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Outline

What we’re trying to prove:

– 8.1.5: (dF)u is a Fredholm operator of index µ(x)−µ(y).

Used to show:
– 8.1.4: Γ : W 1,p × C∞ε −→ Lp has a continuous right-inverse and is surjective
– 8.1.3: Z(x , y , J) is a Banach manifold
– 8.1.1: h ∈ Hreg,H0 + h nondegenerate and

(dF)u surjective ∀ u ∈M(H0 + h, J).

– 8.1.2: For h ∈ Hreg and x , y ∼ {pt} of H0,

dimmfdM(x , y ,H0 + h) = µ(x)− µ(y).
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Map

8.1.4 :Γ : W 1,p × C∞
ε −→ Lp cts right-inverse 8.1.3 : Z(x, y, J)a Banach manifold

8.1.1 :h ∈ Hreg,H0 + h nondegenerate and (dF)u surjective ∀ u ∈ M(H0 + h, J)

8.1.2 :h ∈ Hreg and x, y ∼ {pt} of H0 =⇒ dimmfdM(x, y,H0 + h) = µ(x)− µ(y). 4
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Destination

What we’re working toward now:

– 8.1.5: (dF)u is a Fredholm operator of index µ(x)−µ(y).

Outline for today:

– 8.6: Filling in lemmas used in previous sections
– Sketch proof of 8.6.3, statement of Somewhere Injectivity
– Statement of Continuation Principle
– Statement of Similarity Principle

– High-level outlines
– 8.7: Proving the operator is Fredholm
– 8.8: Computing its index
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Review From Last Time

– u ∈ C∞(R× S1;W ) is a solution to the Floer equation
– C (u) the critical points and R(u) the regular points of u:

C(u) :=

{
(s0, t0) ∈ R× S1

∣∣∣ ∂u

∂s
(s0, t0) = 0

}
R(u) :=

{
(s0, t0) ∈ C(u)c

∣∣∣ v(s, t) 6= x±(t), s 6= s0 =⇒ u(s, t0) 6= u(s0, t0)
}
.

WTS: C (u) is discrete and R(u) is open/dense in R× S1

– Strategy: “unwrap” u to an easier solution v on R2.
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Strategy
Strategy:

1 “Unwrapping” u. Replace

∂u

∂s
+ J(t, u)

(
∂u

∂t
− X (t, u)

)
= 0 where u ∈ C∞(R× S1;W )

with a Cauchy-Riemann equation on R2:

∂v

∂s
+ J

∂v

∂t
= 0 where v ∈ C∞(R2;W )

(Reduces to showing statements for v instead of u)

2 Show R(v) ⊂ R2 is open (short)

3 Show R(v) ⊂ R2 is dense (main obstacle)

Main Ingredients:

– Continuation Principle

– Similarity Principle
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Review: 8.6.1, Unwrapping/Reduction
If u is a solution to the following equation:

∂u

∂s
+ J(t, u)

(
∂u

∂t
− X (t, u)

)
= 0

Then there exist

– An almost complex structure J1

– A diffeomorphism ϕ on W ?
– A map v ∈ C∞(R2;W )

where

∂v

∂s
+ J1(v)

∂v

∂t
= 0

v(s, t + 1) = ϕ(v(s, t))

C(u) = C(v) and R(u) = R(v).

– Recall definition of v :

v(s, t) := ψ−1
t (u(s, t))
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Toward 8.6.3, Injectivity: R(v) is Open

C (u) :=

{
(s0, t0) ∈ R× S1

∣∣∣ ∂u

∂s
(s0, t0) = 0

}
R(u) :=

{
(s0, t0) ∈ C (u)c

∣∣∣ v(s, t) 6= x±(t), s 6= s0 =⇒ u(s, t0) 6= u(s0, t0)
}
.
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Sketch of Proof: R(v) is Open

C(u) :=

{
(s0, t0) ∈ R× S1

∣∣∣ ∂u

∂s
(s0, t0) = 0

}
R(u) :=

{
(s0, t0) ∈ C(u)c

∣∣∣ v(s, t) 6= x±(t), s 6= s0 =⇒ u(s, t0) 6= u(s0, t0)
}
.

Proving R(v) is open: contradict zero derivative.

– Use sequential characterization of being a closed set
– Construct a sequence in R(v)c converging to a point in R(v).
– First two conditions of R(v) are open, so extract a sequence failing injectivity
– Show it is bounded
– Apply Bolzano-Weierstrass to extract a convergent subsequence

– Use quotient definition of ∂v
∂s

, show it is zero, contradiction.

�
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Toward 8.6.3, Injectivity: R(v) is Dense

Define multiple points:

– Set R = R
∐
{±∞}, extend v : R2 −→ W to

v : R× R −→ W

v(±∞, t) = x±(t).

– Define the set of multiple points over (s0, t0):

M(s0, t0) :=
{

(s′, t0) ∈ R2
∣∣∣ s 6= s′ ∈ R, v(s′, t0) = v(s0, t0)

}
– Multiple points are where injectivity fails in s.

– Characterizes R(v) ⊂ C(v)c as points which don’t admit multiples.
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Step 1: Exclude critical points
⋂

multiple points

– Suffices to show R(v) is dense in C(v)c

(s, t) ∈ C(v)c =⇒ ∃(sn, t) ⊂ C(v)c
n−→∞−→ (s, t) with v(sn, t) 6= x±(t) ∀n.

– Why? E.g.

v(s +
1

n
, t) = x+(t) =⇒

∂v

∂s
= 0 =⇒ (s +

1

n
, t) ∈ C(v).

– Then suffices to show every (s0, t0) ∈ R× [0, 1] with (importantly)

∂v

∂s
(s0, t0) 6= 0 and v(s0, t0) 6= x±(t0). (1)

is the limit of a sequence of points in R(v).

– Proceed by assuming this is not the case, toward a contradiction.
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Step 1: Exclude critical points
⋂

multiple points

∂v

∂s
(s0, t0) 6= 0 and v(s0, t0) 6= x±(t0). (2)

A Small Ball Avoids Critical Points in the Image

– Surround (s0, t0) by a ball Bε(s0, t0) ⊂ R(v)c

– We can choose ε small enough and M � 1 big enough,
defining

M = [−M ,M] ⊂ R,

such that several properties hold:
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Step 1: Exclude critical points
⋂

multiple points

∂v

∂s
(s0, t0) 6= 0 and v(s0, t0) 6= x±(t0).

1 Translate to far enough to get a point outside the image of the ball:

(s, t) ∈ Mc × [t0 − ε, t0 + ε] ⊂ R× I =⇒

v(s, t)
⋂

v(Bε(s0, t0) = ∅ and x±(t) 6∈ v(Bε(s0, t0)).

– Idea: else, cook up sequences forcing v(s0, t0) = x±(t0), contradicting open

conditions

2 For t ∈ Bε(t0), Bε(s0) ↪→W is an injective immersion
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Step 1: Exclude critical points
⋂

multiple points

1 Translated boxes that miss the image of Bε(s0, t0) and contain no multiple
points over (s0, t0)

2 Bε(s0) ↪→W immersively

Combine 1 and 2 to show that

– v is locally constant
– (s0, t0) ∈ C(v)
– Every point in Bε(s0, t0) satisfies open conditions

∂v

∂s
(s0, t0) 6= 0 and v(s0, t0) 6= x±(t0).
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Step 1: Exclude critical points
⋂

multiple points

3

|MC | :=
∣∣∣(M× I )

⋂
C(v)

∣∣∣ <∞
since it’s the intersection of a compact and a discrete set

– Perturb (s0, t0) so that

(s, t) ∈ MC =⇒ v(s0, t0) 6= v(s, t).

– Possible since (s0, t0) 6∈ C (v) =⇒ v is non-constant in a
neighborhood of (s0, t0).

– Decrease ε so that

v(Bε(s0, t0))
⋂

v(MC ) = ∅.
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Step 1: Exclude critical points
⋂

multiple points

v(Bε(s0, t0))
⋂

v(MC ) = ∅.
This means that in the thick strip containing (s0, t0), no critical points land in its
image.

Conclude that we only have to consider injectivity, not critical points that are also
multiple points. 19
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Step 2: Failure of Injectivity in Small Boxes

– Define the set of multiple points over s0:

SM(t0) = {s1, · · · , sN} =
{
si ∈ [−M,M]

∣∣∣ v(si , t0) = v(s0, t0)
}
,

– Finite, since infinite =⇒ limit point =⇒ ∂v
∂s = 0. ⇒⇐

– Lemma: For every ε > 0 there exists a δ > 0 such that defining

∆0 = [s0 − δ, s0 + δ]× [t0 − δ, t0 + δ]

then

(s, t) ∈ ∆0 =⇒ ∃s′ ∈ Bε(sj ) s.t. v(s, t) = v(s′, t)

for some 1 ≤ j ≤ N.
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Step 2: Failure of Injectivity in Small Boxes

– In words: for every ε, we can find a δ-box ∆0 3 (s0, t0) such that every point in
∆0 is a multiple point over some point in an epsilon ball around some point in
SM(t0).

– Fix ε′ < ε/2 form Step 1 and apply the lemma to ε′ to produce δ and ∆0.

– Apply the lemma: shrink ∆0 to a closed delta ball Bδ(s0, t0).

– Upshot: Every point in ∆0 is a multiple point over some sj .
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Step 2: Failure of Injectivity in Small Boxes

SM(t0) = {s1, · · · , sN} =
{
si ∈ [−M,M]

∣∣∣ v(si , t0) = v(s0, t0)
}

– So partition the ball up: define Σj : all multiple points over sj ∈ SM(t0).
– Take smaller ρ-ball some (s?, t?) ∈ Σ◦1 , choose ε′ small enough such that

Bρ(s?, t?)
⋂(

[s1 − ε′, s1 + ε′]× [t0 − δ, t0 + δ]
)

= ∅.

Upshot: the shaded region is disjoint from the ρ-ball.
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Step 3: Final Contradiction

– Construct v1, v2 which
– Satisfy the same Cauchy-Riemann equations
– Are equal at the origin
– Have nonzero derivative at the origin.

– We want to show they are equal on R2

– Constructing them: use points from step 2 to translate
– Obtain (s?, t?) and (s ′?, t?) from previous step.
– Define

v1(s, t) = v (s + s?, t + t?) =⇒ v1(z) = v(z + w1)
v2(s, t) = v (s + s ′?, t + t?) =⇒ v2(z) = v(z + w2)

– Satisfy the same CR equations
– By construction, they coincide at (0, 0) since

v(s?, t?) = v(s ′?, t?).
– Derivatives at the origin are nonzero, coming from the fact

that ∂v
∂s (s?, t?) 6= 0.
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Step 3: Final Contradiction

– Now work at zero: for every (s, t) ∈ Bρ(0, 0) there exists
a multiple point s ′ ∈ B2ε′(0) over s.

– Use the following extension lemma, consequence of
Continuation Principle: in this situation, with Xt ≡ 0
on Bε(0), then

z ∈ Bε(0) =⇒ v1(z) = v2(z).

– Define

F : C∞
(
R× S1; R2n

)
−→ C∞

(
R× S1; R2n

)
w 7−→

(
∂

∂s
+ J · ∂

∂t

)
w

– Since v1, v2 satisfy the same CR equation, F(v1) = F(v2)
24
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Step 3: Final Contradiction

F : C∞
(
R× S1; R2n

)
−→ C∞

(
R× S1; R2n

)
w 7−→

(
∂

∂s
+ J · ∂

∂t

)
w

Linearize F as we did for the Floer operator to obtain

(dF)···(Y ) =

(
∂

∂s
+ J0 ·

∂

∂t
+ S̃

)
Y .

where S̃ : I × R2 −→ End(R2n)
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Step 3: Final Contradiction

– Set Y = v1 − v2, then

S =

∫
[0,1]

S̃ =⇒ S

(
∂

∂s
+ J0 ·

∂

∂t
+ S

)
Y = 0

– From above, Y ≡ 0 in Bε(0), apply Continuation
Principle to obtain v1 = v2 on R2

– Inductive argument to show

∀k ∈ Z, v(s, t) = v(k(s ′? − s?), t)
k−→∞−→ x±(t),

which contradicts an open condition. �

26



Intro
8.6 Review

8.6.3: R(v) is dense in R2

8.7
8.8

The Continuation Principle

– Take the perturbed CR equation(
∂

∂s
+ J0 ·

∂

∂t
+ S

)
Y = 0 where S : R2 −→ End(R2n)

where J0 is the standard complex structure on R2n.

– Define an infinite-order zero z of an arbitrary function f
as

z0 ∈ Z∞ ⇐⇒ sup
Br (z0)

|f (z)|
r k

r−→0−→ 0 ∀k ∈ Z≥0,

or for a smooth function,

z0 ∈ Z∞ ⇐⇒ f (k)(z0) = 0 ∀k ∈ Z≥0.
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The Continuation Principle

– Statement: If Y solves CR on U ⊂ R2 then the set

C :=
{

(s, t) ∈ U
∣∣∣ Y is an infinite-order zero at (s, t)

}
.

– Explanation: for f smooth, Z∞ is closed. For f
holomorphic, it is clopen.

– From complex analysis: for a connected domain Ω, the only
clopen subsets are ∅,Ω, so nonempty and f = g on a
connected subset implies f = g on Ω.

– In particular, Y = 0 on U ′ ⊆ U implies Y = 0 on U.

– Proof is a consequence of the Similarity Principle
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Similarity Principle

– Recall definition of perturbed CR equation:(
∂

∂s
+ J0 ·

∂

∂t
+ S

)
Y = 0 where S : R2 −→ End(R2n)

Let

– Y ∈ C∞(Bε;Cn), or more generally W 1,p(Bε;Cn), be a solution
– S ∈ C∞(R2,End(R2)) or more generally Lp(Bε; EndR(R2n))
– p > 2

Then there exist

δ ∈ (0, ε),

σ ∈ C∞(Bδ,Cn)

A ∈W 1,p(Bδ,GL(R2n)).

such that

∀(s, t) ∈ Bδ, Y (s, t) = A(s, t) · σ(s + it) and J0A(s, t) = A(s, t)J0.
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Similarity Principle

Used to prove:

– C (v) is discrete
– “Extension” lemma used to prove R(v) is dense

Some ideas from proof:

– Matrix A will look like the fundamental matrix of
solutions to an equation

– Compactify to get Bδ ⊂ S2, if Y : S2 −→ Cn then we
can consider Y as a section of the bundle

(
A0,1T ?S2

)n
= Λ0,1T ?S2 ⊗ Cn.

– Y = 0 makes Y a holomorphic sphere in Cn. 30



Intro
8.6 Review

8.6.3: R(v) is dense in R2

8.7
8.8

8.7

31



Intro
8.6 Review

8.6.3: R(v) is dense in R2

8.7
8.8

8.7 Outline

What we’re trying to prove

– 8.1.5: (dF)u is a Fredholm operator of index µ(x)−µ(y).

– Setup

S±(t) = lim
s−→±∞

S(s, t),

R±t a solution to the IVP

∂

∂t
R = J0S

±R, R±0 = id.

– Statement: if det(id− R±1 ) 6= 0 then the operator

L : W 1,p(R× S1;R2n) −→ Lp(R× S1;R2n)

L = ∂ + S(s, t) .

is Fredholm for every p > 1.

(i.e. index makes sense, dim ker L, dim coker L <∞)

– Most of the work: dim(ker L) <∞ and im (L) closed.
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8.7 Outline: Step 1, dim ker L <∞
– Main ingredients:

– Elliptic regularity: For Y ∈ Lp(R× S1) a weak solution of
the linearized Floer equation

LY = 0 =⇒ Y ∈W 1,p(R× S1)
⋂

C∞.

– A consequence of the Calderón-Zygmund (CZ) Inequality:
For Y ∈W 1,p(R× S1;R2n) and p > 1,

‖Y ‖W 1,p(R×S1;R2n) ≤ C
(
‖LY ‖Lp(R×S1) + ‖Y ‖Lp(R×S1)

)
(3)

for some constant C .

– Strategy: split into cases
– Case 1: S(s, t) = S(t) doesn’t depend on s.
– Case 2: S(s, t) does depend on s

33
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8.7 Outline: dim ker L <∞
CZ inequality:

‖Y ‖W 1,p(R×S1;R2n) ≤ C
(
‖LY ‖Lp(R×S1) + ‖Y ‖Lp(R×S1)

)
(4)

Step 1: S(s, t) = S(t) doesn’t depend on s, prove improved
estimate.

– Consider the “asymptotic operator”

D : W 1,p(R× S1;R2n) −→ Lp(R× S1)

D = ∂ + S(t) = lim
s−→±∞

L := lim
s−→±∞

(
∂ + S(s, t)

)
.

– Show for p > 1,D is invertible.
– Invertibility improves estimate: replace R with [−M ,M].
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8.7 Outline: dim ker L <∞
– Step 2: S(s, t) does depend on s
– Improved estimate in Step 1 allows replacing weak soln:

Y ∈ Lp(R× S1; ·) Y ∈ Lp([−M ,M]× S1, ·).
– Then restrict

L : W 1,p(R× S1;R2n) −→ Lp(R× S1;R2n)

L := ∂ + S(s, t)

 LM : W 1,p(R× S1) −→ Lp([−M ,M]× S1).

– Since the restriction is a compact operator, it is
“semi-Fredholm”, apply a theorem:

CZ inequality satisfied =⇒ dim ker LM <∞, im LM closed.
35
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8.7 Outline: dim ker L <∞
– Will need some real/functional analysis to invert

operators:
– “Variation of constants”
– Hilbert spaces and Spectrum of an operator
– Hille-Yosida theory: existence and uniqueness for operator

IVPs, e.g. ∂Y
∂s = −AY

– Young’s Inequality (some convolution integrals)
– Holder’s Inequality
– Distribution theory
– Rellich’s Theorem (Multiple uses)
– Hahn-Banach Theorem
– Riesz Representation Theorem

– Conclude 8.7 by showing L is Fredholm:
– dim ker L <∞ (long)
– dim coker L <∞ (very short)

�
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8.8: Outline

What we’re trying to prove

– 8.1.5: (dF)u is a Fredholm operator of index µ(x)−µ(y).

– Define

L : W 1,p
(
R× S1; R2n

)
−→ Lp

(
R× S1; R2n

)
Y 7−→ ∂Y

∂s
+ J0

∂Y

∂t
+ S(s, t)Y

– 8.7: Shows L is Fredholm

– By the end of 8.8: replace L by L1 with the same index
– (not the same kernel/cokernel)

– Compute Ind L1: explicitly describe ker L1, coker L1.
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8.8: Replacing L

L : W 1,p
(
R× S1; R2n

)
−→ Lp

(
R× S1; R2n

)
Y 7−→ ∂Y

∂s
+ J0

∂Y

∂t
+ S(s, t)Y

– Replace in two steps:
– L L0, modified in a Bε(0) in s.

Use invariance of index under small perturbations.

– L0  L1 by a homotopy, where Sλ : S  S(s) a diagonal
matrix that is a constant matrix outside Bε(0).

Use invariance of index under homotopy.
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8.8: Replacing L

S(s, t)
s−→±∞−→ S±(t)

R±t a solution to the IVP
∂

∂t
R = J0S

±R, R±0 = id.

– Use the fact S : R× S1 −→ Mat(2n;R) and S±(t) are symmetric.
– Take corresponding symplectic paths R± : I −→ Sp(2n;R).
– L will be a Fredholm operator if

R± ∈ S :=
{
R : I −→ Sp(2n;R)

∣∣∣ R(0) = id, det(R(1)− id) 6= 0
}
.

– Theorem 8.8.1:

Ind(L) = µ(R−(t))− µ(R+(t)) = µ(x)− µ(y).
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8.7
8.8

8.8: L0  L1

– Prop 8.8.2: Construct an operator

L1 : W 1,p
(
R× S1; R2n

)
−→ Lp

(
R× S1; R2n

)
Y 7−→

∂Y

∂s
+ J0

∂Y

∂t
+ S(s)Y

where S : R −→ Mat(2n;R) is a path of diagonal matrices depending on
Ind(R±(t)); then

Ind(L) = Ind(L1) = Ind(R−(t))− Ind(R+(t)).

– Idea of proof: take a homotopy of operators

Lλ : W 1,p
(
R× S1; R2n

)
−→ Lp

(
R× S1; R2n

)
Y 7−→

∂Y

∂s
+ J0

∂Y

∂t
+ Sλ(s, t)Y

which are all Fredholm and all have the same index, then take time 1.
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8.7
8.8

8.8: Index of L1

L1 : W 1,p
(
R× S1; R2n

)
−→ Lp

(
R× S1; R2n

)
Y 7−→ ∂Y

∂s
+ J0

∂Y

∂t
+ S(s)Y

– Use the fact that

coker L1
∼= ker L∗1,

and we can explicitly write the adjoint of L1.
– Get a formula that resembles the Morse case

– (Counting number of eigenvalues that change sign).

�
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