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What we're trying to prove 8.1.5: (dF), is a Fredholm operator of index u(x) — u(y).

1 8.8
e Define
LW (R x §5R™) — L7 (R x S, R™) (1)
oY oY
Yr—>$+JOE+S(S,t)Y (2)

e By the end of 8.8: replace the Fredholm operator L by an operator L; with the same index
(not the same kernel/cokernel)

— Compute the index of ? because we can explicitly describe its kernel and cokernel



e Use the fact S : R x S — Mat(2n;R) and
S(s,t) =3 5% (1)
which are symmetric.
— Take corresponding symplectic paths BT : T — Sp(2n; R).
— If
R* €8 ={R:1— Sp(2n;R) | R(0) = id, det(R(1) - id) # 0},
then L is a Fredholm operator
e Theorem 8.8.1: Ind(L) = u(R (1)) — u(RT(t)) = p(x) — u(y).
e Prop 8.8.2: Define an operator
Ly:Whp (R x S R2”) Ny (R x St RQ”)
oYy oYy
Y — — Y
— 5 +Jo 5 + S(s)
where S : R — Mat(2n;R) is a path of diagonal matrices depending on Ind(R*(t)); then
Ind(Ly) = Ind(L).
Then Ind(L;) = Ind(R™(¢)) — Ind(R™ (t)).
Idea of proof: take a homotopy of operators
Ly :Wp (R x Sl;RQ") P (R x Sl;R2")
oYy oYy

Y — g + JOE + S)\(S,t)Y

which are all Fredholm and all have the same index, then take time 1.
— Use the fact that coker L1 = ker L], and we can explicitly write the adjoint of L;.
Get a formula that resembles the Morse case: counting the number of eigenvalues that
change sign.

e Summary:

— Replace L by Lo, which is modified in a neighborhood of zero in the s variable. Use
invariance of index under small perturbations.

— Homotope Ly to Li, where S is replaced by a diagonal matrix S(s) that is a constant
matrix outside the neighborhood of zero in s. Use invariance of index under homotopy.

2 8.7

e Goal: Toward 8.1.5, show that L := 0+ S(s,t) : WP — LP is a Fredholm operator, i.e. the
index makes sense (finite-dimensional kernel and cokernel).

e Statement: if det(id — RT) # 0 then the operator
L: WY (R x S1;R?™) — LP(R x S1;R?")

given by L = 0 + S(s,t) is Fredholm for every p > 1. > Most of the work goes into showing
that dim(ker L) < oo and im (L) is closed.




e dimker L < oo:

— Use elliptic regularity and consequence of Calderén-Zygmund inequality.
x Elliptic regularity: If Y € L? is a weak solution of the linearized Floer equation
LY =0, then Y € WP and is smooth.
+ Consequence: If Y € W' and p > 1 then ||Y||yy1o = O(ILY || 1o + IV ] 1)
— Case 1: S(s,t) = S(t) doesn’t depend on s.
* Then L is a bijective for every p > 1
* Invertibility allows replacing the weak solution Y € LP(RxS';-) with Y € LP([—M, M]x
St for M >0
s Restriction L : WHP(R x S') — LP([-M, M] x S1) is a compact operator, it is
“semi-Fredholm”
*x Apply a theorem: if the inequality is satisfies, the kernel is finite-dimensional and
the image is closed.

e dim coker L < oo:

— Take

L: WY (R x S1;R?™) — LP(R x S1;R*")

and consider the adjoint operator
¥ wha (R x 51;R2") Ny (]R x 51;1128")

where p~! + ¢~! = 1, which appeared in 8.5.1.

— Use the fact that coker L = ker L*
— Show dim ker L* < oo since it satisfies the conditions of 8.7.4.

3 8.6

Start with u € C*°(R x S*; W) a solution to the equation

s +J1(t7u)<861; —X(t,u)) =0

“Unwrap the cylinder” to a map v € C°°(R?; W) which is a solution to <88 + Jgt)u =0
s

— No longer periodic; instead v(s,t 4+ 1) = ¢(v(s,t)).
— Built by precomposing v with the inverse flow ¢, of X;
— Conjugate original J with ¥ to get Jp

0
Define regular points R(v) as 25" # 0 with injectivity condition: s # s’ = wv(s,t) # v(s,1).
s

Prove “injectivity result”: R(v) C R? is dense and open




3.1 8.6.3, Part 1: R(v) is Open

3.1 8.6.3, Part 1: R(v) is Open

e Prove R(v) is open: contradict zero derivative
— Proof uses sequential characterization of being a closed set
— Construct a sequence in the complement converging to a regular point
— Since first two conditions of R(v) are open, extract a sequence of points failing injectivity

— Show it is bounded
— Apply Bolzano-Weierstrass to extract a convergent subsequence
— Use quotient definition of derivative, show it is zero, contradiction.

3.2 8.6.3, Part 2: R(v) is Dense in R2 (p.258)
3.3 Step 1: Exclude critical points that are also multiple points

e Definition: Multiple points are where injectivity fails in s.
— Characterize R(v) as those in C'(v)¢ that are not multiples.
e Suffices to show R(v) is dense in C(v)® — Every (s,t) € C(v)¢ C R? is the limit of (s,,t) € C(v)°
where v(sy,,t) # 2 (t).
1 0 1
— Why? v(s+ —,t) = a7 (t) = 8—U =0 = (s+—,t) € C(v).
n s n
— Then suffices to show every (sg,t9) € R x I with (importantly)

Z(so,to) 40 and wv(so,to) # x5 (to). (3)

{#eq:eql} is the limit of a sequence of points in R(v).
— Proceed by assuming this is not the case, toward a contradiction.

3.3.1 A Small Ball Avoids Critical Points in the Image
e Surround every point (s, tp) by a ball B(sg, to) missing R(v)

e We can choose € small enough and M > 1 big enough (defining M = [-M, M] C R) such
that

1. Translate to far enough to get a point outside the image of the ball:

(s,t) e M® X [tg —e,to+e] CRXx T =
v(s,t)(v(B:(so,t0) =0 and £ (t) & v(B:(s0,10)).
— Idea: If not, can cook up sequences that force v(sg,ty) = xi(to), a contradiction to
@eq:eql.
2. For t € B.(to), B:(s0) = W is an injective immersion

— Combine 1 and 2 to show that
x v is locally constant
* (So,to) S C(U)
« Every point in B.(s,to) satisfies [Qeq:eql]




3.4 Step 2: Failure of Injectivity in Small Boxes

— Show
Mg| = (M x )V C()| < %

since it’s the intersection of a compact and a discrete set
— Perturb (sp,to) so that (s,t) € Mo = v(so,to) # v(s,1t).
« Possible since (sg, %) € C(v) = v is non-constant in a neighborhood of (s, o).
— Decrease € so that

v(B:(s0,t0)) ﬂv(M(;) = 0.
e This means that in the thick strip containing (sg, ), no critical points land in its image.

e Conclude that we only have to consider injectivity, not critical points that are also multiple
points

3.4 Step 2: Failure of Injectivity in Small Boxes
e Define
Sui(to) = {51, 5w} = {5 € [-M, M] | v(si, to) = v(s0,t0) } ,

the set of multiple points over sg.

v
— This is finite, since infinite = has a limit point = e 0, contradiction.
S

e Lemma: For every ¢ > 0 there exists a § > 0 such that defining
Ag = [s0 — 6,50+ 0] X [to — I, t0 + ¢]
then
(s,t) € A = 35’ € Bc(s;) s.t. v(s, t) =v(s, 1)
for some 1 < j < N.

— In English: for every epsilon, we can find a delta box Ay 3 (s, tg) such that every point
in Ag is a multiple point over some point in an epsilon ball around some point in Sz (o).

— Proof idea: otherwise, construct a sequence (oy,,t,) — (So,to), use properties 1 and 2
from earlier, extract a limit point o not in Sps(tg) which satisfies v(o,ty) = v(so, to), a
contradiction (since that set contained exactly the multiple finitely many points).

e Fix ¢/ < ¢/2 form Step 1 and apply the lemma to &’ to produce a § and a box Ag.
e Apply the lemma: shrink the delta box Ag to a closed delta ball Bs(so,to).

— Every point in the delta box is a multiple point over some s;.
e So partition the ball up: define ¥; to be all of the multiple points over s; € Stp).

e Take a smaller p-ball around some point (s, %) € ¥, making sure to choose &’ small enough
such that

By (Sx,tx) ﬂ ([s1 — e s1+ €] x [to—6,t0 + 5]) = 0.
In other words, the shaded region is disjoint from the p-ball.

e Then every point in the p-ball is a multiple point over some point in the box around (si, o).
Pick on such point (s),t,) on the t, line.




3.5 Step 3: Final Contradiction

3.5 Step 3: Final Contradiction
e Construct vy, vo which

— Satisfy the same Cauchy-Riemann equations
— Are equal at the origin
— Have nonzero derivative at the origin.

e We want to show they are equal on R?
e Constructing them: use points from step 2 to translate

— Obtain (s, t,) and (s}, t.) from previous step.

— Define
vi(s,t) =v(s+ st +1t) = vi(2) =v(z+w)
va(s,t) = v (s+ s, t+t) = va(z) =v(z+ wa)

Satisfy the same CR equations
— By construction, they coincide at (0,0) since v(sy, tx) = v(s}, tx).

v
— Derivatives at the origin are nonzero, coming from the fact that —(s,,tx) # 0.

Os

e Now work at zero: for every (s,t) € B,(0,0) there exists a multiple point s’ € Ba./(0) over s.

e Use the following extension lemma, consequence of Continuation Principle: in this situation,
with Xy = 0 on B:(0), then

z € B.(0) = v1(2) = va(2).

e Define
F.C® (R X Sl;RZ”) SNYGLY (R x Sl;RQ")

wb—>(a+J-8>w

e Since vy, v satisfy the same CR equation, F(v1) = F(v2)

e Linearize F as we did for the Floer operator to obtain

(dF). (V) = (888 +Jo - gt + s) Y.

where S : I x R? — End(R*")
e Set Y = vy — v9, then

— - L Y =
S = [0’1]5 - S( S+J0 t—‘rS) =0

e From above, Y = 0 in B.(0), apply Continuation Principle to obtain v; = vy on R?
e Inductive argument to show
Vi eZ, v(s,t)=uv(k(s, —s,),t) "5 2% (),
which is the desired contradiction. |

BREAK




3.6 The Continuation Principle

3.6 The Continuation Principle
e Take the perturbed CR equation

0 0 . L2 2n
(as—i-Jo-alf—i—S)YO where S :R* — End(R“")

where Jy is the standard complex structure on R?".

Define an infinite-order zero z of an arbitrary function f as

[f ()] r—0

20 € Zoo < SUp — 0 VkGZZO,

BT('ZO) r

or for a smooth function,

20 € Zoo = fM®(2) =0 Vkezz".

Statement: If Y solves CR on U C R? then the set

C = {(s,t) evU ‘ Y is an infinite-order zero at (s,t)} .

Explanation: for f smooth, Z., is closed. For f holomorphic, it is clopen.

— From complex analysis: for a connected domain €2, the only clopen subsets are (), 2, so
nonempty and f = g on a connected subset implies f = g on 2.
— In particular, Y = 0 on U’ C U implies Y = 0 on U.

e Prove is a consequence of the Similarity Principle

3.7 Similarity Principle

e Statement:

Recall definition of perturbed CR equation:

0 0 . L2 2n
<88+J0-at+S>Y—O where S : R — End(R*")

— Let
— Y € C*®°(B.;C"), or more generally W?(B.;C"), be a solution
S € C°°(R?, End(R?)) or more generally L”(B.; Endg(R*"))

- p>2
Then there exist

0 € (0,¢),

o€ C®(Bs,C")

A € WHP(B;, GL(R*™)).
such that

V(s,t) € Bs, Y(s,t)=A(s,t)-o(s+it) and JoA(s,t) = A(s,t)Jo.




3.8 0Odds and Ends

e Used to prove:

— C(v) is discrete
— “Extension” lemma used to prove R(v) is dense

e Some ideas from proof:

— Matrix A will look like the fundamental matrix of solutions to the equation
— Compactify to get Bs C S2,if Y : S — C" then we can consider the section

<A0,1T*52)" — AOIT*g2 o

l Vi
)%

X

e Y = 0 makes Y a holomorphic sphere in C".

3.8 Odds and Ends

e Theorem: the following is a surjective Fredholm operator for every p > 1:
5 Wwp (52, C") BN (A071T*52 ® C”) :

— Computation will show that dim ker @ = dim coker 9 = 2n, so Ind d = 0.
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