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What we’re trying to prove 8.1.5: (dF)u is a Fredholm operator of index µ(x)− µ(y).

1 8.8
• Define

L : W 1,p
(
R × S1; R2n

)
−→ Lp

(
R × S1; R2n

)
(1)

Y 7−→ ∂Y

∂s
+ J0

∂Y

∂t
+ S(s, t)Y (2)

• By the end of 8.8: replace the Fredholm operator L by an operator L1 with the same index
(not the same kernel/cokernel)

– Compute the index of ? because we can explicitly describe its kernel and cokernel
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• Use the fact S : R× S1 −→ Mat(2n;R) and

S(s, t) s−→±∞−→ S±(t)

which are symmetric.

– Take corresponding symplectic paths R± : I −→ Sp(2n;R).
– If

R± ∈ S :=
{
R : I −→ Sp(2n;R)

∣∣∣ R(0) = id,det(R(1)− id) 6= 0
}
,

then L is a Fredholm operator

• Theorem 8.8.1: Ind(L) = µ(R−(t))− µ(R+(t)) = µ(x)− µ(y).

• Prop 8.8.2: Define an operator

L1 : W 1,p
(
R × S1; R2n

)
−→ Lp

(
R × S1; R2n

)
Y 7−→ ∂Y

∂s
+ J0

∂Y

∂t
+ S(s)Y

where S : R −→ Mat(2n;R) is a path of diagonal matrices depending on Ind(R±(t)); then
Ind(L1) = Ind(L).

– Then Ind(L1) = Ind(R−(t))− Ind(R+(t)).
– Idea of proof: take a homotopy of operators

Lλ : W 1,p
(
R × S1; R2n

)
−→ Lp

(
R × S1; R2n

)
Y 7−→ ∂Y

∂s
+ J0

∂Y

∂t
+ Sλ(s, t)Y

which are all Fredholm and all have the same index, then take time 1.
– Use the fact that cokerL1 ∼= kerL∗1, and we can explicitly write the adjoint of L1.
– Get a formula that resembles the Morse case: counting the number of eigenvalues that

change sign.

• Summary:

– Replace L by L0, which is modified in a neighborhood of zero in the s variable. Use
invariance of index under small perturbations.

– Homotope L0 to L1, where S is replaced by a diagonal matrix S(s) that is a constant
matrix outside the neighborhood of zero in s. Use invariance of index under homotopy.

2 8.7
• Goal: Toward 8.1.5, show that L := ∂ + S(s, t) : W 1,p −→ Lp is a Fredholm operator, i.e. the

index makes sense (finite-dimensional kernel and cokernel).

• Statement: if det(id−R±1 ) 6= 0 then the operator

L : W 1,p(R× S1;R2n) −→ Lp(R× S1;R2n)
.

given by L = ∂ + S(s, t) is Fredholm for every p > 1. > Most of the work goes into showing
that dim(kerL) <∞ and im (L) is closed.
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• dim kerL <∞:

– Use elliptic regularity and consequence of Calderón-Zygmund inequality.
∗ Elliptic regularity: If Y ∈ Lp is a weak solution of the linearized Floer equation
LY = 0, then Y ∈W 1,p and is smooth.
∗ Consequence: If Y ∈W 1,p and p > 1 then ‖Y ‖W 1,p = O(‖LY ‖Lp + ‖Y ‖Lp).

– Case 1: S(s, t) = S(t) doesn’t depend on s.
∗ Then L is a bijective for every p > 1
∗ Invertibility allows replacing the weak solution Y ∈ Lp(R×S1; ·) with Y ∈ Lp([−M,M ]×
S1, ·) for M � 0
∗ Restriction L : W 1,p(R × S1) −→ Lp([−M,M ] × S1) is a compact operator, it is
“semi-Fredholm”
∗ Apply a theorem: if the inequality is satisfies, the kernel is finite-dimensional and

the image is closed.

• dim cokerL <∞:

– Take

L : W 1,p(R× S1;R2n) −→ Lp(R× S1;R2n)

and consider the adjoint operator

L? : W 1,q
(
R× S1;R2n

)
−→ Lq

(
R× S1;R2n

)
where p−1 + q−1 = 1, which appeared in 8.5.1.

– Use the fact that cokerL = kerL?
– Show dim kerL? <∞ since it satisfies the conditions of 8.7.4.

3 8.6
• Start with u ∈ C∞(R× S1;W ) a solution to the equation

∂u

∂s
+ J1(t, u)

(
∂u

∂t
−X(t, u)

)
= 0

• “Unwrap the cylinder” to a map v ∈ C∞(R2;W ) which is a solution to
(
∂

∂s
+ J

∂

∂t

)
u = 0

– No longer periodic; instead v(s, t+ 1) = φ(v(s, t)).
– Built by precomposing u with the inverse flow ψt of Xt

– Conjugate original J with ψ to get J1

• Define regular points R(v) as ∂

∂s
v 6= 0 with injectivity condition: s 6= s′ =⇒ v(s, t) 6= v(s′, t).

• Prove “injectivity result”: R(v) ⊆ R2 is dense and open
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3.1 8.6.3, Part 1: R(v) is Open

3.1 8.6.3, Part 1: R(v) is Open
• Prove R(v) is open: contradict zero derivative

– Proof uses sequential characterization of being a closed set
– Construct a sequence in the complement converging to a regular point
– Since first two conditions of R(v) are open, extract a sequence of points failing injectivity
– Show it is bounded
– Apply Bolzano-Weierstrass to extract a convergent subsequence
– Use quotient definition of derivative, show it is zero, contradiction.

3.2 8.6.3, Part 2: R(v) is Dense in R2 (p.258)

3.3 Step 1: Exclude critical points that are also multiple points
• Definition: Multiple points are where injectivity fails in s.

– Characterize R(v) as those in C(v)c that are not multiples.
• Suffices to show R(v) is dense in C(v)c – Every (s, t) ∈ C(v)c ⊆ R2 is the limit of (sn, t) ∈ C(v)c
where v(sn, t) 6= x±(t).

– Why? v(s+ 1
n
, t) = x+(t) =⇒ ∂v

∂s
= 0 =⇒ (s+ 1

n
, t) ∈ C(v).

– Then suffices to show every (s0, t0) ∈ R× I with (importantly)

∂v

∂s
(s0, t0) 6= 0 and v(s0, t0) 6= x±(t0). (3)

{#eq:eq1} is the limit of a sequence of points in R(v).
– Proceed by assuming this is not the case, toward a contradiction.

3.3.1 A Small Ball Avoids Critical Points in the Image

• Surround every point (s0, t0) by a ball Bε(s0, t0) missing R(v)

• We can choose ε small enough and M � 1 big enough (defining M = [−M,M ] ⊂ R) such
that

1. Translate to far enough to get a point outside the image of the ball:

(s, t) ∈Mc × [t0 − ε, t0 + ε] ⊂ R× I =⇒
v(s, t)

⋂
v(Bε(s0, t0) = ∅ and x±(t) 6∈ v(Bε(s0, t0)).

– Idea: If not, can cook up sequences that force v(s0, t0) = x±(t0), a contradiction to
@eq:eq1.

2. For t ∈ Bε(t0), Bε(s0) ↪→W is an injective immersion

– Combine 1 and 2 to show that
∗ v is locally constant
∗ (s0, t0) ∈ C(v)
∗ Every point in Bε(s0, t0) satisfies [@eq:eq1]

3.
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3.4 Step 2: Failure of Injectivity in Small Boxes

– Show
|MC | :=

∣∣∣(M× I)
⋂
C(v)

∣∣∣ <∞
since it’s the intersection of a compact and a discrete set

– Perturb (s0, t0) so that (s, t) ∈MC =⇒ v(s0, t0) 6= v(s, t).
∗ Possible since (s0, t0) 6∈ C(v) =⇒ v is non-constant in a neighborhood of (s0, t0).

– Decrease ε so that
v(Bε(s0, t0))

⋂
v(MC) = ∅.

• This means that in the thick strip containing (s0, t0), no critical points land in its image.

• Conclude that we only have to consider injectivity, not critical points that are also multiple
points

3.4 Step 2: Failure of Injectivity in Small Boxes
• Define

SM (t0) = {s1, · · · , sN} =
{
si ∈ [−M,M ]

∣∣∣ v(si, t0) = v(s0, t0)
}
,

the set of multiple points over s0.

– This is finite, since infinite =⇒ has a limit point =⇒ ∂v

∂s
= 0, contradiction.

• Lemma: For every ε > 0 there exists a δ > 0 such that defining
∆0 = [s0 − δ, s0 + δ]× [t0 − δ, t0 + δ]

then
(s, t) ∈ ∆ =⇒ ∃s′ ∈ Bε(sj) s.t. v(s, t) = v(s′, t)

for some 1 ≤ j ≤ N .

– In English: for every epsilon, we can find a delta box ∆0 3 (s0, t0) such that every point
in ∆0 is a multiple point over some point in an epsilon ball around some point in SM (t0).

– Proof idea: otherwise, construct a sequence (σn, tn) −→ (s0, t0), use properties 1 and 2
from earlier, extract a limit point σ not in SM (t0) which satisfies v(σ, t0) = v(s0, t0), a
contradiction (since that set contained exactly the multiple finitely many points).

• Fix ε′ < ε/2 form Step 1 and apply the lemma to ε′ to produce a δ and a box ∆0.

• Apply the lemma: shrink the delta box ∆0 to a closed delta ball Bδ(s0, t0).

– Every point in the delta box is a multiple point over some sj .

• So partition the ball up: define Σj to be all of the multiple points over sj ∈ S(t0).

• Take a smaller ρ-ball around some point (s?, t?) ∈ Σ◦1, making sure to choose ε′ small enough
such that

Bρ(s?, t?)
⋂(

[s1 − ε′, s1 + ε′]× [t0 − δ, t0 + δ]
)

= ∅.
In other words, the shaded region is disjoint from the ρ-ball.

• Then every point in the ρ-ball is a multiple point over some point in the box around (s1, t0).
Pick on such point (s′?, t?) on the t? line.
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3.5 Step 3: Final Contradiction

3.5 Step 3: Final Contradiction
• Construct v1, v2 which

– Satisfy the same Cauchy-Riemann equations
– Are equal at the origin
– Have nonzero derivative at the origin.

• We want to show they are equal on R2

• Constructing them: use points from step 2 to translate

– Obtain (s?, t?) and (s′?, t?) from previous step.
– Define

v1(s, t) = v (s+ s?, t+ t?) =⇒ v1(z) = v(z + w1)
v2(s, t) = v

(
s+ s′?, t+ t?

)
=⇒ v2(z) = v(z + w2)

– Satisfy the same CR equations
– By construction, they coincide at (0, 0) since v(s?, t?) = v(s′?, t?).
– Derivatives at the origin are nonzero, coming from the fact that ∂v

∂s
(s?, t?) 6= 0.

• Now work at zero: for every (s, t) ∈ Bρ(0, 0) there exists a multiple point s′ ∈ B2ε′(0) over s.

• Use the following extension lemma, consequence of Continuation Principle: in this situation,
with Xt ≡ 0 on Bε(0), then

z ∈ Bε(0) =⇒ v1(z) = v2(z).

• Define

F : C∞
(
R × S1; R2n

)
−→ C∞

(
R × S1; R2n

)
w 7−→

(
∂

∂s
+ J · ∂

∂t

)
w

• Since v1, v2 satisfy the same CR equation, F(v1) = F(v2)

• Linearize F as we did for the Floer operator to obtain

(dF)···(Y ) =
(
∂

∂s
+ J0 ·

∂

∂t
+ S̃

)
Y.

where S̃ : I × R2 −→ End(R2n)

• Set Y = v1 − v2, then

S =
∫

[0,1]
S̃ =⇒ S

(
∂

∂s
+ J0 ·

∂

∂t
+ S

)
Y = 0

• From above, Y ≡ 0 in Bε(0), apply Continuation Principle to obtain v1 = v2 on R2

• Inductive argument to show

∀k ∈ Z, v(s, t) = v(k(s′? − s?), t)
k−→∞−→ x±(t),

which is the desired contradiction. �

BREAK
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3.6 The Continuation Principle

3.6 The Continuation Principle
• Take the perturbed CR equation(

∂

∂s
+ J0 ·

∂

∂t
+ S

)
Y = 0 where S : R2 −→ End(R2n)

where J0 is the standard complex structure on R2n.

• Define an infinite-order zero z of an arbitrary function f as

z0 ∈ Z∞ ⇐⇒ sup
Br(z0)

|f(z)|
rk

r−→0−→ 0 ∀k ∈ Z≥0,

or for a smooth function,

z0 ∈ Z∞ ⇐⇒ f (k)(z0) = 0 ∀k ∈ Z≥0.

• Statement: If Y solves CR on U ⊂ R2 then the set

C :=
{

(s, t) ∈ U
∣∣∣ Y is an infinite-order zero at (s, t)

}
.

• Explanation: for f smooth, Z∞ is closed. For f holomorphic, it is clopen.

– From complex analysis: for a connected domain Ω, the only clopen subsets are ∅,Ω, so
nonempty and f = g on a connected subset implies f = g on Ω.

– In particular, Y = 0 on U ′ ⊆ U implies Y = 0 on U .

• Prove is a consequence of the Similarity Principle

3.7 Similarity Principle
• Statement:

– Recall definition of perturbed CR equation:(
∂

∂s
+ J0 ·

∂

∂t
+ S

)
Y = 0 where S : R2 −→ End(R2n)

– Let

– Y ∈ C∞(Bε;Cn), or more generally W 1,p(Bε;Cn), be a solution

– S ∈ C∞(R2,End(R2)) or more generally Lp(Bε; EndR(R2n))

– p > 2

Then there exist

δ ∈ (0, ε),
σ ∈ C∞(Bδ,Cn)
A ∈W 1,p(Bδ,GL(R2n)).

such that

∀(s, t) ∈ Bδ, Y (s, t) = A(s, t) · σ(s+ it) and J0A(s, t) = A(s, t)J0.
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3.8 Odds and Ends

• Used to prove:

– C(v) is discrete
– “Extension” lemma used to prove R(v) is dense

• Some ideas from proof:

– Matrix A will look like the fundamental matrix of solutions to the equation
– Compactify to get Bδ ⊂ S2, if Y : S2 −→ Cn then we can consider the section(

A0,1T ?S2
)n

= Λ0,1T ?S2 ⊗ Cn

X
∂Y

• Y = 0 makes Y a holomorphic sphere in Cn.

3.8 Odds and Ends
• Theorem: the following is a surjective Fredholm operator for every p > 1:

∂ : W 1,p
(
S2,Cn

)
−→ Lp

(
Λ0,1T ?S2 ⊗ Cn

)
.

– Computation will show that dim ker ∂ = dim coker ∂ = 2n, so Ind ∂ = 0.
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