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0.1 Outline

0.1 Qutline

Two Goals:

1. Critical points are discrete and regular points are open/dense.
2. The continuation principle (used elsewhere, see diagram later)

e Idea: For C, a holomorphic function with all derivatives vanishing on a line is identically
Zero.

0.2 Outline of Statements

8.1.5 8.14 8.1.3

8.1]l ——=18.1.2

R

‘ 8.6.11: del bar is surjective Fredholm ‘

@mi]ari(y Principle

8.1.5: dF is Fredholm

8.6.1: Reduction to CR on R2

8.6.2: C[v) discrete
8.5.4: C{u) discrete and R(u) open/dense

‘ 8.1.4: Gamma is Surjective

!

‘ 8.1.3: Z(x,y,J) is a Banach Manifold ‘

8.5.4: Sard-Smale

i

‘ 8.1.1: Nondegenerate Perturbations and Surjective Differential

!

‘ 8.1.2: Trajectories x->y Form a Manifold of the Right Dimension

What we’ll try to prove:

e 8.6.1: Reduction to Cauchy-Riemann equations on R? (short)
e 8.6.3 (Partial): R(v) is open.
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0.3 Notation

Statements of “big” theorems for the chapter, in reverse order of implication:

8.1.5: (dF), is a Fredholm operator of index p(z) — pu(y).

8.1.4: T : WP x C>®° — LP has a continuous right-inverse and is surjective

8.1.3: Z(x,y,J) is a Banach manifold

8.1.1: For h € H,eq, Hy + h is nondegenerate and (dF), is surjective for every u €
M(Hy+ h,J).

e 8.1.2: For h € H,e, and all contractible orbits x,y of Hy, M(x,y, Hy + h) is a manifold
of dimension u(z) — u(y).

0.3 Notation

e The Floer equation and its linearization:

ou ou
F(u) = af%—Ja—i-grad JH)=0
oY oY
Y —_— —_— Y
(dF), (Y)= P + Jo 5 + -

Y € w*TW, S € C®(R x S*; End(R*")).

e X(t,u) : S* x W — W is a time-dependent periodic vector field on R®", J an
almost-complex structure, both smooth

e uc C™(R x S*; W) is a solution to the equation

ou ou

Note: not sure why we’ve replaced grad ,,(H) with —J (¢, u)- X (¢, w) in the Floer equation.

e C(u) the set of critical points and R(u) the set of regular points of u:

S0, to e C(u ngSl < %So,to =0
Js

(50,t0) € R(u) CR x S' <= (s0,t0) € C(u) & s # so = u(s0,t0) # u(s, tg).
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0.4 Goal 1: Discrete Critical Points and Dense Regular Points

0.4 Goal 1: Discrete Critical Points and Dense Regular Points

Goal 1: prove the following theorem

Theorem 0.1(8.5.4).

1. C(u) is discrete and
2. R(u) = R x S* is open and dense.

Outline of the proof:
e Prove 8.6.1: Reduction to CR

— (direct, short) which transforms the Floer(?) equation

?:+J(t,u)<(({;;£—X(t,u)>:0 where uEC“(RxSl;W)

to a Cauchy-Riemann equation on R?:

Ov v
- P h OORQ_
83+J8t 0 where ve CR%5W)

e Reduce 8.5.4 (Discrete/Open/Dense) to two statements
— 8.6.2: C(v) (and thus C(u)) is discrete Proved later using 8.6.8: Similarity Principle.

— 8.6.3 (Injectivity): If v is a smooth periodic solution of CR with gz # 0 then R(v) C R?
is open and dense.
e Prove 8.6.3 (Injectivity)
— Show open (easier)
— Show dense (delicate!)
e Prove 8.6.8: Similarity Principle
— Use similarity principle to prove 8.6.6: Continuation Principle. Yields theorem.

| 8.6.11: del bar is surjective Fredholm

8.6.10: Existence of a Nice Operator A
8.6.8: Similarity Principle
8.6.6: Continuation Principle

8.6.5: Unique v Solutions in a Small Ball

8.6.4: Failure of Injectivity 8.6.1: Reduction to CR on R2

8.6.3: R(v) openidense ('Tnjectivity') 86.2: C(v) discrete

8.5.4: C(u) discrete and R(u) open/dense

8.1.5: dF is Fredholm

8.1.4: Gamma is Surjective

8.5.4: Sard-Smale | 8.1.3: Z(x,y,J) is a Banach Manifold

I

| 8.1.1: Nondegenerate Perturbations and Surjective Differential

!

| 8.1.2: Trajectories x->y Form a Manifold of the Right Dimension
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0.5 8.6.1: Transform to Cauchy-Riemann

0.5 8.6.1: Transform to Cauchy-Riemann

Proposition 0.2(8.6.1, Transform to CR-equation on R2).
If u is a solution to the following equation:

ou ou

Then there exists
e An almost complex structure .J;
e A diffeomorphism ¢ on W ?
e A map v e C®(R*; W)

satisfying
ov ov
—+ Ji(v) = =0
g5 T,
where
1. v(s,t
2. C(u) = C(v), i.e. u,v have the same critical points
3. R(u) = R(v)
Proof

e Recall the vector field was defined as X (¢t,u) : S* x W — W.
e Since W x S' is compact, the flow 1, of X is defined on all of W
— We thus have a map ¢, : W — W such that

0 :
awt = Xy oy, o = id
e Define the (important!) map

v(s,t) = (1/;;1 o u) (s,t)
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0.5 8.6.1: Transform to Cauchy-Riemann

e Since W x S is compact, the flow 1, of X, is defined on all of W
— We thus have a map v, : W — W such that

0 .
a@bt = Xi 04y, o = id
e Define the (important!) map

v(s,t) = (zp;l o u) (s,t)

e We can then compute

ou v
2 (d i
0s ( wt)(@s)
o _
ot
— Attempt at explanation: rearrange, use chain rule, and known derivative of /y:

ou 0y ov
U(S,t) = <¢t OU)(S,t) = %(Svt) = a(v(sat)) ’ %(S’t)

O () @5)

ou Oy Ov
a(s,t) = E(U(Svt)) : E(S’w
= (Xy o) (v(s,t)) - Z(S’t)

v

ot (,2)
= Xi(u(s,t)) - g:(s,t)

= X,(u) (2:) L2777,

? =

and

= (X; 01 0v)(s,t)

0
Note sure how to relate partial derivatives a—¢t to differential di);. Not sure why we’re picking

up addition in the t derivative.
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0.5 8.6.1: Transform to Cauchy-Riemann

e Given that result, we can compute,

ou ou
0—8+J<at—Xt(

Zu +J = JXi(u)
ov
- <(d1/1t) ag)) + J( ) — JXi(u)
ov ov
= () (32) + s @ (57)
0 ov
— (av (5 + @ st (avo) (57
— (av) (G2 + i)
e Conclude that v is a solution of
v . v
s + 1y J (v )815 0.
e Sct ¢ =1 and Jy(v) == ¢]J(v) to obtain
v ov _0

of which v is still a solution

e Property 1, Periodicity: attempt to check directly, using ¥,

)

83 + Jl(’l))a

v(s,t+1) = (¢Y; ou)(s,t+1)
:< 101/}7& )(Svt)
= n(v(s, 1))
= p(v(s,1)).

since u is a solution

expanding terms

by substitution

cancelling

collecting terms

by definition.

= 1Py oy:

Just a guess. If the 1-parameter group is commutative then proving ¢(v(s,t — 1)) = v(s,t)

might work.
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0.5 8.6.1: Transform to Cauchy-Riemann

e Recall definition of v:
(s, t) = (uls, t))

e Verifying that C'(v) = C(u): not spelled out. Property of flow?
— Need to check that

ou ov
%(So,to) =0 = %(Sg,to) =0

ou ov
95 (diby) <8s>

where

— How: 7
e Verifying that R(v) = R(u)

— Need to check that for (sg,%y) ¢ C(u) and s # sy we have
u(so, to) # u(s,to) = v(so,t0) # v(s,to)

— Follows directly:

v(s0,t0) # v(s,to) <= ¥ (u(so, o)) # 1y '(u(s,to)) by definition

= (rowy!)(ulso,te) # (vro ) (u(s, o)) injectivity of v
< u(so,to) # u(s,to).
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0.6 Splitting the Main Theorem

0.6 Splitting the Main Theorem

e The main theorem is equivalent to two upcoming statements

Proposition 0.3(8.6.2: Statement 1, Critical Points are Discrete).
Let z = s + it where (s,t) € R' x S (?). There exists a constant § > 0 such that

0<|z]<d = (dv), #0.

Proof .
Postponed to p.264 because it relies on the 8.6.8 (Similarity Principle).

For the second statement, we set up some notation/definitions.
e v € C(R?* W) is a solution satisfying

ov ov
% + Jl(U)a =0

v(s,t+1)=p(v(s,t))

e The regular points are given by

R(v) = {(s,t) € R?

0 A0 w0 £, vl € R ()0

Note: last condition should be equivalent to s # s = wv(s,t) # v(s,t). For reference,
also equivalent to v(s,t) = v(s',t) = s=3¢".
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0.7 Regular Points Are Open

e Multiple points are defined as follows:
— Set R = R] [ {00}
— Extend v : R*> — W to

vV:RxR— W
v(£oo,t) = xE(t).

— Define the set of multiple points as

M(s,t) = {(s’,t) € R?

s#s eR, wv(st)= v(s,t)}

Note that the same ¢ is used throughout.
e Recast definition of R(v) as “points in the complement of C(v) that do not admit
multiples”.
— Potentially incorrect formulation:

R(v) = C(v)° Q M(s,t)°.
(s,t)ERxR

— Points to remember:
x Condition 1, Nonzero s-derivative.
x Condition 2,

Proposition 0.4(8.6.3: Regular Points Open/Dense, "Injectivity").
Let v be a smooth solution of the Cauchy-Riemann equation, then

o(s,t+ 1) = p(0(s, 1))
ov — R(v) CR? is open and dense.
ds

Proof (Long).

Splits into two parts:

e Show R(v) is open (easy)
e Show R(v) is dense (delicate)

0.7 Regular Points Are Open
Proving the first part: R(v) is open.
e Want to show R(v) is closed.
e Toward a contradiction, suppose otherwise: R(v)¢ is open.

— Use limit point definition: R(v) is closed <= it contains all of its limit points
— So R(v)¢ does not contain one of its limit points
— Produces a sequence

R(v)" 2 {(5n,tn) }pen "8 (s,t) € R(v)
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0.8 Sequence is Bounded

0.8 Sequence is Bounded

e The first two conditions defining R(v) are open conditions:
— The two conditions:

gv(s,t) #0 Condition 1
s
v(s,t) # xE(t) Condition 2.

— Thus for N > 1 we have

n>N = gv(sn,tn) # 0, V(Sp, tn) # 2E(1)
s

Note: what is an “open condition”?

e But (s, t,) ¢ R(v) for such n, so they must fail the last condition: injectivity
— Third condition:

s# s = v(s,t) #v(s,t)
— Failing this conditions means:
Vn > N, s/, e Rs.t. s, #s, and v(s,,t,) =v(s),t,).

e Produces a sequence {s),}, .y, want to show it is bounded.
— Toward a contradiction, suppose not, then there is a subsequence

N —>00 :i:

{Sn, }nkeN 0.
— This implies
: / / . . .
v(s,t) = n;}gloo v(sy, th,) using continuity of v
= v(too,t)
= % ().

— Why? By definition, precisely because we extended v by setting v(do0,t) = 2™ (t).

— But condition 2 for points in R(v) says v(s,t) # x*(t), so this contradicts (s,t) €

R(v).

So the sequence is bounded.

Contents
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0.9 Reaching a Contradiction

0.9 Reaching a Contradiction

e Sequence is bounded, so apply Bolzano-Weierstrass to extract a convergent subsequence
converging to some limit:

n; —r0o0
{S, } j s

nj

— Use the fact that injectivity failed:

Vn, s, #s, and v(sp,t,) =v(s),t,)
= nklgloov(sn, tn) = nklgloov(sn,tn)
v(s,t) =v(st) using continuity.
— Use the fact that because (s,t) € R(v) we must have
s=s".
e (Minor technical point) Now have {S;U}njeN — s and {s,}, .y — s
— Since the latter sequence is convergent, every subsequence converges to the same
limit, so {S”j}njeN — S.

e Again using failed injectivity, i.e.

v(s,t) =v(s,t)
= (s, t) — (s, t) =0.

we have

S, 7 5oy and v(sn;, ;) = v(sy,, tn;)

e In the last step, we do have equality in the limit, s = s, and Vn;,

V(8p;,tn;) — V(S 1 tn,) = 0,

J

thus
ov . U(Snj7t) - U(S%],t)
%(57 t) = njll}noo Sn] _ anj - O
e But (s,t) € R(v) and so this contradicts Condition 1.
This proves that R(v) is open. |
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0.9 Reaching a Contradiction

Lemma 8.6.4 (Failure of Injectivity) For every r > 0 there exists a 0 > 0 such that

[t —tol, |s —so| <9 = 35" € B,(sj) s.t. v(s,t) =v(s,t).

Proof .
Short, include.

Lemma 0.5(8.6.5: Unique Solutions in a Small Ball).

Let v, vy be two solutions of the CR-equation with X; = 0 on B.(0), v1(0,0) = v2(0,0).

Suppose that (dvy),, (dvs), # 0. Also suppose

! B
Ve 36 s.t. V(s,t) € Bs(0), 3s' € R (s,) € 5(0),
1)1(3, t) = UQ(S 7t)
Then
z € B.(0) = wvi(s,t) = va(s,t).
Take perturbed CR equation:

oy oy
AR AL S V)
T

Fix S € C*°(R?* End(R*"))

Lemma 0.6 (Similarity Principle).
Let Y € C*°(B.;C") be a solution to the perturbed CR equation and let p > 2. Then
there exists 0 < § < ¢ and a map A € W'?(B;, GL(R?")) and a holomorphic map

o:Bs — C"
such that

V(s,t) € Bs Y(s,t) = A(s,t) o(s+it) and JyA(s,t) = A(s,t)Jo.

Use continuation principle to finish proofs of many old theorems/lemmas.

Theorem 0.7(8.6.11, Essential property of bar del).
For every p > 1, the following operator is surjective and Fredholm:

5: W'P(S%CY) — LP(A'T"S? @ C7).

Lead up to the proof of 8.1.5 in Section 8.7
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1 Goal 2: Continuation Principle
Goal 2: prove a continuation principle:

Proposition 1.1(8.6.6, Continuation Principle).
On an open U C R?, let Y be a solution to the perturbed CR equation

Y oY

—+Jo=+5-Y =0

Os T ot *
where Jy is the standard complex structure on R*" and S € C*(R? End(R*")).
Say that f has an infinite-order zero at zy iff

[f ()] r—0

— 0.

Vk > 0, sup -
lz—zol<t T

For f smooth, equivalently f*)(zo) = 0 for all k.
Then the set

C = {(s,t) clU ‘ Y has an infinite order zero at (s, t)}

is clopen. In particular, if U is connected and Y = 0 on some nonempty V C U, then
Y =0.

Proposition 1.2(8.1.4, "Transversality Property").

Define
Z(x,y,J) = {(u,Hy+ h)|h € C (Hy) and u € M(x,y,J, H)}.

If (u, Hy+ h) € Z(x,y) then the following map admits a continuous right-inverse and is
surjective:

T W (R x SLR™) x € (Ho) — L7 (R x S R™)
(Y,h) — (de°+h>u (Y) + grad, h

where FH0*" is the Floer operator corresponding to H. h.

Used to show (via the implicit function theorem) that Z(x,y, J) is a Banach manifold
when z # y.

1 GOAL 2: CONTINUATION PRINCIPLE
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