Section 8.6: The Solutions of the Floer Equation are "Somewhere Injective".

D. Zack Garza

Thursday 14th May, 2020

Contents

1	Goa	2: Continuation Principle	14
	0.9	Reaching a Contradiction	12
	0.8	Sequence is Bounded	11
	0.7	Regular Points Are Open	10
	0.6	Splitting the Main Theorem	9
	0.5	8.6.1: Transform to Cauchy-Riemann	5
	0.4	Goal 1: Discrete Critical Points and Dense Regular Points	4
	0.3	Notation	3
	0.2	Outline of Statements	2
	0.1	Outline	2

0.1 Outline

Two Goals:

- 1. Critical points are discrete and regular points are open/dense.
- 2. The continuation principle (used elsewhere, see diagram later)
- Idea: For \mathbb{C} , a holomorphic function with all derivatives vanishing on a line is identically zero.

0.2 Outline of Statements

What we'll try to prove:

- 8.6.1: Reduction to Cauchy-Riemann equations on \mathbb{R}^2 (short)
- 8.6.3 (Partial): R(v) is open.

Statements of "big" theorems for the chapter, in reverse order of implication:

- 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) \mu(y)$.
- 8.1.4: $\Gamma: W^{1,p} \times C^{\infty}_{\varepsilon} \longrightarrow L^{p}$ has a continuous right-inverse and is surjective
- 8.1.3: $\mathcal{Z}(x, y, J)$ is a Banach manifold
- 8.1.1: For $h \in \mathcal{H}_{reg}, H_0 + h$ is nondegenerate and $(d\mathcal{F})_u$ is surjective for every $u \in \mathcal{M}(H_0 + h, J)$.
- 8.1.2: For $h \in \mathcal{H}_{reg}$ and all contractible orbits x, y of H_0 , $\mathcal{M}(x, y, H_0 + h)$ is a manifold of dimension $\mu(x) \mu(y)$.

0.3 Notation

• The Floer equation and its linearization:

$$\begin{split} \mathcal{F}(u) &= \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \text{grad }_{u}(H) = 0\\ (d\mathcal{F})_{u}(Y) &= \frac{\partial Y}{\partial s} + J_{0} \frac{\partial Y}{\partial t} + S \cdot Y\\ Y &\in u^{*}TW, \ S \in C^{\infty}(\mathbb{R} \times S^{1}; \text{End}(\mathbb{R}^{2n})). \end{split}$$

- $X(t,u) : S^1 \times W \longrightarrow W$ is a time-dependent periodic vector field on \mathbb{R}^{2n} , J an almost-complex structure, both smooth
- $u \in C^{\infty}(\mathbb{R} \times S^1; W)$ is a solution to the equation

$$\frac{\partial u}{\partial s} + J(t,u) \left(\frac{\partial u}{\partial t} - X(t,u) \right) = 0$$

Note: not sure why we've replaced grad $_{u}(H)$ with $-J(t, u) \cdot X(t, u)$ in the Floer equation.

• C(u) the set of critical points and R(u) the set of regular points of u:

$$(s_0, t_0) \in C(u) \subseteq \mathbb{R} \times S^1 \iff \frac{\partial u}{\partial s}(s_0, t_0) = 0 (s_0, t_0) \in R(u) \subset \mathbb{R} \times S^1 \iff (s_0, t_0) \notin C(u) \& s \neq s_0 \implies u(s_0, t_0) \neq u(s, t_0).$$

0.4 Goal 1: Discrete Critical Points and Dense Regular Points

Goal 1: prove the following theorem

Theorem 0.1(8.5.4).

- 1. C(u) is discrete and
- 2. $R(u) \hookrightarrow \mathbb{R} \times S^1$ is open and dense.

Outline of the proof:

- Prove 8.6.1: Reduction to CR
 - (direct, short) which transforms the Floer(?) equation

$$\frac{\partial u}{\partial s} + J(t, u) \left(\frac{\partial u}{\partial t} - X(t, u) \right) = 0 \quad \text{where} \quad u \in C^{\infty}(\mathbb{R} \times S^{1}; W)$$

to a Cauchy-Riemann equation on \mathbb{R}^2 :

$$\frac{\partial v}{\partial s} + J \frac{\partial v}{\partial t} = 0 \quad \text{where} \quad v \in C^{\infty}(\mathbb{R}^2; W)$$

- Reduce 8.5.4 (Discrete/Open/Dense) to two statements
 - 8.6.2: C(v) (and thus C(u)) is discrete Proved later using 8.6.8: Similarity Principle.
 - 8.6.3 (Injectivity): If v is a smooth periodic solution of CR with $\frac{\partial v}{\partial s} \neq 0$ then $R(v) \subseteq \mathbb{R}^2$ is open and dense.
- Prove 8.6.3 (Injectivity)
 - Show open (easier)
 - Show dense (delicate!)
- Prove 8.6.8: Similarity Principle

- Use similarity principle to prove 8.6.6: Continuation Principle. Yields theorem.

0.5 8.6.1: Transform to Cauchy-Riemann

Proposition 0.2(8.6.1, Transform to CR-equation on R2). If u is a solution to the following equation:

$$\frac{\partial u}{\partial s} + J(t, u) \left(\frac{\partial u}{\partial t} - X(t, u) \right) = 0.$$

Then there exists

- An almost complex structure J_1
- A diffeomorphism φ on W ?
- A map $v \in C^{\infty}(\mathbb{R}^2; W)$

satisfying

$$\frac{\partial v}{\partial s} + J_1(v)\frac{\partial v}{\partial t} = 0$$

where

- 1. $v(s,t+1) = \varphi(v(s,t))$
- 2. C(u) = C(v), i.e. u, v have the same critical points
- 3. R(u) = R(v).

Proof

- Recall the vector field was defined as $X(t, u) : S^1 \times W \longrightarrow W$.
- Since $W \times S^1$ is compact, the flow ψ_t of X_t is defined on all of W
 - We thus have a map $\psi_t: W \longrightarrow W$ such that

$$\frac{\partial}{\partial t}\psi_t = X_t \circ \psi_t, \qquad \psi_0 = \mathrm{id}$$

• Define the (important!) map

$$v(s,t)\coloneqq \Bigl(\psi_t^{-1}\circ u\Bigr)(s,t)$$

• Since $W \times S^1$ is compact, the flow ψ_t of X_t is defined on all of W- We thus have a map $\psi_t : W \longrightarrow W$ such that

$$\frac{\partial}{\partial t}\psi_t = X_t \circ \psi_t, \qquad \psi_0 = \mathrm{id}$$

• Define the (important!) map

$$v(s,t) \coloneqq \left(\psi_t^{-1} \circ u\right)(s,t)$$

• We can then compute

$$\begin{aligned} \frac{\partial u}{\partial s} &= (d\psi_t) \left(\frac{\partial v}{\partial s} \right) \\ \frac{\partial u}{\partial t} &= (d\psi_t) \left(\frac{\partial v}{\partial t} \right) + X_t(u). \end{aligned}$$

– Attempt at explanation: rearrange, use chain rule, and known derivative of ψ_t :

$$u(s,t) = (\psi_t \circ v)(s,t) \implies \frac{\partial u}{\partial s}(s,t) = \frac{\partial \psi_t}{\partial s}(v(s,t)) \cdot \frac{\partial v}{\partial s}(s,t)$$
$$_? \implies \frac{\partial u}{\partial s} = (d\psi_t) \cdot \left(\frac{\partial v}{\partial s}\right)$$

and

$$\begin{aligned} \frac{\partial u}{\partial t}(s,t) &= \frac{\partial \psi_t}{\partial t}(v(s,t)) \cdot \frac{\partial v}{\partial t}(s,t) \\ &= (X_t \circ \psi_t)(v(s,t)) \cdot \frac{\partial v}{\partial t}(s,t) \\ &= (X_t \circ \psi_t \circ v)(s,t) \cdot \frac{\partial v}{\partial t}(s,t) \\ &= X_t(u(s,t)) \cdot \frac{\partial v}{\partial t}(s,t) \\ &= X_t(u) \left(\frac{\partial v}{\partial t}\right) \cdots????. \end{aligned}$$

Note sure how to relate partial derivatives $\frac{\partial}{\partial \cdot} \psi_t$ to differential $d\psi_t$. Not sure why we're picking up *addition* in the *t* derivative.

• Given that result, we can compute,

$$0 = \frac{\partial u}{\partial s} + J\left(\frac{\partial u}{\partial t} - X_t(u)\right) \qquad \text{since } u \text{ is a solution}$$

$$= \frac{\partial u}{\partial s} + J\frac{\partial u}{\partial t} - JX_t(u) \qquad \text{expanding terms}$$

$$= \left(\left(d\psi_t\right)\left(\frac{\partial v}{\partial s}\right)\right) + J\left(\left(d\psi_t\right)\left(\frac{\partial v}{\partial t}\right) + X_t(u)\right) - JX_t(u) \qquad \text{by substitution}$$

$$= \left(d\psi_t\right)\left(\frac{\partial v}{\partial s}\right) + J(u)\left(d\psi_t\right)\left(\frac{\partial v}{\partial t}\right) \qquad \text{cancelling}$$

$$= \left(d\psi_t\right)\left(\frac{\partial v}{\partial s} + \left(d\psi_t\right)^{-1}J(u)\left(d\psi_t\right)\left(\frac{\partial v}{\partial t}\right)\right) \qquad \text{collecting terms}$$

$$\coloneqq \left(d\psi_t\right)\left(\frac{\partial v}{\partial s} + \psi_t^*J(v)\right) \qquad \text{by definition.}$$

• Conclude that v is a solution of

$$\frac{\partial v}{\partial s} + \psi_t^\star J(v) \frac{\partial v}{\partial t} = 0.$$

• Set $\varphi \coloneqq \psi_1$ and $J_1(v) \coloneqq \psi_1^* J(v)$ to obtain

$$\frac{\partial v}{\partial s} + J_1(v)\frac{\partial v}{\partial t} = 0$$

of which v is still a solution

• Property 1, Periodicity: attempt to check directly, using $\psi_{t+1} = \psi_t \circ \psi_1$:

$$\begin{aligned} v(s,t+1) &\coloneqq (\psi_t^{-1} \circ u)(s,t+1) \\ {}_? &= \left(\psi_1 \circ \psi_t^{-1} \circ u\right)(s,t) \\ &= \psi_1(v(s,t)) \\ &\coloneqq \varphi(v(s,t)). \end{aligned}$$

Just a guess. If the 1-parameter group is commutative then proving $\varphi(v(s,t-1))=v(s,t)$ might work.

• Recall definition of v:

$$v(s,t)\coloneqq \psi_t^{-1}(u(s,t))$$

- Verifying that C(v) = C(u): not spelled out. Property of flow?
 - Need to check that

$$\frac{\partial u}{\partial s}(s_0, t_0) = 0 \implies \frac{\partial v}{\partial s}(s_0, t_0) = 0$$

where

$$\frac{\partial u}{\partial s} = (d\psi_t) \left(\frac{\partial v}{\partial s}\right)$$

- How: ?

- Verifying that R(v) = R(u)
 - Need to check that for $(s_0, t_0) \notin C(u)$ and $s \neq s_0$ we have

$$u(s_0, t_0) \neq u(s, t_0) \implies v(s_0, t_0) \neq v(s, t_0)$$

- Follows directly:

$$v(s_0, t_0) \neq v(s, t_0) \iff \psi_t^{-1}(u(s_0, t_0)) \neq \psi_t^{-1}(u(s, t_0)) \text{ by definition}$$
$$\iff \left(\psi_t \circ \psi_t^{-1}\right)(u(s_0, t_0)) \neq \left(\psi_t \circ \psi_t^{-1}\right)(u(s, t_0)) \text{ injectivity of } \psi_t$$
$$\iff u(s_0, t_0) \neq u(s, t_0).$$

0.6 Splitting the Main Theorem

• The main theorem is equivalent to two upcoming statements

Proposition 0.3(8.6.2: Statement 1, Critical Points are Discrete). Let z = s + it where $(s,t) \in \mathbb{R}^1 \times S^1$ (?). There exists a constant $\delta > 0$ such that

$$0 < |z| < \delta \implies (dv)_z \neq 0.$$

Proof.

Postponed to p.264 because it relies on the 8.6.8 (Similarity Principle).

For the second statement, we set up some notation/definitions.

• $v \in C^{\infty}(\mathbb{R}^2; W)$ is a solution satisfying

$$\frac{\partial v}{\partial s} + J_1(v)\frac{\partial v}{\partial t} = 0$$
$$v(s, t+1) = \varphi(v(s, t))$$
$$C(v) = C(u), R(v) = R(u).$$

• The **regular points** are given by

$$R(v) = \left\{ (s,t) \in \mathbb{R}^2 \mid \frac{\partial v}{\partial s}(s,t) \neq 0, \quad v(s,t) \neq x^{\pm}(t), \quad v(s,t) \notin v(\mathbb{R} \setminus \{s\},t) \right\}.$$

Note: last condition should be equivalent to $s \neq s' \implies v(s,t) \neq v(s',t)$. For reference, also equivalent to $v(s,t) = v(s',t) \implies s = s'$.

- Multiple points are defined as follows:
 - $-\operatorname{Set} \overline{\mathbb{R}} = \mathbb{R} \coprod_{n \in \mathbb{N}} \{\pm \infty\}$
 - Extend $v: \mathbb{R}^2 \longrightarrow W$ to

$$v: \overline{\mathbb{R}} \times \mathbb{R} \longrightarrow W$$
$$v(\pm \infty, t) = x^{\pm}(t).$$

- Define the set of *multiple points* as

$$M(s,t) \coloneqq \left\{ (s',t) \in \mathbb{R}^2 \mid s \neq s' \in \overline{\mathbb{R}}, \quad v(s',t) = v(s,t) \right\}$$

Note that the same t is used throughout.

- Recast definition of R(v) as "points in the complement of C(v) that do not admit multiples".
 - Potentially incorrect formulation:

$$R(v) = C(v)^c \bigcap_{(s,t)\in\overline{\mathbb{R}}\times\mathbb{R}} M(s,t)^c.$$

- Points to remember:
 - $\ast\,$ Condition 1, Nonzero s-derivative.
 - * Condition 2,

Proposition 0.4(8.6.3: Regular Points Open/Dense, "Injectivity"). Let v be a smooth solution of the Cauchy-Riemann equation, then

$$\left. \begin{array}{l} v(s,t+1) = \varphi(v(s,t)) \\ \frac{\partial v}{\partial s} \neq 0 \end{array} \right\} \implies R(v) \subseteq \mathbb{R}^2 \quad \text{is open and dense.} \end{array}$$

Proof (Long). Splits into two parts:

- Show R(v) is open (easy)
- Show R(v) is dense (delicate)

0.7 Regular Points Are Open

Proving the first part: R(v) is open.

- Want to show $R(v)^c$ is closed.
- Toward a contradiction, suppose otherwise: $R(v)^c$ is open.
 - Use limit point definition: $R(v)^c$ is closed \iff it contains all of its limit points
 - So $R(v)^c$ does *not* contain one of its limit points
 - Produces a sequence

$$R(v)^{c} \supseteq \{(s_{n}, t_{n})\}_{n \in \mathbb{N}} \stackrel{n \longrightarrow \infty}{\longrightarrow} (s, t) \in R(v)$$

0.8 Sequence is Bounded

- The first two conditions defining R(v) are open conditions:
 - The two conditions:

$$\begin{array}{ll} \frac{\partial v}{\partial s}(s,t) \neq 0 & \text{Condition 1} \\ v(s,t) \neq x^{\pm}(t) & \text{Condition 2.} \end{array}$$

– Thus for $N \gg 1$ we have

$$n \ge N \implies \frac{\partial v}{\partial s}(s_n, t_n) \ne 0, \qquad v(s_n, t_n) \ne x^{\pm}(t)$$

Note: what is an "open condition"?

• But $(s_n, t_n) \notin R(v)$ for such n, so they must fail the last condition: injectivity – Third condition:

$$s \neq s' \implies v(s,t) \neq v(s',t)$$

- Failing this conditions means:

$$\forall n > N, \exists s'_n \in \mathbb{R} \text{ s.t. } s'_n \neq s_n \text{ and } v(s_n, t_n) = v(s'_n, t_n).$$

- Produces a sequence $\{s'_n\}_{n\in\mathbb{N}}$, want to show it is bounded.
 - Toward a contradiction, suppose not, then there is a subsequence

$$\{s_{n_k}\}_{n_k\in\mathbb{N}} \stackrel{n_k\longrightarrow\infty}{\longrightarrow} \pm\infty.$$

– This implies

$$\begin{aligned} v(s,t) &= \lim_{n_k \to \infty} v(s'_{n_k}, t'_{n_k}) & \text{using continuity of } v \\ &= v(\pm \infty, t) \\ &\coloneqq x^{\pm}(t). \end{aligned}$$

- Why? By definition, precisely because we extended v by setting $v(\pm \infty, t) = x^{\pm}(t)$.
- But condition 2 for points in R(v) says $v(s,t) \neq x^{\pm}(t)$, so this contradicts $(s,t) \in R(v)$.

So the sequence is bounded.

0.9 Reaching a Contradiction

• Sequence is bounded, so apply Bolzano-Weierstrass to extract a convergent subsequence converging to some limit:

$$\left\{s_{n_j}'\right\} \stackrel{n_j \longrightarrow \infty}{\longrightarrow} s'.$$

- Use the fact that injectivity failed:

$$\forall n, \ s'_n \neq s_n \quad \text{and} \quad v(s_n, t_n) = v(s'_n, t_n) \implies \lim_{n_k \to \infty} v(s_n, t_n) = \lim_{n_k \to \infty} v(s'_n, t'_n) \iff v(s, t) = v(s', t)$$
 using continuity.

– Use the fact that because $(s,t) \in R(v)$ we must have

$$s = s'$$
.

- (Minor technical point) Now have $\left\{s'_{n_j}\right\}_{n_j \in \mathbb{N}} \longrightarrow s'$ and $\left\{s_n\right\}_{n \in \mathbb{N}} \longrightarrow s$
 - Since the latter sequence is convergent, every subsequence converges to the same limit, so $\{s_{n_j}\}_{n_j \in \mathbb{N}} \longrightarrow s$.
- Again using failed injectivity, i.e.

$$v(s,t) = v(s',t)$$
$$\implies v(s,t) - v(s',t) = 0.$$

we have

$$s'_{n_j} \neq s_{n_j}$$
 and $v(s_{n_j}, t_{n_j}) = v(s'_{n_j}, t_{n_j})$

• In the last step, we do have equality in the limit, s = s', and $\forall n_j$,

$$v(s_{n_j}, t_{n_j}) - v(s'_{n_j}, t_{n_j}) = 0,$$

 $s_{n_j} - s'_{n_j} \neq 0$

thus

$$\frac{\partial v}{\partial s}(s,t) = \lim_{n_j \to \infty} \frac{v(s_{n_j},t) - v(s'_{n_j},t)}{s_{n_j} - s'_{n_j}} = 0.$$

• But $(s,t) \in R(v)$ and so this contradicts Condition 1. This proves that R(v) is open.

Lemma 8.6.4 (Failure of Injectivity) For every r > 0 there exists a $\delta > 0$ such that

$$|t-t_0|, |s-s_0| < \delta \implies \exists s' \in B_r(s_j) \text{ s.t. } v(s,t) = v(s',t)$$

Proof. Short, include.

Lemma 0.5 (8.6.5: Unique Solutions in a Small Ball). Let v_1, v_2 be two solutions of the CR-equation with $X_t \equiv 0$ on $B_{\varepsilon}(0), v_1(0,0) = v_2(0,0)$.

Suppose that $(dv_1)_0, (dv_2)_0 \neq 0$. Also suppose

$$\forall \varepsilon \; \exists \delta \; \text{s.t.} \; \forall (s,t) \in B_{\delta}(0), \; \exists s' \in \mathbb{R} \begin{cases} (s',t) \in B_{\varepsilon}(0) \\ v_1(s,t) = v_2(s',t) \end{cases}$$

Then

$$z \in B_{\varepsilon}(0) \implies v_1(s,t) = v_2(s,t).$$

Take perturbed CR equation:

$$\frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S \cdot Y = 0.$$

Fix $S \in C^{\infty}(\mathbb{R}^2; \operatorname{End}(\mathbb{R}^{2n}))$

Lemma 0.6 (Similarity Principle). Let $Y \in C^{\infty}(B_{\varepsilon}; \mathbb{C}^n)$ be a solution to the perturbed CR equation and let p > 2. Then there exists $0 < \delta < \varepsilon$ and a map $A \in W^{1,p}(B_{\delta}, \operatorname{GL}(\mathbb{R}^{2n}))$ and a holomorphic map

$$\sigma: B_{\delta} \longrightarrow \mathbb{C}^n$$

such that

 $\forall (s,t) \in B_{\delta} \quad Y(s,t) = A(s,t) \ \sigma(s+it) \quad \text{and} \quad J_0A(s,t) = A(s,t)J_0.$

Use continuation principle to finish proofs of many old theorems/lemmas.

Theorem 0.7 (8.6.11, Essential property of bar del). For every p > 1, the following operator is surjective and Fredholm:

$$\bar{\partial}: W^{1,p}(S^2; \mathbb{C}^n) \longrightarrow L^p(\Lambda^{0,1}T^*S^2 \otimes \mathbb{C}^n).$$

Lead up to the proof of 8.1.5 in Section 8.7

1 Goal 2: Continuation Principle

Goal 2: prove a continuation principle:

Proposition 1.1(8.6.6, Continuation Principle). On an open $U \subset \mathbb{R}^2$, let Y be a solution to the perturbed CR equation

$$\frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S \cdot Y = 0$$

where J_0 is the standard complex structure on \mathbb{R}^{2n} and $S \in C^{\infty}(\mathbb{R}^2, \operatorname{End}(\mathbb{R}^{2n}))$. Say that f has an *infinite-order zero* at z_0 iff

$$\forall k \ge 0, \quad \sup_{|z-z_0| \le t} \frac{|f(z)|}{r^k} \xrightarrow{r \longrightarrow 0} 0.$$

For f smooth, equivalently $f^{(k)}(z_0) = 0$ for all k. Then the set

$$C \coloneqq \left\{ (s,t) \in U \mid Y \text{ has an infinite order zero at } (s,t) \right\}$$

is clopen. In particular, if U is connected and Y = 0 on some nonempty $V \subset U$, then $Y \equiv 0$.

Proposition 1.2(8.1.4, "Transversality Property").

Define

$$\mathcal{Z}(x, y, J) \coloneqq \{ (u, H_0 + h) | h \in \mathcal{C}^{\infty}_{\varepsilon}(H_0) \text{ and } u \in \mathcal{M}(x, y, J, H) \}.$$

If $(u, H_0 + h) \in \mathcal{Z}(x, y)$ then the following map admits a continuous right-inverse and is surjective:

$$\Gamma: W^{1,p}\left(\mathbb{R} \times S^{1}; \mathbb{R}^{2n}\right) \times \mathcal{C}^{\infty}_{\varepsilon}\left(H_{0}\right) \longrightarrow L^{p}\left(\mathbb{R} \times S^{1}; \mathbb{R}^{2n}\right)$$
$$(Y,h) \longmapsto \left(d\mathcal{F}^{H_{0}+h}\right)_{u}(Y) + \operatorname{grad}_{u}h$$

where \mathcal{F}^{H_0+h} is the Floer operator corresponding to H_+h .

Used to show (via the implicit function theorem) that $\mathcal{Z}(x,y,J)$ is a Banach manifold when $x\neq y.$