Section 8.6 - 8.8: Setup for Computing the Index

D. Zack Garza

Thursday 21st May, 2020

Contents

1	8.8		1
2	8.7		2
3	8.6		3
	3.1	8.6.3, Part 1: R(v) is Open	4
	3.2	8.6.3, Part 2: $R(v)$ is Dense in R2 (p.258)	4
	3.3	Step 1: Exclude critical points that are also multiple points	4
		3.3.1 A Small Ball Avoids Critical Points in the Image	4
	3.4	Step 2: Failure of Injectivity in Small Boxes	5
	3.5	Step 3: Final Contradiction	6
	3.6	The Continuation Principle	7
	3.7	Similarity Principle	7
	3.8	Odds and Ends	8
Οι	ıtline	- Sketch proof of 8.6.3 - Statement of Somewhere Injectivity - Statement of Continuation	on

Principle - Statement of Similarity Principle - 8.7 - 8.8

What we're trying to prove 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) - \mu(y)$.

1 8.8

• Define

$$L: W^{1,p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right) \longrightarrow L^{p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right)$$
(1)

$$Y \longmapsto \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S(s, t)Y \tag{2}$$

- By the end of 8.8: replace the Fredholm operator L by an operator L_1 with the same *index* (not the same kernel/cokernel)
 - Compute the index of ? because we can explicitly describe its kernel and cokernel

• Use the fact $S: \mathbb{R} \times S^1 \longrightarrow \operatorname{Mat}(2n; \mathbb{R})$ and

$$S(s,t) \xrightarrow{s \longrightarrow \pm \infty} S^{\pm}(t)$$

which are symmetric.

- Take corresponding symplectic paths $R^{\pm}: I \longrightarrow \operatorname{Sp}(2n; \mathbb{R}).$
- If

$$R^{\pm} \in \mathcal{S} \coloneqq \left\{ R : I \longrightarrow \operatorname{Sp}(2n; \mathbb{R}) \mid R(0) = \operatorname{id}, \det(R(1) - \operatorname{id}) \neq 0 \right\},\$$

then L is a Fredholm operator

- Theorem 8.8.1: $\operatorname{Ind}(L) = \mu(R^{-}(t)) \mu(R^{+}(t)) = \mu(x) \mu(y).$
- Prop 8.8.2: Define an operator

$$L_1: W^{1,p}\left(\mathbf{R} \times S^1; \mathbf{R}^{2n}\right) \longrightarrow L^p\left(\mathbf{R} \times S^1; \mathbf{R}^{2n}\right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S(s)Y$$

where $S : \mathbb{R} \longrightarrow \operatorname{Mat}(2n; \mathbb{R})$ is a path of diagonal matrices depending on $\operatorname{Ind}(R^{\pm}(t))$; then $\operatorname{Ind}(L_1) = \operatorname{Ind}(L)$.

- Then $\operatorname{Ind}(L_1) = \operatorname{Ind}(R^-(t)) \operatorname{Ind}(R^+(t)).$
- Idea of proof: take a homotopy of operators

$$L_{\lambda}: W^{1,p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right) \longrightarrow L^{p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_{0}\frac{\partial Y}{\partial t} + S_{\lambda}(s, t)Y$$

which are all Fredholm and all have the same index, then take time 1.

- Use the fact that coker $L_1 \cong \ker L_1^*$, and we can explicitly write the adjoint of L_1 .
- Get a formula that resembles the Morse case: counting the number of eigenvalues that change sign.
- Summary:
 - Replace L by L_0 , which is modified in a neighborhood of zero in the *s* variable. Use invariance of index under small perturbations.
 - Homotope L_0 to L_1 , where S is replaced by a diagonal matrix S(s) that is a constant matrix outside the neighborhood of zero in s. Use invariance of index under homotopy.

2 8.7

- Goal: Toward 8.1.5, show that $L := \overline{\partial} + S(s,t) : W^{1,p} \longrightarrow L^p$ is a Fredholm operator, i.e. the index makes sense (finite-dimensional kernel and cokernel).
- Statement: if det(id $-R_1^{\pm}) \neq 0$ then the operator

$$L: W^{1,p}(\mathbb{R} \times S^1; \mathbb{R}^{2n}) \longrightarrow L^p(\mathbb{R} \times S^1; \mathbb{R}^{2n})$$

given by $L = \overline{\partial} + S(s,t)$ is Fredholm for every p > 1. > Most of the work goes into showing that dim(ker L) < ∞ and im (L) is closed.

- dim ker $L < \infty$:
 - Use elliptic regularity and consequence of Calderón-Zygmund inequality.
 - * Elliptic regularity: If $Y \in L^p$ is a weak solution of the linearized Floer equation LY = 0, then $Y \in W^{1,p}$ and is smooth.
 - * Consequence: If $Y \in W^{1,p}$ and p > 1 then $||Y||_{W^{1,p}} = O(||LY||_{L^p} + ||Y||_{L^p}).$
 - Case 1: S(s,t) = S(t) doesn't depend on s.
 - * Then L is a bijective for every p > 1
 - * Invertibility allows replacing the weak solution $Y \in L^p(\mathbb{R} \times S^1; \cdot)$ with $Y \in L^p([-M, M] \times S^1, \cdot)$ for $M \gg 0$
 - * Restriction $\overline{L}: W^{1,p}(\mathbb{R} \times S^1) \longrightarrow L^p([-M,M] \times S^1)$ is a compact operator, it is "semi-Fredholm"
 - * Apply a theorem: if the inequality is satisfies, the kernel is finite-dimensional and the image is closed.
- dim coker $L < \infty$:
 - Take

$$L: W^{1,p}(\mathbb{R} \times S^1; \mathbb{R}^{2n}) \longrightarrow L^p(\mathbb{R} \times S^1; \mathbb{R}^{2n})$$

and consider the adjoint operator

$$L^{\star}: W^{1,q}\left(\mathbb{R} \times S^{1}; \mathbb{R}^{2n}\right) \longrightarrow L^{q}\left(\mathbb{R} \times S^{1}; \mathbb{R}^{2n}\right)$$

- where $p^{-1} + q^{-1} = 1$, which appeared in 8.5.1.
- Use the fact that coker $L = \ker L^*$
- Show dim ker $L^* < \infty$ since it satisfies the conditions of 8.7.4.

3 8.6

• Start with $u \in C^{\infty}(\mathbb{R} \times S^1; W)$ a solution to the equation

$$\frac{\partial u}{\partial s} + J_1(t, u) \left(\frac{\partial u}{\partial t} - X(t, u) \right) = 0$$

- "Unwrap the cylinder" to a map $v \in C^{\infty}(\mathbb{R}^2; W)$ which is a solution to $\left(\frac{\partial}{\partial s} + J\frac{\partial}{\partial t}\right)u = 0$
 - No longer periodic; instead $v(s, t+1) = \phi(v(s, t))$.
 - Built by precomposing u with the inverse flow ψ_t of X_t
 - Conjugate original J with ψ to get J_1
- Define regular points R(v) as $\frac{\partial}{\partial s}v \neq 0$ with injectivity condition: $s \neq s' \implies v(s,t) \neq v(s',t)$.
- Prove "injectivity result": $R(v) \subseteq \mathbb{R}^2$ is dense and open

3.1 8.6.3, Part 1: R(v) is Open

- Prove R(v) is open: contradict zero derivative
 - Proof uses sequential characterization of being a closed set
 - Construct a sequence in the complement converging to a regular point
 - Since first two conditions of R(v) are open, extract a sequence of points failing injectivity
 - Show it is bounded
 - Apply Bolzano-Weierstrass to extract a convergent subsequence
 - Use quotient definition of derivative, show it is zero, contradiction.

3.2 8.6.3, Part 2: R(v) is Dense in R2 (p.258)

3.3 Step 1: Exclude critical points that are also multiple points

- Definition: *Multiple points* are where injectivity fails in *s*.
 - Characterize R(v) as those in $C(v)^c$ that are not multiples.
- Suffices to show R(v) is dense in $C(v)^c$ Every $(s,t) \in C(v)^c \subseteq \mathbb{R}^2$ is the limit of $(s_n,t) \in C(v)^c$ where $v(s_n,t) \neq x^{\pm}(t)$.

- Why?
$$v(s + \frac{1}{n}, t) = x^+(t) \implies \frac{\partial v}{\partial s} = 0 \implies (s + \frac{1}{n}, t) \in C(v).$$

- Then suffices to show every $(s_0, t_0) \in \mathbb{R} \times I$ with (importantly)

$$\frac{\partial v}{\partial s}(s_0, t_0) \neq 0 \quad \text{and} \quad v(s_0, t_0) \neq x^{\pm}(t_0).$$
(3)

 $\{\#\text{eq:eq1}\}$ is the limit of a sequence of points in R(v).

- Proceed by assuming this is not the case, toward a contradiction.

3.3.1 A Small Ball Avoids Critical Points in the Image

- Surround every point (s_0, t_0) by a ball $B_{\varepsilon}(s_0, t_0)$ missing R(v)
- We can choose ε small enough and $M \gg 1$ big enough (defining $\mathbf{M} = [-M, M] \subset \mathbb{R}$) such that
 - 1. Translate to far enough to get a point outside the image of the ball:

$$(s,t) \in \mathbf{M}^{c} \times [t_{0} - \varepsilon, t_{0} + \varepsilon] \subset \mathbb{R} \times I \implies$$
$$v(s,t) \bigcap v(B_{\varepsilon}(s_{0}, t_{0}) = \emptyset \quad \text{and} \quad x^{\pm}(t) \notin v(B_{\varepsilon}(s_{0}, t_{0})).$$

- Idea: If not, can cook up sequences that force $v(s_0, t_0) = x^{\pm}(t_0)$, a contradiction to @eq:eq1.
- 2. For $t \in B_{\varepsilon}(t_0), B_{\varepsilon}(s_0) \hookrightarrow W$ is an injective immersion
- Combine 1 and 2 to show that
 - * v is locally constant

$$* (s_0, t_0) \in C(v)$$

- * Every point in $B_{\varepsilon}(s_0, t_0)$ satisfies [@eq:eq1]
- 3.

- Show

$$|\mathbf{M}_C| \coloneqq \left| (\mathbf{M} \times I) \bigcap C(v) \right| < \infty$$

since it's the intersection of a compact and a discrete set

- Perturb (s_0, t_0) so that $(s, t) \in \mathbf{M}_C \implies v(s_0, t_0) \neq v(s, t)$.
- * Possible since $(s_0, t_0) \notin C(v) \implies v$ is non-constant in a neighborhood of (s_0, t_0) . - Decrease ε so that

$$v(B_{\varepsilon}(s_0, t_0)) \bigcap v(\mathbf{M}_C) = \emptyset.$$

- This means that in the thick strip containing (s_0, t_0) , no critical points land in its image.
- Conclude that we only have to consider injectivity, not critical points that are also multiple points

3.4 Step 2: Failure of Injectivity in Small Boxes

• Define

$$\mathbf{S}_M(t_0) = \{s_1, \cdots, s_N\} = \{s_i \in [-M, M] \mid v(s_i, t_0) = v(s_0, t_0)\},\$$

the set of multiple points over s_0 .

- This is finite, since infinite \implies has a limit point $\implies \frac{\partial v}{\partial s} = 0$, contradiction.

• Lemma: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that defining

$$\Delta_0 = [s_0 - \delta, s_0 + \delta] \times [t_0 - \delta, t_0 + \delta]$$

then

$$(s,t) \in \Delta \implies \exists s' \in B_{\varepsilon}(s_j) \text{ s.t. } v(s,t) = v(s',t)$$

for some $1 \leq j \leq N$.

- In English: for every epsilon, we can find a delta box $\Delta_0 \ni (s_0, t_0)$ such that every point in Δ_0 is a multiple point over *some* point in an epsilon ball around *some* point in $\mathbf{S}_M(t_0)$.
- Proof idea: otherwise, construct a sequence $(\sigma_n, t_n) \longrightarrow (s_0, t_0)$, use properties 1 and 2 from earlier, extract a limit point σ not in $\mathbf{S}_M(t_0)$ which satisfies $v(\sigma, t_0) = v(s_0, t_0)$, a contradiction (since that set contained exactly the multiple finitely many points).
- Fix $\varepsilon' < \varepsilon/2$ form Step 1 and apply the lemma to ε' to produce a δ and a box Δ_0 .
- Apply the lemma: shrink the delta box Δ_0 to a closed delta ball $\overline{B}_{\delta}(s_0, t_0)$.
 - Every point in the delta box is a multiple point over some s_i .
- So partition the ball up: define Σ_j to be all of the multiple points over $s_j \in \mathbf{S}_{(t_0)}$.
- Take a smaller ρ -ball around some point $(s_{\star}, t_{\star}) \in \Sigma_1^{\circ}$, making sure to choose ε' small enough such that

$$B_{\rho}(s_{\star}, t_{\star}) \bigcap \left([s_1 - \varepsilon', s_1 + \varepsilon'] \times [t_0 - \delta, t_0 + \delta] \right) = \emptyset$$

In other words, the shaded region is disjoint from the ρ -ball.

• Then every point in the ρ -ball is a multiple point over some point in the box around (s_1, t_0) . Pick on such point (s'_{\star}, t_{\star}) on the t_{\star} line.

3.5 Step 3: Final Contradiction

- Construct v_1, v_2 which
 - Satisfy the same Cauchy-Riemann equations
 - Are equal at the origin
 - Have nonzero derivative at the origin.
- We want to show they are equal on \mathbb{R}^2
- Constructing them: use points from step 2 to translate
 - Obtain (s_{\star}, t_{\star}) and (s'_{\star}, t_{\star}) from previous step.
 - Define

$$v_1(s,t) = v (s + s_{\star}, t + t_{\star}) \implies v_1(z) = v(z + w_1) v_2(s,t) = v (s + s'_{\star}, t + t_{\star}) \implies v_2(z) = v(z + w_2)$$

- Satisfy the same CR equations
- By construction, they coincide at (0,0) since $v(s_{\star},t_{\star}) = v(s'_{\star},t_{\star})$.
- Derivatives at the origin are nonzero, coming from the fact that $\frac{\partial v}{\partial s}(s_{\star}, t_{\star}) \neq 0$.
- Now work at zero: for every $(s,t) \in B_{\rho}(0,0)$ there exists a multiple point $s' \in B_{2\varepsilon'}(0)$ over s.
- Use the following extension lemma, consequence of **Continuation Principle**: in this situation, with $X_t \equiv 0$ on $B_{\varepsilon}(\mathbf{0})$, then

$$z \in B_{\varepsilon}(\mathbf{0}) \implies v_1(z) = v_2(z).$$

• Define

$$\mathcal{F}: \mathbf{C}^{\infty} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right) \longrightarrow \mathbf{C}^{\infty} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right)$$
$$w \longmapsto \left(\frac{\partial}{\partial s} + J \cdot \frac{\partial}{\partial t} \right) w$$

- Since v_1, v_2 satisfy the same CR equation, $\mathcal{F}(v_1) = \mathcal{F}(v_2)$
- Linearize \mathcal{F} as we did for the Floer operator to obtain

$$(d\mathcal{F})_{\dots}(Y) = \left(\frac{\partial}{\partial s} + J_0 \cdot \frac{\partial}{\partial t} + \tilde{S}\right) Y_{\dots}$$

where $\tilde{S}: I \times \mathbb{R}^2 \longrightarrow \operatorname{End}(\mathbb{R}^{2n})$

• Set $Y = v_1 - v_2$, then

$$S = \int_{[0,1]} \tilde{S} \implies S\left(\frac{\partial}{\partial s} + J_0 \cdot \frac{\partial}{\partial t} + S\right) Y = 0$$

- From above, $Y \equiv 0$ in $B_{\varepsilon}(\mathbf{0})$, apply **Continuation Principle** to obtain $v_1 = v_2$ on \mathbb{R}^2
- Inductive argument to show

$$\forall k \in \mathbb{Z}, \quad v(s,t) = v(k(s'_{\star} - s_{\star}), t) \stackrel{k \longrightarrow \infty}{\longrightarrow} x^{\pm}(t),$$

which is the desired contradiction.

BREAK

3.6 The Continuation Principle

• Take the perturbed CR equation

$$\left(\frac{\partial}{\partial s} + J_0 \cdot \frac{\partial}{\partial t} + S\right) Y = 0 \quad \text{where} \quad S : \mathbb{R}^2 \longrightarrow \text{End}(\mathbb{R}^{2n})$$

where J_0 is the standard complex structure on \mathbb{R}^{2n} .

• Define an *infinite-order zero* z of an arbitrary function f as

$$z_0 \in Z_{\infty} \iff \sup_{B_r(z_0)} \frac{|f(z)|}{r^k} \xrightarrow{r \longrightarrow 0} 0 \quad \forall k \in \mathbb{Z}^{\ge 0},$$

or for a smooth function,

$$z_0 \in Z_\infty \iff f^{(k)}(z_0) = 0 \quad \forall k \in \mathbb{Z}^{\ge 0}.$$

• Statement: If Y solves CR on $U \subset \mathbb{R}^2$ then the set

 $C \coloneqq \left\{ (s,t) \in U \ \Big| \ Y \text{ is an infinite-order zero at } (s,t) \right\}.$

- Explanation: for f smooth, Z_{∞} is closed. For f holomorphic, it is clopen.
 - From complex analysis: for a connected domain Ω , the only clopen subsets are \emptyset, Ω , so nonempty and f = g on a connected subset implies f = g on Ω .
 - In particular, Y = 0 on $U' \subseteq U$ implies Y = 0 on U.
- Prove is a consequence of the **Similarity Principle**

3.7 Similarity Principle

- Statement:
 - Recall definition of perturbed CR equation:

$$\left(\frac{\partial}{\partial s} + J_0 \cdot \frac{\partial}{\partial t} + S\right) Y = 0 \quad \text{where} \quad S : \mathbb{R}^2 \longrightarrow \text{End}(\mathbb{R}^{2n})$$

- Let
- $-Y \in C^{\infty}(B_{\varepsilon}; \mathbb{C}^n)$, or more generally $W^{1,p}(B_{\varepsilon}; \mathbb{C}^n)$, be a solution
- $-S \in C^{\infty}(\mathbb{R}^2, \operatorname{End}(\mathbb{R}^2))$ or more generally $L^p(B_{\varepsilon}; \operatorname{End}_{\mathbb{R}}(\mathbb{R}^{2n}))$

$$- p > 2$$

Then there exist

$$\delta \in (0, \varepsilon),$$

$$\sigma \in C^{\infty}(B_{\delta}, \mathbb{C}^{n})$$

$$A \in W^{1, p}(B_{\delta}, \operatorname{GL}(\mathbb{R}^{2n})).$$

such that

$$\forall (s,t) \in B_{\delta}, \quad Y(s,t) = A(s,t) \cdot \sigma(s+it) \quad \text{and} \quad J_0 A(s,t) = A(s,t) J_0.$$

- Used to prove:
 - C(v) is discrete
 - "Extension" lemma used to prove R(v) is dense
- Some ideas from proof:

 - Matrix A will look like the fundamental matrix of solutions to the equation Compactify to get $B_{\delta} \subset S^2$, if $Y : S^2 \longrightarrow \mathbb{C}^n$ then we can consider the section

• $\overline{Y} = 0$ makes Y a holomorphic sphere in \mathbb{C}^n .

3.8 Odds and Ends

• Theorem: the following is a surjective Fredholm operator for every p > 1:

$$\overline{\partial}: W^{1,p}\left(S^2, \mathbb{C}^n\right) \longrightarrow L^p\left(\Lambda^{0,1}T^{\star}S^2 \otimes \mathbb{C}^n\right).$$

- Computation will show that dim ker $\bar{\partial}$ = dim coker $\bar{\partial}$ = 2n, so Ind $\bar{\partial}$ = 0.