(\psi_{t} \circ \psi_{t}^{-1}\right)\left(u\left(s, t_{0}\right)\right) \quad \text { injectivity of } \psi_{t} \\
& \Longleftrightarrow u\left(s_{0}, t_{0}\right) \neq u\left(s, t_{0}\right) .
\end{aligned}
$$

0.6 Splitting the Main Theorem

- The main theorem is equivalent to two upcoming statements

Proposition 0.3(8.6.2: Statement 1, Critical Points are Discrete).
Let $z=s+i t$ where $(s, t) \in \mathbb{R}^{1} \times S^{1}(?)$. There exists a constant $\delta>0$ such that

$$
0<|z|<\delta \Longrightarrow(d v)_{z} \neq 0
$$

Proof .

Postponed to p. 264 because it relies on the 8.6 .8 (Similarity Principle).

For the second statement, we set up some notation/definitions.

- $v \in C^{\infty}\left(\mathbb{R}^{2} ; W\right)$ is a solution satisfying

$$
\begin{aligned}
& \frac{\partial v}{\partial s}+J_{1}(v) \frac{\partial v}{\partial t}=0 \\
& \quad v(s, t+1)=\varphi(v(s, t)) \\
& C(v)=C(u), R(v)=R(u) .
\end{aligned}
$$

- The regular points are given by

$$
R(v)=\left\{(s, t) \in \mathbb{R}^{2} \left\lvert\, \frac{\partial v}{\partial s}(s, t) \neq 0\right., \quad v(s, t) \neq x^{ \pm}(t), \quad v(s, t) \notin v(\mathbb{R} \backslash\{s\}, t)\right\}
$$

Note: last condition should be equivalent to $s \neq s^{\prime} \Longrightarrow v(s, t) \neq v\left(s^{\prime}, t\right)$. For reference, also equivalent to $v(s, t)=v\left(s^{\prime}, t\right) \Longrightarrow s=s^{\prime}$.

- Multiple points are defined as follows:
- Set $\overline{\mathbb{R}}=\mathbb{R} \coprod\{ \pm \infty\}$
- Extend $v: \mathbb{R}^{2} \longrightarrow W$ to

$$
\begin{gathered}
v: \overline{\mathbb{R}} \times \mathbb{R} \longrightarrow W \\
v(\pm \infty, t)=x^{ \pm}(t) .
\end{gathered}
$$

- Define the set of multiple points as

$$
M(s, t):=\left\{\left(s^{\prime}, t\right) \in \mathbb{R}^{2} \mid s \neq s^{\prime} \in \overline{\mathbb{R}}, \quad v\left(s^{\prime}, t\right)=v(s, t)\right\}
$$

Note that the same t is used throughout.

- Recast definition of $R(v)$ as "points in the complement of $C(v)$ that do not admit multiples".
- Potentially incorrect formulation:

$$
R(v)=C(v)^{c} \bigcap_{(s, t) \in \overline{\mathbb{R}} \times \mathbb{R}} M(s, t)^{c} .
$$

- Points to remember:
* Condition 1, Nonzero s-derivative.
* Condition 2,

Proposition 0.4(8.6.3: Regular Points Open/Dense, "Injectivity").
Let v be a smooth solution of the Cauchy-Riemann equation, then

$$
\left.\begin{array}{l}
v(s, t+1)=\varphi(v(s, t)) \\
\frac{\partial v}{\partial s} \not \equiv 0
\end{array}\right\} \Longrightarrow R(v) \subseteq \mathbb{R}^{2} \quad \text { is open and dense. }
$$

Proof (Long).
Splits into two parts:

- Show $R(v)$ is open (easy)
- Show $R(v)$ is dense (delicate)

0.7 Regular Points Are Open

Proving the first part: $R(v)$ is open.

- Want to show $R(v)^{c}$ is closed.
- Toward a contradiction, suppose otherwise: $R(v)^{c}$ is open.
- Use limit point definition: $R(v)^{c}$ is closed \Longleftrightarrow it contains all of its limit points
- So $R(v)^{c}$ does not contain one of its limit points
- Produces a sequence

$$
R(v)^{c} \supseteq\left\{\left(s_{n}, t_{n}\right)\right\}_{n \in \mathbb{N}} \xrightarrow{n \longrightarrow \infty}(s, t) \in R(v)
$$

0.8 Sequence is Bounded

- The first two conditions defining $R(v)$ are open conditions:
- The two conditions:

$$
\begin{aligned}
\frac{\partial v}{\partial s}(s, t) \neq 0 & \text { Condition } 1 \\
v(s, t) \neq x^{ \pm}(t) & \text { Condition } 2 .
\end{aligned}
$$

- Thus for $N \gg 1$ we have

$$
n \geq N \Longrightarrow \frac{\partial v}{\partial s}\left(s_{n}, t_{n}\right) \neq 0, \quad v\left(s_{n}, t_{n}\right) \neq x^{ \pm}(t)
$$

Note: what is an "open condition"?

- But $\left(s_{n}, t_{n}\right) \notin R(v)$ for such n, so they must fail the last condition: injectivity
- Third condition:

$$
s \neq s^{\prime} \Longrightarrow v(s, t) \neq v\left(s^{\prime}, t\right)
$$

- Failing this conditions means:

$$
\forall n>N, \exists s_{n}^{\prime} \in \mathbb{R} \text { s.t. } s_{n}^{\prime} \neq s_{n} \quad \text { and } \quad v\left(s_{n}, t_{n}\right)=v\left(s_{n}^{\prime}, t_{n}\right) .
$$

- Produces a sequence $\left\{s_{n}^{\prime}\right\}_{n \in \mathbb{N}}$, want to show it is bounded.
- Toward a contradiction, suppose not, then there is a subsequence

$$
\left\{s_{n_{k}}\right\}_{n_{k} \in \mathbb{N}} \xrightarrow{n_{k} \longrightarrow \infty} \pm \infty .
$$

- This implies

$$
\begin{aligned}
v(s, t) & =\lim _{n_{k} \longrightarrow \infty} v\left(s_{n_{k}}^{\prime}, t_{n_{k}}^{\prime}\right) \quad \text { using continuity of } v \\
& =v(\pm \infty, t) \\
& :=x^{ \pm}(t) .
\end{aligned}
$$

- Why? By definition, precisely because we extended v by setting $v(\pm \infty, t)=x^{ \pm}(t)$.
- But condition 2 for points in $R(v)$ says $v(s, t) \neq x^{ \pm}(t)$, so this contradicts $(s, t) \in$ $R(v)$.
So the sequence is bounded.

0.9 Reaching a Contradiction

- Sequence is bounded, so apply Bolzano-Weierstrass to extract a convergent subsequence converging to some limit:

$$
\left\{s_{n_{j}}^{\prime}\right\}^{n_{j} \longrightarrow \infty} s^{\prime} .
$$

- Use the fact that injectivity failed:

$$
\begin{aligned}
\forall n, s_{n}^{\prime} \neq s_{n} \quad \text { and } \quad v\left(s_{n}, t_{n}\right) & =v\left(s_{n}^{\prime}, t_{n}\right) \\
\Longrightarrow \lim _{n_{k} \longrightarrow \infty} v\left(s_{n}, t_{n}\right) & =\lim _{n_{k} \longrightarrow \infty} v\left(s_{n}^{\prime}, t_{n}^{\prime}\right) \\
\Longleftrightarrow v(s, t) & =v\left(s^{\prime}, t\right) \quad \text { using continuity. }
\end{aligned}
$$

- Use the fact that because $(s, t) \in R(v)$ we must have

$$
s=s^{\prime} .
$$

- (Minor technical point) Now have $\left\{s_{n_{j}}^{\prime}\right\}_{n_{j} \in \mathbb{N}} \longrightarrow s^{\prime}$ and $\left\{s_{n}\right\}_{n \in \mathbb{N}} \longrightarrow s$
- Since the latter sequence is convergent, every subsequence converges to the same limit, so $\left\{s_{n_{j}}\right\}_{n_{j} \in \mathbb{N}} \longrightarrow s$.
- Again using failed injectivity, i.e.

$$
\begin{aligned}
v(s, t) & =v\left(s^{\prime}, t\right) \\
\Longrightarrow v(s, t)-v\left(s^{\prime}, t\right) & =0 .
\end{aligned}
$$

we have

$$
s_{n_{j}}^{\prime} \neq s_{n_{j}} \quad \text { and } \quad v\left(s_{n_{j}}, t_{n_{j}}\right)=v\left(s_{n_{j}}^{\prime}, t_{n_{j}}\right)
$$

- In the last step, we do have equality in the limit, $s=s^{\prime}$, and $\forall n_{j}$,

$$
\begin{aligned}
v\left(s_{n_{j}}, t_{n_{j}}\right)-v\left(s_{n_{j}}^{\prime}, t_{n_{j}}\right) & =0, \\
s_{n_{j}}-s_{n_{j}}^{\prime} & \neq 0
\end{aligned}
$$

thus

$$
\frac{\partial v}{\partial s}(s, t)=\lim _{n_{j} \longrightarrow \infty} \frac{v\left(s_{n_{j}}, t\right)-v\left(s_{n_{j}}^{\prime}, t\right)}{s_{n_{j}}-s_{n_{j}}^{\prime}}=0 .
$$

- But $(s, t) \in R(v)$ and so this contradicts Condition 1.

This proves that $R(v)$ is open.

Lemma 8.6.4 (Failure of Injectivity) For every $r>0$ there exists a $\delta>0$ such that

$$
\left|t-t_{0}\right|,\left|s-s_{0}\right|<\delta \Longrightarrow \exists s^{\prime} \in B_{r}\left(s_{j}\right) \text { s.t. } v(s, t)=v\left(s^{\prime}, t\right)
$$

Proof .
Short, include.

Lemma 0.5(8.6.5: Unique Solutions in a Small Ball).

Let v_{1}, v_{2} be two solutions of the CR-equation with $X_{t} \equiv 0$ on $B_{\varepsilon}(0), v_{1}(0,0)=v_{2}(0,0)$.

Suppose that $\left(d v_{1}\right)_{0},\left(d v_{2}\right)_{0} \neq 0$. Also suppose

$$
\forall \varepsilon \exists \delta \text { s.t. } \forall(s, t) \in B_{\delta}(0), \exists s^{\prime} \in \mathbb{R}\left\{\begin{array}{l}
\left(s^{\prime}, t\right) \in B_{\varepsilon}(0) \\
v_{1}(s, t)=v_{2}\left(s^{\prime}, t\right)
\end{array}\right.
$$

Then

$$
z \in B_{\varepsilon}(0) \Longrightarrow v_{1}(s, t)=v_{2}(s, t)
$$

Take perturbed CR equation:

$$
\frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S \cdot Y=0
$$

Fix $S \in C^{\infty}\left(\mathbb{R}^{2} ; \operatorname{End}\left(\mathbb{R}^{2 n}\right)\right)$

Lemma 0.6(Similarity Principle).

Let $Y \in C^{\infty}\left(B_{\varepsilon} ; \mathbb{C}^{n}\right)$ be a solution to the perturbed CR equation and let $p>2$. Then there exists $0<\delta<\varepsilon$ and a map $A \in W^{1, p}\left(B_{\delta}, \mathrm{GL}\left(\mathbb{R}^{2 n}\right)\right)$ and a holomorphic map

$$
\sigma: B_{\delta} \longrightarrow \mathbb{C}^{n}
$$

such that

$$
\forall(s, t) \in B_{\delta} \quad Y(s, t)=A(s, t) \sigma(s+i t) \quad \text { and } \quad J_{0} A(s, t)=A(s, t) J_{0}
$$

Use continuation principle to finish proofs of many old theorems/lemmas.

Theorem 0.7(8.6.11, Essential property of bar del).

For every $p>1$, the following operator is surjective and Fredholm:

$$
\bar{\partial}: W^{1, p}\left(S^{2} ; \mathbb{C}^{n}\right) \longrightarrow L^{p}\left(\Lambda^{0,1} T^{*} S^{2} \otimes \mathbb{C}^{n}\right)
$$

Lead up to the proof of 8.1.5 in Section 8.7

1 Goal 2: Continuation Principle

Goal 2: prove a continuation principle:

Proposition 1.1(8.6.6, Continuation Principle).

On an open $U \subset \mathbb{R}^{2}$, let Y be a solution to the perturbed CR equation

$$
\frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S \cdot Y=0
$$

where J_{0} is the standard complex structure on $\mathbb{R}^{2 n}$ and $S \in C^{\infty}\left(\mathbb{R}^{2}, \operatorname{End}\left(\mathbb{R}^{2 n}\right)\right)$.
Say that f has an infinite-order zero at z_{0} iff

$$
\forall k \geq 0, \quad \sup _{\left|z-z_{0}\right| \leq t} \frac{|f(z)|}{r^{k}} \xrightarrow{r \longrightarrow 0} 0 .
$$

For f smooth, equivalently $f^{(k)}\left(z_{0}\right)=0$ for all k.
Then the set

$$
C:=\{(s, t) \in U \mid Y \text { has an infinite order zero at }(s, t)\}
$$

is clopen. In particular, if U is connected and $Y=0$ on some nonempty $V \subset U$, then $Y \equiv 0$.

Proposition 1.2(8.1.4, "Transversality Property").

Define

$$
\mathcal{Z}(x, y, J):=\left\{\left(u, H_{0}+h\right) \mid h \in \mathcal{C}_{\varepsilon}^{\infty}\left(H_{0}\right) \text { and } u \in \mathcal{M}(x, y, J, H)\right\} .
$$

If $\left(u, H_{0}+h\right) \in \mathcal{Z}(x, y)$ then the following map admits a continuous right-inverse and is surjective:

$$
\begin{aligned}
\Gamma: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \times \mathcal{C}_{\varepsilon}^{\infty}\left(H_{0}\right) & \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \\
(Y, h) & \longmapsto\left(d \mathcal{F}^{H_{0}+h}\right)_{u}(Y)+\operatorname{grad}_{u} h
\end{aligned}
$$

where $\mathcal{F}^{H_{0}+h}$ is the Floer operator corresponding to $H_{+} h$.
Used to show (via the implicit function theorem) that $\mathcal{Z}(x, y, J)$ is a Banach manifold when $x \neq y$.

