Section 8.6 - 8.8: Setup for Computing the Index

May 21, 2020

Intro

Outline

What we're trying to prove:

- 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) - \mu(y)$.

Used to show:

- $\hspace{0.1cm} 8.1.4: \hspace{0.1cm} \mathsf{\Gamma}: W^{1,p} \times C^{\infty}_{\varepsilon} \longrightarrow L^{p} \hspace{0.1cm} \text{has a continuous right-inverse and is surjective}$
- 8.1.3: $\mathcal{Z}(x, y, J)$ is a Banach manifold
- 8.1.1: $h \in \mathcal{H}_{reg}, H_0 + h$ nondegenerate and

 $(d\mathcal{F})_u$ surjective $\forall \ u \in \mathcal{M}(H_0 + h, J)$.

- 8.1.2: For $h \in \mathcal{H}_{reg}$ and $x, y \sim \{pt\}$ of H_0 ,

 $\dim_{\mathrm{mfd}} \mathcal{M}(x, y, H_0 + h) = \mu(x) - \mu(y).$

Map

8.1.4 : $\Gamma: W^{1,\rho} \times C_{\varepsilon}^{\infty} \longrightarrow L^{\rho}$ cts right-inverse 8.1.3 : $\mathcal{Z}(x, y, J)$ a Banach manifold 8.1.1 : $h \in \mathcal{H}_{reg}, H_0 + h$ nondegenerate and $(d\mathcal{F})_u$ surjective $\forall \ u \in \mathcal{M}(H_0 + h, J)$ 8.1.2 : $h \in \mathcal{H}_{reg}$ and $x, y \sim \{pt\}$ of $H_0 \implies \dim_{mfd} \mathcal{M}(x, y, H_0 + h) = \mu(x) - \mu(y)$.

Destination

What we're working toward now:

- 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) - \mu(y)$.

Outline for today:

- 8.6: Filling in lemmas used in previous sections
 - Sketch proof of 8.6.3, statement of Somewhere Injectivity
 - Statement of Continuation Principle
 - Statement of Similarity Principle
- High-level outlines
 - 8.7: Proving the operator is Fredholm
 - 8.8: Computing its index

Review From Last Time

 $- u \in C^{\infty}(\mathbb{R} \times S^1; W)$ is a solution to the Floer equation - C(u) the critical points and R(u) the regular points of u:

$$\begin{split} & C(u) \coloneqq \left\{ (s_0, t_0) \in \mathbb{R} \times S^1 \; \left| \; \frac{\partial u}{\partial s}(s_0, t_0) = 0 \right\} \\ & R(u) \coloneqq \left\{ (s_0, t_0) \in C(u)^c \; \left| \; v(s, t) \neq x^{\pm}(t), \; s \neq s_0 \implies u(s, t_0) \neq u(s_0, t_0) \right\}. \end{split}$$

WTS: C(u) is discrete and R(u) is open/dense in $\mathbb{R} \times S^1$

- Strategy: "unwrap" u to an easier solution v on \mathbb{R}^2 .

Strategy

Strategy:

1 "Unwrapping" *u*. Replace

$$\frac{\partial u}{\partial s} + J(t, u) \left(\frac{\partial u}{\partial t} - X(t, u) \right) = 0 \quad \text{where} \quad u \in C^{\infty}(\mathbb{R} \times S^{1}; W)$$

with a Cauchy-Riemann equation on \mathbb{R}^2 :

$$\frac{\partial v}{\partial s} + J \frac{\partial v}{\partial t} = 0 \quad \text{where} \quad v \in C^{\infty}(\mathbb{R}^2; W)$$

(Reduces to showing statements for v instead of u)

- 2 Show $R(v) \subset \mathbb{R}^2$ is open (short)
- 3 Show $R(v) \subset \mathbb{R}^2$ is dense (main obstacle)

Main Ingredients:

- Continuation Principle
- Similarity Principle

8.6 Review

8.6 Review

Review: 8.6.1, Unwrapping/Reduction

If u is a solution to the following equation:

$$\frac{\partial u}{\partial s} + J(t, u) \left(\frac{\partial u}{\partial t} - X(t, u) \right) = 0$$

Then there exist

- An almost complex structure J_1
- A diffeomorphism φ on W ? A map $v \in C^{\infty}(\mathbb{R}^2; W)$

where

$$\begin{aligned} \frac{\partial v}{\partial s} + J_1(v) \frac{\partial v}{\partial t} &= 0\\ v(s, t+1) &= \varphi(v(s, t))\\ C(u) &= C(v) \quad \text{and} \quad R(u) = R(v). \end{aligned}$$

Recall definition of v:

$$v(s,t) \coloneqq \psi_t^{-1}(u(s,t))$$

8.6.3: R(v) is dense in \mathbb{R}^2 8.6.3: R(s) is R^2 8.7 8.8

Toward 8.6.3, Injectivity: R(v) is Open

$$egin{aligned} & \mathcal{C}(u) \coloneqq \left\{ (s_0,t_0) \in \mathbb{R} imes S^1 \; \left| \; \; rac{\partial u}{\partial s}(s_0,t_0) = 0
ight\} \ & \mathcal{R}(u) \coloneqq \left\{ (s_0,t_0) \in \mathcal{C}(u)^c \; \left| \; \; v(s,t)
eq x^{\pm}(t), \; \; s
eq s_0 \; \Longrightarrow \; u(s,t_0) \end{aligned} \end{aligned}$$

8.6.3: R(v) is dense in \mathbb{R}^2 8.7 8.6.3: R(v) is dense in \mathbb{R}^2 8.7 8.7 8.8

Sketch of Proof: R(v) is Open

$$\begin{split} & \mathcal{C}(u) := \left\{ (s_0, t_0) \in \mathbb{R} \times S^1 \ \left| \begin{array}{c} \frac{\partial u}{\partial s}(s_0, t_0) = 0 \right\} \right. \\ & \mathcal{R}(u) := \left\{ (s_0, t_0) \in \mathcal{C}(u)^c \ \left| \begin{array}{c} v(s, t) \neq x^{\pm}(t), & s \neq s_0 \implies u(s, t_0) \neq u(s_0, t_0) \right\} \right. \end{split} \end{split}$$

Proving R(v) is open: contradict zero derivative.

- Use sequential characterization of being a closed set
- Construct a sequence in $R(v)^c$ converging to a point in R(v).
- First two conditions of R(v) are open, so extract a sequence failing injectivity
- Show it is bounded
- Apply Bolzano-Weierstrass to extract a convergent subsequence
- Use quotient definition of $\frac{\partial v}{\partial s}$, show it is zero, contradiction.

8.6.3: R(v) is dense in \mathbb{R}^2 8.8.3: R(v) is R^2

Toward 8.6.3, Injectivity: R(v) is Dense

Define multiple points:

- Set
$$\overline{\mathbb{R}} = \mathbb{R} \coprod \{\pm \infty\}$$
, extend $v : \mathbb{R}^2 \longrightarrow W$ to

$$egin{aligned} & v: \mathbb{R} imes \mathbb{R} o \mathcal{W} \ & v(\pm \infty, t) = x^{\pm}(t). \end{aligned}$$

- Define the set of *multiple points over* (s_0, t_0) :

$$M(s_0, t_0) \coloneqq \left\{ (s', t_0) \in \mathbb{R}^2 \ \middle| \ s \neq s' \in \overline{\mathbb{R}}, \quad v(s', t_0) = v(s_0, t_0) \right\}$$

- Multiple points are where injectivity fails in s.
- Characterizes $R(v) \subset C(v)^c$ as points which don't admit multiples.

8.6.3: R(v) is dense in \mathbb{R}^2

Step 1: Exclude critical points \bigcap multiple points

- Suffices to show R(v) is dense in $C(v)^c$

$$(s,t)\in C(v)^c\implies \exists (s_n,t)\subset C(v)^c\stackrel{n\longrightarrow\infty}{\longrightarrow}(s,t) \ \ \text{with} \ \ v(s_n,t)\neq x^{\pm}(t) \ \ \forall n.$$

- Why? E.g.

$$v(s+\frac{1}{n},t)=x^+(t)\implies \frac{\partial v}{\partial s}=0\implies (s+\frac{1}{n},t)\in C(v).$$

- Then suffices to show every $(s_0, t_0) \in \mathbb{R} \times [0, 1]$ with (importantly)

$$\frac{\partial v}{\partial s}(s_0, t_0) \neq 0 \quad \text{and} \quad v(s_0, t_0) \neq x^{\pm}(t_0). \tag{1}$$

is the limit of a sequence of points in R(v).

- Proceed by assuming this is not the case, toward a contradiction.

Step 1: Exclude critical points \bigcap multiple points

$$\frac{\partial v}{\partial s}(s_0, t_0) \neq 0$$
 and $v(s_0, t_0) \neq x^{\pm}(t_0).$ (2)

A Small Ball Avoids Critical Points in the Image

- Surround (s_0, t_0) by a ball $B_{\varepsilon}(s_0, t_0) \subset R(v)^c$
- We can choose ε small enough and $M\gg 1$ big enough, defining

$$\mathbf{M} = [-M, M] \subset \mathbb{R},$$

such that several properties hold:

Step 1: Exclude critical points ∩ multiple points

$$rac{\partial v}{\partial s}(s_0,t_0)
eq 0$$
 and $v(s_0,t_0)
eq x^{\pm}(t_0).$

1) Translate to far enough to get a point outside the image of the ball:

$$(s,t) \in \mathsf{M}^c imes [t_0 - arepsilon, t_0 + arepsilon] \subset \mathbb{R} imes I \Longrightarrow$$

 $v(s,t) \bigcap v(B_{arepsilon}(s_0, t_0) = \emptyset \quad \text{and} \quad x^{\pm}(t) \notin v(B_{arepsilon}(s_0, t_0)).$

- Idea: else, cook up sequences forcing v(s₀, t₀) = x[±](t₀), contradicting open conditions
- 2 For $t \in B_{\varepsilon}(t_0)$, $B_{\varepsilon}(s_0) \hookrightarrow W$ is an injective immersion

Step 1: Exclude critical points \bigcap multiple points

- 1 Translated boxes that miss the image of $B_{\varepsilon}(s_0, t_0)$ and contain no multiple points over (s_0, t_0)
- 2 $B_{\varepsilon}(s_0) \hookrightarrow W$ immersively

Combine 1 and 2 to show that

- -v is locally constant
- $-(s_0,t_0)\in C(v)$
- Every point in $B_{\varepsilon}(s_0, t_0)$ satisfies open conditions

$$rac{\partial v}{\partial s}(s_0,t_0)
eq 0$$
 and $v(s_0,t_0)
eq x^{\pm}(t_0).$

Step 1: Exclude critical points \bigcap multiple points

since it's the intersection of a compact and a discrete set

- Perturb (s_0, t_0) so that

$$(s,t) \in \mathsf{M}_{\mathcal{C}} \implies v(s_0,t_0) \neq v(s,t).$$

 $|\mathsf{M}_{\mathcal{C}}| \coloneqq |(\mathsf{M} \times I) \bigcap \mathcal{C}(v)| < \infty$

- Possible since $(s_0, t_0) \notin C(v) \implies v$ is non-constant in a neighborhood of (s_0, t_0) .
- Decrease ε so that

$$v(B_{\varepsilon}(s_0, t_0)) \bigcap v(\mathsf{M}_C) = \emptyset.$$

Step 1: Exclude critical points \bigcap multiple points

$$v(B_{\varepsilon}(s_0, t_0)) \bigcap v(\mathbf{M}_C) = \emptyset.$$

This means that in the thick strip containing (s_0, t_0) , no critical points land in its image.

Conclude that we *only* have to consider injectivity, not critical points that are also multiple points.

Step 2: Failure of Injectivity in Small Boxes

Define the set of multiple points over s₀:

$$\mathbf{S}_{M}(t_{0}) = \{s_{1}, \cdots, s_{N}\} = \{s_{i} \in [-M, M] \mid v(s_{i}, t_{0}) = v(s_{0}, t_{0})\},\$$

- Finite, since infinite \implies limit point $\implies \frac{\partial v}{\partial s} = 0$. $\Rightarrow \Leftarrow$ - Lemma: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that defining

$$\Delta_0 = [s_0 - \delta, s_0 + \delta] \times [t_0 - \delta, t_0 + \delta]$$

then

$$(s,t)\in \Delta_0 \implies \exists s'\in B_arepsilon(s_j) ext{ s.t. } v(s,t)=v(s',t)$$

for some $1 \leq j \leq N$.

Step 2: Failure of Injectivity in Small Boxes

- In words: for every ε , we can find a δ -box $\Delta_0 \ni (s_0, t_0)$ such that every point in Δ_0 is a multiple point over *some* point in an epsilon ball around *some* point in $\mathbf{S}_M(t_0)$.
- Fix $\varepsilon' < \varepsilon/2$ form Step 1 and apply the lemma to ε' to produce δ and Δ_0 .
- Apply the lemma: shrink Δ_0 to a closed delta ball $\overline{B}_{\delta}(s_0, t_0)$.
 - **Upshot**: Every point in Δ_0 is a multiple point over some s_i .

Step 2: Failure of Injectivity in Small Boxes

$$\mathbf{S}_{M}(t_{0}) = \{s_{1}, \cdots, s_{N}\} = \left\{s_{i} \in [-M, M] \mid v(s_{i}, t_{0}) = v(s_{0}, t_{0})\right\}$$

- So partition the ball up: define Σ_i : all multiple points over $s_i \in S_M(t_0)$.

- Take smaller ρ -ball some $(s_{\star}, t_{\star}) \in \Sigma_1^{\circ}$, choose ε' small enough such that

$$B_{\rho}(s_{\star},t_{\star}) \bigcap \left([s_1 - \varepsilon', s_1 + \varepsilon'] \times [t_0 - \delta, t_0 + \delta] \right) = \emptyset.$$

Upshot: the shaded region is disjoint from the ρ -ball.

Step 3: Final Contradiction

- Construct v_1, v_2 which
 - Satisfy the same Cauchy-Riemann equations
 - Are equal at the origin
 - Have nonzero derivative at the origin.
- We want to show they are equal on \mathbb{R}^2
- Constructing them: use points from step 2 to translate
 - Obtain (s_{\star}, t_{\star}) and (s_{\star}', t_{\star}) from previous step.

- Define

$$\begin{array}{ll} v_1(s,t) = v\left(s+s_{\star},t+t_{\star}\right) & \Longrightarrow & v_1(z) = v(z+w_1) \\ v_2(s,t) = v\left(s+s_{\star}',t+t_{\star}\right) & \Longrightarrow & v_2(z) = v(z+w_2) \end{array}$$

- Satisfy the same CR equations
- By construction, they coincide at (0,0) since $v(s_{\star}, t_{\star}) = v(s'_{\star}, t_{\star}).$
- Derivatives at the origin are nonzero, coming from the fact that $\frac{\partial v}{\partial s}(s_{\star}, t_{\star}) \neq 0$.

Step 3: Final Contradiction

- Now work at zero: for every $(s, t) \in B_{\rho}(0, 0)$ there exists a multiple point $s' \in B_{2\varepsilon'}(0)$ over s.
- Use the following extension lemma, consequence of **Continuation Principle**: in this situation, with $X_t \equiv 0$ on $B_{\varepsilon}(\mathbf{0})$, then

$$z \in B_{\varepsilon}(\mathbf{0}) \implies v_1(z) = v_2(z).$$

- Define

$$\begin{split} \mathcal{F} &: \mathbf{C}^{\infty} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right) \longrightarrow \mathbf{C}^{\infty} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right) \\ & w \longmapsto \left(\frac{\partial}{\partial s} + J \cdot \frac{\partial}{\partial t} \right) w \end{split}$$

– Since v_1, v_2 satisfy the same CR equation, $\mathcal{F}(v_1) = \mathcal{F}(v_2)$

Step 3: Final Contradiction

$$\mathcal{F}: \mathbf{C}^{\infty} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right) \longrightarrow \mathbf{C}^{\infty} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right) \\ w \longmapsto \left(\frac{\partial}{\partial s} + J \cdot \frac{\partial}{\partial t} \right) w$$

Linearize ${\mathcal F}$ as we did for the Floer operator to obtain

$$(d\mathcal{F})_{\dots}(Y) = \left(\frac{\partial}{\partial s} + J_0 \cdot \frac{\partial}{\partial t} + \tilde{S}\right) Y$$

where $\tilde{S}: I \times \mathbb{R}^2 \longrightarrow \mathsf{End}(\mathbb{R}^{2n})$

Step 3: Final Contradiction

- Set $Y = v_1 - v_2$, then

$$S = \int_{[0,1]} \tilde{S} \implies S\left(\frac{\partial}{\partial s} + J_0 \cdot \frac{\partial}{\partial t} + S\right) Y = 0$$

- From above, $Y \equiv 0$ in $B_{\varepsilon}(\mathbf{0})$, apply Continuation Principle to obtain $v_1 = v_2$ on \mathbb{R}^2
- Inductive argument to show

$$orall k \in \mathbb{Z}, \quad \mathbf{v}(s,t) = \mathbf{v}(k(s'_{\star}-s_{\star}),t) \stackrel{k \longrightarrow \infty}{\longrightarrow} x^{\pm}(t),$$

which contradicts an open condition.

The Continuation Principle

- Take the perturbed CR equation

$$\left(rac{\partial}{\partial s} + J_0 \cdot rac{\partial}{\partial t} + S
ight) Y = 0 \quad ext{where} \quad S: \mathbb{R}^2 \longrightarrow ext{End}(\mathbb{R}^{2n})$$

where J_0 is the standard complex structure on \mathbb{R}^{2n} .

Define an *infinite-order zero z* of an arbitrary function f as

$$z_0\in Z_\infty\iff \sup_{B_r(z_0)}rac{|f(z)|}{r^k}\stackrel{r\longrightarrow 0}{\longrightarrow} 0 \quad \forall k\in \mathbb{Z}^{\geq 0},$$

or for a smooth function,

$$z_0\in Z_\infty\iff f^{(k)}(z_0)=0\quad orall k\in\mathbb{Z}^{\geq 0}.$$

The Continuation Principle

– Statement: If Y solves CR on $U \subset \mathbb{R}^2$ then the set

$$\mathcal{C}\coloneqq \left\{(s,t)\in U \; \middle| \; Y ext{ is an infinite-order zero at } (s,t)
ight\}.$$

- Explanation: for f smooth, Z_{∞} is closed. For f holomorphic, it is clopen.
 - From complex analysis: for a connected domain Ω, the only clopen subsets are Ø, Ω, so nonempty and f = g on a connected subset implies f = g on Ω.
 - In particular, Y = 0 on $U' \subseteq U$ implies Y = 0 on U.
- Proof is a consequence of the Similarity Principle

Similarity Principle

- Recall definition of perturbed CR equation:

$$\left(\frac{\partial}{\partial s} + J_0 \cdot \frac{\partial}{\partial t} + S\right) Y = 0 \quad \text{where} \quad S : \mathbb{R}^2 \longrightarrow \mathsf{End}(\mathbb{R}^{2n})$$

Let

$$\begin{aligned} &-Y\in C^{\infty}(B_{\varepsilon};\mathbb{C}^{n})\text{, or more generally }W^{1,p}(B_{\varepsilon};\mathbb{C}^{n})\text{, be a solution}\\ &-S\in C^{\infty}(\mathbb{R}^{2},\text{End}(\mathbb{R}^{2}))\text{ or more generally }L^{p}(B_{\varepsilon};\text{End}_{\mathbb{R}}(\mathbb{R}^{2n}))\\ &-p>2\end{aligned}$$

Then there exist

$$egin{aligned} &\delta\in(0,arepsilon),\ &\sigma\in C^\infty(B_\delta,\mathbb{C}^n)\ &A\in W^{1,p}(B_\delta,\operatorname{GL}(\mathbb{R}^{2n})). \end{aligned}$$

such that

$$\forall (s,t) \in B_{\delta}, \qquad Y(s,t) = A(s,t) \cdot \sigma(s+it) \quad \text{ and } \quad J_0A(s,t) = A(s,t)J_0.$$

Similarity Principle

Used to prove:

- C(v) is discrete
- "Extension" lemma used to prove R(v) is dense
- Some ideas from proof:
 - Matrix A will look like the fundamental matrix of solutions to an equation
 - Compactify to get $B_{\delta} \subset S^2$, if $Y : S^2 \longrightarrow \mathbb{C}^n$ then we can consider \overline{Y} as a section of the bundle

$$\left(A^{0,1}T^{\star}S^{2}\right)^{n}=\Lambda^{0,1}T^{\star}S^{2}\otimes\mathbb{C}^{n}.$$

- $\overline{Y} = 0$ makes Y a holomorphic sphere in \mathbb{C}^n .

8.7

8.7 Outline

What we're trying to prove

- 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) - \mu(y)$.

- Setup

$$S^{\pm}(t) = \lim_{s \longrightarrow \pm \infty} S(s, t),$$

$$R_t^{\pm} \text{ a solution to the IVP}$$

$$\frac{\partial}{\partial t} R = J_0 S^{\pm} R, \quad R_0^{\pm} = \text{id}.$$

– Statement: if det(id $-R_1^{\pm})
eq 0$ then the operator

$$\begin{split} L: W^{1,p}(\mathbb{R}\times S^1;\mathbb{R}^{2n}) &\longrightarrow L^p(\mathbb{R}\times S^1;\mathbb{R}^{2n})\\ L &= \bar{\partial} + S(s,t) \end{split}$$

is Fredholm for every p > 1. (*i.e. index makes sense,* dim ker L, dim coker $L < \infty$)

- Most of the work: dim(ker L) $< \infty$ and im (L) closed.

8.7 Outline: Step 1, dim ker $L < \infty$

- Main ingredients:
 - Elliptic regularity: For Y ∈ L^p(ℝ × S¹) a weak solution of the linearized Floer equation

$$LY = 0 \implies Y \in W^{1,p}(\mathbb{R} \times S^1) \bigcap C^{\infty}.$$

- A consequence of the Calderón-Zygmund (CZ) Inequality: For $Y \in W^{1,p}(\mathbb{R} \times S^1; \mathbb{R}^{2n})$ and p > 1,

$$\|Y\|_{W^{1,p}(\mathbb{R}\times S^1;\mathbb{R}^{2n})} \le C\Big(\|LY\|_{L^p(\mathbb{R}\times S^1)} + \|Y\|_{L^p(\mathbb{R}\times S^1)}\Big) \quad (3)$$

for some constant C.

- Strategy: split into cases
 - Case 1: S(s,t) = S(t) doesn't depend on s.
 - Case 2: S(s, t) does depend on s

8.7 Outline: dim ker $L < \infty$

CZ inequality:

$$\|Y\|_{W^{1,p}(\mathbb{R}\times S^{1};\mathbb{R}^{2n})} \leq C\Big(\|LY\|_{L^{p}(\mathbb{R}\times S^{1})} + \|Y\|_{L^{p}(\mathbb{R}\times S^{1})}\Big) \quad (4)$$

Step 1: S(s, t) = S(t) doesn't depend on s, prove improved estimate.

- Consider the "asymptotic operator"

$$D: W^{1,p}(\mathbb{R} \times S^1; \mathbb{R}^{2n}) \longrightarrow L^p(\mathbb{R} \times S^1)$$
$$D = \overline{\partial} + S(t) = \lim_{s \longrightarrow \pm \infty} L \coloneqq \lim_{s \longrightarrow \pm \infty} (\overline{\partial} + S(s, t)).$$

- Show for p > 1, D is invertible.
- Invertibility improves estimate: replace \mathbb{R} with [-M, M].

8.7 Outline: dim ker $L < \infty$

- Step 2: S(s, t) does depend on s
- Improved estimate in Step 1 allows replacing weak soln:

$$Y \in L^p(\mathbb{R} \times S^1; \cdot) \rightsquigarrow Y \in L^p([-M, M] \times S^1, \cdot).$$

Then restrict

$$L: W^{1,p}(\mathbb{R} \times S^1; \mathbb{R}^{2n}) \longrightarrow L^p(\mathbb{R} \times S^1; \mathbb{R}^{2n})$$

 $L:= \overline{\partial} + S(s, t)$

$$\rightsquigarrow L_M: W^{1,p}(\mathbb{R} \times S^1) \longrightarrow L^p([-M,M] \times S^1).$$

 Since the restriction is a *compact* operator, it is "semi-Fredholm", apply a theorem:

CZ inequality satisfied \implies dim ker $L_M < \infty$, im L_M closed.

8.7 Outline: dim ker $L < \infty$

- Will need some real/functional analysis to invert operators:
 - "Variation of constants"
 - Hilbert spaces and Spectrum of an operator
 - Hille-Yosida theory: existence and uniqueness for operator IVPs, e.g. $\frac{\partial Y}{\partial s} = -AY$
 - Young's Inequality (some convolution integrals)
 - Holder's Inequality
 - Distribution theory
 - Rellich's Theorem (Multiple uses)
 - Hahn-Banach Theorem
 - Riesz Representation Theorem
- Conclude 8.7 by showing *L* is Fredholm:
 - dim ker $L < \infty$ (long)
 - dim coker $L < \infty$ (very short)

8.8

8.8: Outline

What we're trying to prove

- 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) \mu(y)$.
- Define

$$L: W^{1,p} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right) \longrightarrow L^{p} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_{0} \frac{\partial Y}{\partial t} + S(s, t) Y$$

- 8.7: Shows *L* is Fredholm
- By the end of 8.8: replace L by L₁ with the same index
 (not the same kernel/cokernel)
- Compute Ind L_1 : explicitly describe ker L_1 , coker L_1 .

8.8: Replacing L

$$L: W^{1,p} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right) \longrightarrow L^{p} \left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n} \right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_{0} \frac{\partial Y}{\partial t} + S(s, t) Y$$

- Replace in two steps:
 - $L \rightsquigarrow L_0$, modified in a $B_{\varepsilon}(0)$ in s.
 - Use invariance of index under small perturbations.
 - $L_0 \rightsquigarrow L_1$ by a homotopy, where $S_\lambda : S \rightsquigarrow S(s)$ a diagonal matrix that is a constant matrix *outside* $B_{\varepsilon}(0)$.
 - Use invariance of index under homotopy.

8.8: Replacing L

$$S(s,t) \xrightarrow{s \to \pm \infty} S^{\pm}(t)$$

 R_t^{\pm} a solution to the IVP $\frac{\partial}{\partial t}R = J_0 S^{\pm}R, \quad R_0^{\pm} = \text{id.}$

- Use the fact $S: \mathbb{R} \times S^1 \longrightarrow \operatorname{Mat}(2n; \mathbb{R})$ and $S^{\pm}(t)$ are symmetric.
- Take corresponding symplectic paths $R^{\pm}: I \longrightarrow \operatorname{Sp}(2n; \mathbb{R})$.
- L will be a Fredholm operator if

$$R^{\pm} \in \mathcal{S} \coloneqq \left\{ R: I \longrightarrow \operatorname{Sp}(2n; \mathbb{R}) \mid R(0) = \operatorname{id}, \operatorname{det}(R(1) - \operatorname{id}) \neq 0
ight\}.$$

- Theorem 8.8.1:

$$\ln(L) = \mu(R^{-}(t)) - \mu(R^{+}(t)) = \mu(x) - \mu(y).$$

8.8: $L_0 \rightsquigarrow L_1$

- Prop 8.8.2: Construct an operator

$$L_{1}: W^{1,p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right) \longrightarrow L^{p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_{0}\frac{\partial Y}{\partial t} + S(s)Y$$

where $S : \mathbb{R} \longrightarrow Mat(2n; \mathbb{R})$ is a path of diagonal matrices depending on $Ind(R^{\pm}(t))$; then

$$Ind(L) = Ind(L_1) = Ind(R^-(t)) - Ind(R^+(t)).$$

Idea of proof: take a homotopy of operators

$$L_{\lambda}: W^{1,p}\left(\mathsf{R} \times S^{1}; \mathsf{R}^{2n}\right) \longrightarrow L^{p}\left(\mathsf{R} \times S^{1}; \mathsf{R}^{2n}\right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_{0}\frac{\partial Y}{\partial t} + S_{\lambda}(s, t)Y$$

which are all Fredholm and all have the same index, then take time 1.

8.8: Index of L_1

$$L_{1}: W^{1,p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right) \longrightarrow L^{p}\left(\mathbf{R} \times S^{1}; \mathbf{R}^{2n}\right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_{0}\frac{\partial Y}{\partial t} + S(s)Y$$

Use the fact that

coker
$$L_1 \cong \ker L_1^*$$
,

and we can explicitly write the adjoint of L_1 .

- Get a formula that resembles the Morse case

- (Counting number of eigenvalues that change sign).