Section 8.6 - 8.8: Setup for Computing the Index

D. Zack Garza

Thursday $21^{\text {st }}$ May, 2020

Contents

$18.8 \quad 1$
28.7 2
38.6
3.1 8.6.3, Part 1: R(v) is Open . 4
3.2 8.6.3, Part 2: R(v) is Dense in R2 (p.258)] . 4
3.3 Step 1: Exclude critical points that are also multiple points 4
3.3.1 A Small Ball Avoids Critical Points in the Image 4
3.4 Step 2: Failure of Injectivity in Small Boxes . 5
3.5 Step 3: Final Contradiction . 6
3.6 The Continuation Principle . 7
3.7 Similarity Principle. 7
3.8 Odds and Ends . 8

Outline - Sketch proof of 8.6.3 - Statement of Somewhere Injectivity - Statement of Continuation Principle - Statement of Similarity Principle - 8.7-8.8

What we're trying to prove 8.1.5: $(d \mathcal{F})_{u}$ is a Fredholm operator of index $\mu(x)-\mu(y)$.

18.8

- Define

$$
\begin{align*}
L: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \tag{1}\\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S(s, t) Y \tag{2}
\end{align*}
$$

- By the end of 8.8: replace the Fredholm operator L by an operator L_{1} with the same index (not the same kernel/cokernel)
- Compute the index of? because we can explicitly describe its kernel and cokernel
- Use the fact $S: \mathbb{R} \times S^{1} \longrightarrow \operatorname{Mat}(2 n ; \mathbb{R})$ and

$$
S(s, t) \xrightarrow{s \longrightarrow \pm} S^{ \pm}(t)
$$

which are symmetric.

- Take corresponding symplectic paths $R^{ \pm}: I \longrightarrow \operatorname{Sp}(2 n ; \mathbb{R})$.
- If

$$
R^{ \pm} \in \mathcal{S}:=\{R: I \longrightarrow \operatorname{Sp}(2 n ; \mathbb{R}) \mid R(0)=\mathrm{id}, \operatorname{det}(R(1)-\mathrm{id}) \neq 0\}
$$

then L is a Fredholm operator

- Theorem 8.8.1: $\operatorname{Ind}(L)=\mu\left(R^{-}(t)\right)-\mu\left(R^{+}(t)\right)=\mu(x)-\mu(y)$.
- Prop 8.8.2: Define an operator

$$
\begin{aligned}
L_{1}: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S(s) Y
\end{aligned}
$$

where $S: \mathbb{R} \longrightarrow \operatorname{Mat}(2 n ; \mathbb{R})$ is a path of diagonal matrices depending on $\operatorname{Ind}\left(R^{ \pm}(t)\right)$; then $\operatorname{Ind}\left(L_{1}\right)=\operatorname{Ind}(L)$.

- Then $\operatorname{Ind}\left(L_{1}\right)=\operatorname{Ind}\left(R^{-}(t)\right)-\operatorname{Ind}\left(R^{+}(t)\right)$.
- Idea of proof: take a homotopy of operators

$$
\begin{aligned}
L_{\lambda}: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S_{\lambda}(s, t) Y
\end{aligned}
$$

which are all Fredholm and all have the same index, then take time 1.

- Use the fact that coker $L_{1} \cong \operatorname{ker} L_{1}^{*}$, and we can explicitly write the adjoint of L_{1}.
- Get a formula that resembles the Morse case: counting the number of eigenvalues that change sign.
- Summary:
- Replace L by L_{0}, which is modified in a neighborhood of zero in the s variable. Use invariance of index under small perturbations.
- Homotope L_{0} to L_{1}, where S is replaced by a diagonal matrix $S(s)$ that is a constant matrix outside the neighborhood of zero in s. Use invariance of index under homotopy.

28.7

- Goal: Toward 8.1.5, show that $L:=\bar{\partial}+S(s, t): W^{1, p} \longrightarrow L^{p}$ is a Fredholm operator, i.e. the index makes sense (finite-dimensional kernel and cokernel).
- Statement: if $\operatorname{det}\left(\mathrm{id}-R_{1}^{ \pm}\right) \neq 0$ then the operator

$$
L: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)
$$

given by $L=\bar{\partial}+S(s, t)$ is Fredholm for every $p>1$. $>$ Most of the work goes into showing that $\operatorname{dim}(\operatorname{ker} L)<\infty$ and $\operatorname{im}(L)$ is closed.

- $\operatorname{dim} \operatorname{ker} L<\infty$:
- Use elliptic regularity and consequence of Calderón-Zygmund inequality.
* Elliptic regularity: If $Y \in L^{p}$ is a weak solution of the linearized Floer equation $L Y=0$, then $Y \in W^{1, p}$ and is smooth.
* Consequence: If $Y \in W^{1, p}$ and $p>1$ then $\|Y\|_{W^{1, p}}=O\left(\|L Y\|_{L^{p}}+\|Y\|_{L^{p}}\right)$.
- Case 1: $S(s, t)=S(t)$ doesn't depend on s.
* Then L is a bijective for every $p>1$
* Invertibility allows replacing the weak solution $Y \in L^{p}\left(\mathbb{R} \times S^{1} ; \cdot\right)$ with $Y \in L^{p}([-M, M] \times$ $\left.S^{1}, \cdot\right)$ for $M \gg 0$
* Restriction $\bar{L}: W^{1, p}\left(\mathbb{R} \times S^{1}\right) \longrightarrow L^{p}\left([-M, M] \times S^{1}\right)$ is a compact operator, it is "semi-Fredholm"
* Apply a theorem: if the inequality is satisfies, the kernel is finite-dimensional and the image is closed.
- dim coker $L<\infty$:
- Take

$$
L: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)
$$

and consider the adjoint operator

$$
L^{\star}: W^{1, q}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \longrightarrow L^{q}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)
$$

where $p^{-1}+q^{-1}=1$, which appeared in 8.5.1.

- Use the fact that coker $L=\operatorname{ker} L^{\star}$
- Show $\operatorname{dim} \operatorname{ker} L^{\star}<\infty$ since it satisfies the conditions of 8.7.4.

38.6

- Start with $u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)$ a solution to the equation

$$
\frac{\partial u}{\partial s}+J_{1}(t, u)\left(\frac{\partial u}{\partial t}-X(t, u)\right)=0
$$

- "Unwrap the cylinder" to a map $v \in C^{\infty}\left(\mathbb{R}^{2} ; W\right)$ which is a solution to $\left(\frac{\partial}{\partial s}+J \frac{\partial}{\partial t}\right) u=0$
- No longer periodic; instead $v(s, t+1)=\phi(v(s, t))$.
- Built by precomposing u with the inverse flow ψ_{t} of X_{t}
- Conjugate original J with ψ to get J_{1}
- Define regular points $R(v)$ as $\frac{\partial}{\partial s} v \neq 0$ with injectivity condition: $s \neq s^{\prime} \Longrightarrow v(s, t) \neq v\left(s^{\prime}, t\right)$.
- Prove "injectivity result": $R(v) \subseteq \mathbb{R}^{2}$ is dense and open

3.1 8.6.3, Part 1: $\mathbf{R}(\mathrm{v})$ is Open

- Prove $R(v)$ is open: contradict zero derivative
- Proof uses sequential characterization of being a closed set
- Construct a sequence in the complement converging to a regular point
- Since first two conditions of $R(v)$ are open, extract a sequence of points failing injectivity
- Show it is bounded
- Apply Bolzano-Weierstrass to extract a convergent subsequence
- Use quotient definition of derivative, show it is zero, contradiction.

3.2 8.6.3, Part 2: $R(v)$ is Dense in $R 2$ ($p .258$)

3.3 Step 1: Exclude critical points that are also multiple points

- Definition: Multiple points are where injectivity fails in s.
- Characterize $R(v)$ as those in $C(v)^{c}$ that are not multiples.
- Suffices to show $R(v)$ is dense in $C(v)^{c}$ - Every $(s, t) \in C(v)^{c} \subseteq \mathbb{R}^{2}$ is the limit of $\left(s_{n}, t\right) \in C(v)^{c}$ where $v\left(s_{n}, t\right) \neq x^{ \pm}(t)$.
- Why? $v\left(s+\frac{1}{n}, t\right)=x^{+}(t) \Longrightarrow \frac{\partial v}{\partial s}=0 \Longrightarrow\left(s+\frac{1}{n}, t\right) \in C(v)$.
- Then suffices to show every $\left(s_{0}, t_{0}\right) \in \mathbb{R} \times I$ with (importantly)

$$
\begin{equation*}
\frac{\partial v}{\partial s}\left(s_{0}, t_{0}\right) \neq 0 \quad \text { and } \quad v\left(s_{0}, t_{0}\right) \neq x^{ \pm}\left(t_{0}\right) \tag{3}
\end{equation*}
$$

\{\#eq:eq1\} is the limit of a sequence of points in $R(v)$.

- Proceed by assuming this is not the case, toward a contradiction.

3.3.1 A Small Ball Avoids Critical Points in the Image

- Surround every point $\left(s_{0}, t_{0}\right)$ by a ball $B_{\varepsilon}\left(s_{0}, t_{0}\right)$ missing $R(v)$
- We can choose ε small enough and $M \gg 1$ big enough (defining $\mathbf{M}=[-M, M] \subset \mathbb{R}$) such that

1. Translate to far enough to get a point outside the image of the ball:

$$
\begin{array}{r}
(s, t) \in \mathbf{M}^{c} \times\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right] \subset \mathbb{R} \times I \Longrightarrow \\
v(s, t) \bigcap v\left(B_{\varepsilon}\left(s_{0}, t_{0}\right)=\emptyset \quad \text { and } \quad x^{ \pm}(t) \notin v\left(B_{\varepsilon}\left(s_{0}, t_{0}\right)\right) .\right.
\end{array}
$$

- Idea: If not, can cook up sequences that force $v\left(s_{0}, t_{0}\right)=x^{ \pm}\left(t_{0}\right)$, a contradiction to @eq:eq1.

2. For $t \in B_{\varepsilon}\left(t_{0}\right), B_{\varepsilon}\left(s_{0}\right) \hookrightarrow W$ is an injective immersion

- Combine 1 and 2 to show that
* v is locally constant
* $\left(s_{0}, t_{0}\right) \in C(v)$
* Every point in $B_{\varepsilon}\left(s_{0}, t_{0}\right)$ satisfies [@eq:eq1]

3.

- Show

$$
\left|\mathbf{M}_{C}\right|:=|(\mathbf{M} \times I) \bigcap C(v)|<\infty
$$

since it's the intersection of a compact and a discrete set
$-\operatorname{Perturb}\left(s_{0}, t_{0}\right)$ so that $(s, t) \in \mathbf{M}_{C} \Longrightarrow v\left(s_{0}, t_{0}\right) \neq v(s, t)$.

* Possible since $\left(s_{0}, t_{0}\right) \notin C(v) \Longrightarrow v$ is non-constant in a neighborhood of $\left(s_{0}, t_{0}\right)$.
- Decrease ε so that

$$
v\left(B_{\varepsilon}\left(s_{0}, t_{0}\right)\right) \bigcap v\left(\mathbf{M}_{C}\right)=\emptyset
$$

- This means that in the thick strip containing $\left(s_{0}, t_{0}\right)$, no critical points land in its image.
- Conclude that we only have to consider injectivity, not critical points that are also multiple points

3.4 Step 2: Failure of Injectivity in Small Boxes

- Define

$$
\mathbf{S}_{M}\left(t_{0}\right)=\left\{s_{1}, \cdots, s_{N}\right\}=\left\{s_{i} \in[-M, M] \mid v\left(s_{i}, t_{0}\right)=v\left(s_{0}, t_{0}\right)\right\},
$$

the set of multiple points over s_{0}.

- This is finite, since infinite \Longrightarrow has a limit point $\Longrightarrow \frac{\partial v}{\partial s}=0$, contradiction.
- Lemma: For every $\varepsilon>0$ there exists a $\delta>0$ such that defining

$$
\Delta_{0}=\left[s_{0}-\delta, s_{0}+\delta\right] \times\left[t_{0}-\delta, t_{0}+\delta\right]
$$

then

$$
(s, t) \in \Delta \Longrightarrow \exists s^{\prime} \in B_{\varepsilon}\left(s_{j}\right) \text { s.t. } v(s, t)=v\left(s^{\prime}, t\right)
$$

for some $1 \leq j \leq N$.

- In English: for every epsilon, we can find a delta box $\Delta_{0} \ni\left(s_{0}, t_{0}\right)$ such that every point in Δ_{0} is a multiple point over some point in an epsilon ball around some point in $\mathbf{S}_{M}\left(t_{0}\right)$.
- Proof idea: otherwise, construct a sequence $\left(\sigma_{n}, t_{n}\right) \longrightarrow\left(s_{0}, t_{0}\right)$, use properties 1 and 2 from earlier, extract a limit point σ not in $\mathbf{S}_{M}\left(t_{0}\right)$ which satisfies $v\left(\sigma, t_{0}\right)=v\left(s_{0}, t_{0}\right)$, a contradiction (since that set contained exactly the multiple finitely many points).
- Fix $\varepsilon^{\prime}<\varepsilon / 2$ form Step 1 and apply the lemma to ε^{\prime} to produce a δ and a box Δ_{0}.
- Apply the lemma: shrink the delta box Δ_{0} to a closed delta ball $\bar{B}_{\delta}\left(s_{0}, t_{0}\right)$.
- Every point in the delta box is a multiple point over some s_{j}.
- So partition the ball up: define Σ_{j} to be all of the multiple points over $s_{j} \in \mathbf{S}\left(t_{0}\right)$.
- Take a smaller ρ-ball around some point $\left(s_{\star}, t_{\star}\right) \in \Sigma_{1}^{\circ}$, making sure to choose ε^{\prime} small enough such that

$$
B_{\rho}\left(s_{\star}, t_{\star}\right) \bigcap\left(\left[s_{1}-\varepsilon^{\prime}, s_{1}+\varepsilon^{\prime}\right] \times\left[t_{0}-\delta, t_{0}+\delta\right]\right)=\emptyset
$$

In other words, the shaded region is disjoint from the ρ-ball.

- Then every point in the ρ-ball is a multiple point over some point in the box around $\left(s_{1}, t_{0}\right)$. Pick on such point $\left(s_{\star}^{\prime}, t_{\star}\right)$ on the t_{\star} line.

3.5 Step 3: Final Contradiction

- Construct v_{1}, v_{2} which
- Satisfy the same Cauchy-Riemann equations
- Are equal at the origin
- Have nonzero derivative at the origin.
- We want to show they are equal on \mathbb{R}^{2}
- Constructing them: use points from step 2 to translate
- Obtain $\left(s_{\star}, t_{\star}\right)$ and $\left(s_{\star}^{\prime}, t_{\star}\right)$ from previous step.
- Define

$$
\begin{aligned}
& v_{1}(s, t)=v\left(s+s_{\star}, t+t_{\star}\right) \quad \Longrightarrow v_{1}(z)=v\left(z+w_{1}\right) \\
& v_{2}(s, t)=v\left(s+s_{\star}^{\prime}, t+t_{\star}\right) \quad \Longrightarrow v_{2}(z)=v\left(z+w_{2}\right)
\end{aligned}
$$

- Satisfy the same CR equations
- By construction, they coincide at $(0,0)$ since $v\left(s_{\star}, t_{\star}\right)=v\left(s_{\star}^{\prime}, t_{\star}\right)$.
- Derivatives at the origin are nonzero, coming from the fact that $\frac{\partial v}{\partial s}\left(s_{\star}, t_{\star}\right) \neq 0$.
- Now work at zero: for every $(s, t) \in B_{\rho}(0,0)$ there exists a multiple point $s^{\prime} \in B_{2 \varepsilon^{\prime}}(0)$ over s.
- Use the following extension lemma, consequence of Continuation Principle: in this situation, with $X_{t} \equiv 0$ on $B_{\varepsilon}(\mathbf{0})$, then

$$
z \in B_{\varepsilon}(\mathbf{0}) \Longrightarrow v_{1}(z)=v_{2}(z)
$$

- Define

$$
\begin{aligned}
\mathcal{F}: \mathrm{C}^{\infty}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow \mathrm{C}^{\infty}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
w & \longmapsto\left(\frac{\partial}{\partial s}+J \cdot \frac{\partial}{\partial t}\right) w
\end{aligned}
$$

- Since v_{1}, v_{2} satisfy the same CR equation, $\mathcal{F}\left(v_{1}\right)=\mathcal{F}\left(v_{2}\right)$
- Linearize \mathcal{F} as we did for the Floer operator to obtain

$$
(d \mathcal{F}) \ldots(Y)=\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+\tilde{S}\right) Y
$$

where $\tilde{S}: I \times \mathbb{R}^{2} \longrightarrow \operatorname{End}\left(\mathbb{R}^{2 n}\right)$

- Set $Y=v_{1}-v_{2}$, then

$$
S=\int_{[0,1]} \tilde{S} \Longrightarrow S\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+S\right) Y=0
$$

- From above, $Y \equiv 0$ in $B_{\varepsilon}(\mathbf{0})$, apply Continuation Principle to obtain $v_{1}=v_{2}$ on \mathbb{R}^{2}
- Inductive argument to show

$$
\forall k \in \mathbb{Z}, \quad v(s, t)=v\left(k\left(s_{\star}^{\prime}-s_{\star}\right), t\right) \xrightarrow{k \longrightarrow \infty} x^{ \pm}(t),
$$

which is the desired contradiction.
BREAK

3.6 The Continuation Principle

- Take the perturbed CR equation

$$
\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+S\right) Y=0 \quad \text { where } \quad S: \mathbb{R}^{2} \longrightarrow \operatorname{End}\left(\mathbb{R}^{2 n}\right)
$$

where J_{0} is the standard complex structure on $\mathbb{R}^{2 n}$.

- Define an infinite-order zero z of an arbitrary function f as

$$
z_{0} \in Z_{\infty} \Longleftrightarrow \sup _{B_{r}\left(z_{0}\right)} \frac{|f(z)|}{r^{k}} \stackrel{r \rightrightarrows 0}{\longrightarrow} 0 \quad \forall k \in \mathbb{Z}^{\geq 0}
$$

or for a smooth function,

$$
z_{0} \in Z_{\infty} \Longleftrightarrow f^{(k)}\left(z_{0}\right)=0 \quad \forall k \in \mathbb{Z}^{\geq 0}
$$

- Statement: If Y solves CR on $U \subset \mathbb{R}^{2}$ then the set

$$
C:=\{(s, t) \in U \mid Y \text { is an infinite-order zero at }(s, t)\} .
$$

- Explanation: for f smooth, Z_{∞} is closed. For f holomorphic, it is clopen.
- From complex analysis: for a connected domain Ω, the only clopen subsets are \emptyset, Ω, so nonempty and $f=g$ on a connected subset implies $f=g$ on Ω.
- In particular, $Y=0$ on $U^{\prime} \subseteq U$ implies $Y=0$ on U.
- Prove is a consequence of the Similarity Principle

3.7 Similarity Principle

- Statement:
- Recall definition of perturbed CR equation:

$$
\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+S\right) Y=0 \quad \text { where } \quad S: \mathbb{R}^{2} \longrightarrow \operatorname{End}\left(\mathbb{R}^{2 n}\right)
$$

- Let
$-Y \in C^{\infty}\left(B_{\varepsilon} ; \mathbb{C}^{n}\right)$, or more generally $W^{1, p}\left(B_{\varepsilon} ; \mathbb{C}^{n}\right)$, be a solution
$-S \in C^{\infty}\left(\mathbb{R}^{2}, \operatorname{End}\left(\mathbb{R}^{2}\right)\right)$ or more generally $L^{p}\left(B_{\varepsilon} ; \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^{2 n}\right)\right)$
$-p>2$
Then there exist

$$
\begin{aligned}
& \delta \in(0, \varepsilon) \\
& \sigma \in C^{\infty}\left(B_{\delta}, \mathbb{C}^{n}\right) \\
& A \in W^{1, p}\left(B_{\delta}, \mathrm{GL}\left(\mathbb{R}^{2 n}\right)\right)
\end{aligned}
$$

such that

$$
\forall(s, t) \in B_{\delta}, \quad Y(s, t)=A(s, t) \cdot \sigma(s+i t) \quad \text { and } \quad J_{0} A(s, t)=A(s, t) J_{0}
$$

- Used to prove:
- $C(v)$ is discrete
- "Extension" lemma used to prove $R(v)$ is dense
- Some ideas from proof:
- Matrix A will look like the fundamental matrix of solutions to the equation
- Compactify to get $B_{\delta} \subset S^{2}$, if $Y: S^{2} \longrightarrow \mathbb{C}^{n}$ then we can consider the section

$$
\begin{aligned}
\left(A^{0,1} T^{\star} S^{2}\right)^{n}= & \Lambda^{0,1} T^{\star} S^{2} \otimes \mathbb{C}^{n} \\
& \downarrow_{X} \\
& =\bar{\partial} Y
\end{aligned}
$$

- $\bar{Y}=0$ makes Y a holomorphic sphere in \mathbb{C}^{n}.

3.8 Odds and Ends

- Theorem: the following is a surjective Fredholm operator for every $p>1$:

$$
\bar{\partial}: W^{1, p}\left(S^{2}, \mathbb{C}^{n}\right) \longrightarrow L^{p}\left(\Lambda^{0,1} T^{\star} S^{2} \otimes \mathbb{C}^{n}\right)
$$

- Computation will show that $\operatorname{dim} \operatorname{ker} \bar{\partial}=\operatorname{dim} \operatorname{coker} \bar{\partial}=2 n$, so $\operatorname{Ind} \bar{\partial}=0$.

