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What we're trying to prove:
8.1.5: (dF), is a Fredholm operator of index y(x) — pu(y).
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8.1.5= f—

N
|

81l =———=812

Used to show:

8.1.4: T : WLP x C2° — LP has a continuous right-inverse and is surjective
8.1.3: Z(x,y,J) is a Banach manifold
8.1.1: h € Hreg, Ho + h nondegenerate and

(dF)y surjective V u € M(Hp + h, J).
8.1.2: For h € Heg and x,y ~ {pt} of Hy,
dimmea M(x, y, Ho + h) = p(x) — p(y).
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Destination

What we're working toward now:
8.1.5: (dF), is a Fredholm operator of index u(x) — u(y).
Outline for today:

8.6: Filling in lemmas used in previous sections
Sketch proof of 8.6.3, statement of Somewhere Injectivity
Statement of Continuation Principle
Statement of Similarity Principle

High-level outlines

8.7: Proving the operator is Fredholm
8.8: Computing its index
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Review From Last Time

ue C(R x S*; W) is a solution to the Floer equation
C(u) the critical points and R(u) the regular points of u:

C(u) = {(so,to) ER x St ‘ %(so,to) = 0}

R(s) = {(=0, ) € C(u)*

v(s, t) #xT(t), s#so = u(s,to) # u(so, to)} .

WTS: C(u) is discrete and R(u) is open/dense in R x St

Strategy: “unwrap” u to an easier solution v on R2.
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Strategy

Strategy:
1 “Unwrapping” u. Replace

@—i-J(t,u) @—X(t,u) =0 where ue C®(RxSH W)
Os ot

with a Cauchy-Riemann equation on R?:

% +J% =0 where ve C®(R? W)

(Reduces to showing statements for v instead of u)
2. Show R(v) C R? is open (short)
3. Show R(v) C R? is dense (main obstacle)

Main Ingredients:

Continuation Principle

Similarity Principle
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Review: 8.6.1, Unwrapping/Reduction

If u is a solution to the following equation:

au

ou
— + J(t
+ate0) (G

s — X(t, u)) =0

Then there exist

An almost complex structure J;
A diffeomorphism ¢ on W 7
A map v € C>®(R?; W)
where
v ov
— 1 J — —0
Js +4v) ot
v(s,t +1) = p(v(s, )
C(u) = C(v) and R(u)= R(v).

Recall definition of v:

v(s’ t) = 1/)1:_1("’(57 t))
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Toward 8.6.3, Injectivity: R(v) is Open
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Sketch of Proof: R(v) is Open

C(u) = {(so,to) €Rx S! ] %(so,to)zo}

R(u) = {(so,to)e C(u)° ‘ v(s, t) £ xE(t), s#s = u(s, to);éu(so,tg)}.

Proving R(v) is open: contradict zero derivative.

Use sequential characterization of being a closed set

Construct a sequence in R(v)¢ converging to a point in R(v).

First two conditions of R(v) are open, so extract a sequence failing injectivity
Show it is bounded

Apply Bolzano-Weierstrass to extract a convergent subsequence

Use quotient definition of %, show it is zero, contradiction.
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Toward 8.6.3, Injectivity: R(v) is Dense

Define multiple points:

Set R = R]J {00}, extend v : R — W to

vV:RxR— W
v(£oo, t) = x*(t).

Define the set of multiple points over (sy, to):
M(so, to) = {(s'7 to) € R? ‘ s#s eR, v(s, t) = v(so, to)}

Multiple points are where injectivity fails in s.

Characterizes R(v) C C(v)€ as points which don't admit multiples.



Intro
8.6 Review
8.6.3: R(v) is dense in R?

8.7
8.8




Intro

8.6 Review

8.6.3: R(v) is dense in R?
8.7

8.8

Step 1: Exclude critical points () multiple points

Suffices to show R(v) is dense in C(v)¢
(s,t) € C(v)S = I(sn, t) C C(v)¢ "=5° (s, t) with v(sa,t) # xE(t) Vn.
Why? E.g.

2y _

1
0 = (s+ —,t) € C(v).
Os n

1
v(is+ =,t) =xT(t) =
n
Then suffices to show every (sp, tg) € R x [0, 1] with (importantly)
ov +
E(so, to) #0 and v(so, to) # x~(to). (1)

is the limit of a sequence of points in R(v).

Proceed by assuming this is not the case, toward a contradiction.
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Step 1: Exclude critical points () multiple points

_5(50,t0)7é0 and  v(sp, to) # x*(to). (2)

A Small Ball Avoids Critical Points in the Image

Surround (sp, tp) by a ball B-(so, to) C R(v)°
We can choose ¢ small enough and M > 1 big enough,
defining

M =[-M,M]CR,

such that several properties hold:
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Step 1: Exclude critical points () multiple points

%(so,to);éo and  v(sp, to) # x*(to).

1 Translate to far enough to get a point outside the image of the ball:

(s, t) EM  x [tg —e,to+e] CRx | =
v(s, ) [\ v(B=(s0,t0) =0 and x*(t) & v(Bc(so, to))-

Idea: else, cook up sequences forcing v(so, to) = xE(to), contradicting open

conditions

2. For t € B:(tp), Bz(so) <= W is an injective immersion
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Step 1: Exclude critical points () multiple points

1 Translated boxes that miss the image of B:(sp, tp) and contain no multiple
points over (sp, to)
2 Be(so) < W immersively

Combine 1 and 2 to show that
v is locally constant

(So, to) € C(v)
Every point in B:(sp, to) satisfies open conditions

%(so, t) #0 and v(sp,to) # x*(to).
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Step 1: Exclude critical points () multiple points

Mc| = ‘(M x I)ﬂC(v)’ <0
since it's the intersection of a compact and a discrete set
Perturb (sp, to) so that

(57 t) EMc = V(SOa tO) # V(57 t)'

Possible since (so, t) € C(v) = v is non-constant in a
neighborhood of (sp, to).

Decrease € so that

v(B:(s0, t0)) [ | v(Mc) = 0.
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Step 1: Exclude critical points (] multiple points
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Step 2: Failure of Injectivity in Small Boxes

Define the set of multiple points over sp:

Sm(to) = {s1,--- ,sn} = {s,- € [-M, M] | v(si, to) = v(so, to)},

Finite, since infinite = limit point —- % =0. =<
Lemma: For every € > 0 there exists a § > 0 such that defining
Ao = [so — 8,50 + 0] X [to — &, to + 4]
then
(s,t) € Ap = 35’ € B(sj) s.t. v(s,t) = v(s', 1)

for some 1 < j < N.
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Step 2: Failure of Injectivity in Small Boxes

In words: for every &, we can find a 6-box Ag 3 (sp, to) such that every point in
Ay is a multiple point over some point in an epsilon ball around some point in

SM(to).
Fix &’ < £/2 form Step 1 and apply the lemma to &’ to produce ¢ and Ag.

Apply the lemma: shrink Ag to a closed delta ball Bs(sp, to).
Upshot: Every point in Ag is a multiple point over some s;.

82 51 3
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Step 2: Failure of Injectivity in Small Boxes

By (s1) x Bs(to)

B;(s0,t0) B,(s0ty)
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Step 3: Final Contradiction

Construct vy, vo» which
Satisfy the same Cauchy-Riemann equations
Are equal at the origin
Have nonzero derivative at the origin.
We want to show they are equal on R?
Constructing them: use points from step 2 to translate
Obtain (s4, t) and (s, t.) from previous step.
Define
vi(s,t)=v(s+s,,t+t) = wv(z)=v(z+wm)
wis,t)=v(s+s,t+t) = w(z)=viz+w)
Satisfy the same CR equations
By construction, they coincide at (0, 0) since
V(Sk, t) = v(SL, ty).
Derivatives at the origin are nonzero, coming from the fact
that 2%(s,, t,) # 0.
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Step 3: Final Contradiction

Now work at zero: for every (s,t) € B,(0,0) there exists
a multiple point s" € B,./(0) over s.

Use the following extension lemma, consequence of
Continuation Principle: in this situation, with X; =0
on B.(0), then

z€ B.(0) = wi(z) = w(2).
Define
F:C*(Rx S, R) — C™ (R x SR

w—> a—l—J 2
Js ot

Since vy, v, satisfy the same CR equation, F(v1) = F(v2)
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Step 3: Final Contradiction

F:C(Rx SHR) — C* (R x S5 R
— Q—FJ'Q
W Os at )"

Linearize F as we did for the Floer operator to obtain

(@F).(V) = (5 +he 5+ 3) ¥

where S : | x R? — End(RR?")
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Step 3: Final Contradiction

Set Y = vi — vy, then

S = S — 5<3+J0~2+5>Y=o
[071] 85 81’

From above, Y =0 in B.(0), apply Continuation
Principle to obtain v; = v, on R?
Inductive argument to show

VkeZ, v(s,t)=v(k(s. —s.),t) "= x* (),

which contradicts an open condition. |
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The Continuation Principle

Take the perturbed CR equation

a a _ . 2 2n
(E—FJO'a%-S)Y—O where S :R® — End(R“")

where Jy is the standard complex structure on R?".
Define an infinite-order zero z of an arbitrary function f
as

f r
20 € Zo < sup | Ef)| —20 Vk € 720,
BI(ZO)

or for a smooth function,

20 € Zoy = fW(z)=0 Vk ez



Intro

8.6 Review

8.6.3: R(v) is dense in R?
8.7

8.8

The Continuation Principle

Statement: If Y solves CR on U C R? then the set
C = {(s, tye U ’ Y is an infinite-order zero at (s, t)}

Explanation: for f smooth, Z is closed. For f
holomorphic, it is clopen.
From complex analysis: for a connected domain €2, the only
clopen subsets are (), Q2, so nonempty and f = g on a

connected subset implies f = g on Q.
In particular, Y =0 on U’ C U implies Y =0 on U.

Proof is a consequence of the Similarity Principle
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Similarity Principle

Recall definition of perturbed CR equation:

(3 +Jo- 9 + s) Y =0 where S:R?— End(R?")
Js ot

Let

Y € C>®(Bc;C"), or more generally WP(B.;C"), be a solution
S € C*>(R?,End(R?)) or more generally LP(B.; Endg(R?"))
p>2

Then there exist

5 € (0,¢e),

o € C>®(Bs,C")

A € WHP(Bs, GL(R?")).
such that

Y(s,t) € Bs, Y(s,t) = A(s,t)-o(s+it) and JA(s,t) = A(s, t)Jb.
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Similarity Principle

Used to prove:

C(v) is discrete

“Extension” lemma used to prove R(v) is dense
Some ideas from proof:

Matrix A will look like the fundamental matrix of

solutions to an equation
Compactify to get Bs C S?, if Y : 2 — C" then we
can consider Y as a section of the bundle

(AO,l T*52)" — AO,l T*52 ® Cr.

Y = 0 makes Y a holomorphic sphere in C".



Intro
8.6 Review
8.6.3: R(v) is dense in R?

8.7
8.8




Intro

8.6 Review

8.6.3: R(v) is dense in R?
8.7

8.8

8.7 Outline

What we're trying to prove

8.1.5: (dF), is a Fredholm operator of index ju(x) — u(y).
Setup
si(t):siniOOS(s, t),

R*a solution to the IVP
d

5k = JSTR, RF =id.

Statement: if det(id — Rli) # 0 then the operator
L: WHP(R x ST, R?M) — LP(R x SL;R?™)
L=0+S(s,t)

is Fredholm for every p > 1.
(i.e. index makes sense, dim ker L, dim coker L < co)

Most of the work: dim(ker L) < co and im (L) closed.
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8.7 Outline: Step 1, dimker L < oo

Main ingredients:
Elliptic regularity: For Y € LP(R x S') a weak solution of
the linearized Floer equation

LY =0 = Y e WHP(R x S)(C™.

A consequence of the Calderén-Zygmund (CZ) Inequality:
For Y € WLP(R x S, R?") and p > 1,

1Yyt mqcstigeny < C(||LY||L,,(Rx51) + ||Y||LP(]R><51)) 3)

for some constant C.

Strategy: split into cases
Case 1: S(s,t) = S(t) doesn't depend on s.
Case 2: S(s, t) does depend on s
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8.7 Outline: dimker L < oo

CZ inequality:
1Y Nwaoxsizany < COLY sty + 1V lisgsy) (4

Step 1: S(s,t) = S(t) doesn't depend on s, prove improved
estimate.

Consider the “asymptotic operator”
D: WhP(R x S, R*™) — LP(R x SY)
D=0+S(t)= lim L= lim (94 S(s,t)).

s—rtoo s—too

Show for p > 1, D is invertible.
Invertibility improves estimate: replace R with [—M, M].
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8.7 Outline: dimker L < oo

Step 2: S(s, t) does depend on s
Improved estimate in Step 1 allows replacing weak soln:

Y € LP(R x S§Y; )~ Y € LP([-M,M] x S*,-).
Then restrict
L: WhP(R x ST R*") — LP(R x S*;R?")
L:=0+S(s,t)

s Lpg : WEP(R x SY) — LP([—M, M] x SY).

Since the restriction is a compact operator, it is
“semi-Fredholm”, apply a theorem:

CZ inequality satisfied = dimker Ly, < 0o, im Ly, closed.
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8.7 Outline: dimker L < oo

Will need some real/functional analysis to invert

operators:
“Variation of constants”
Hilbert spaces and Spectrum of an operator
Hille-Yosida theory: existence and uniqueness for operator
IVPs, e.g. 2¥ = —AY
Young's Inequality (some convolution integrals)
Holder's Inequality
Distribution theory
Rellich’s Theorem (Multiple uses)
Hahn-Banach Theorem
Riesz Representation Theorem

Conclude 8.7 by showing L is Fredholm:

dimker L < oo (long)
dim coker L < oo (very short)
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8.8: Outline

What we're trying to prove

8.1.5: (dF), is a Fredholm operator of index u(x) — u(y).
Define

L: W (R x SH;R*") — LP (R x ' R*")
oy oY

Y'—>E+JOE+S(5,1:)Y

8.7: Shows L is Fredholm
By the end of 8.8: replace L by L; with the same index

(not the same kernel/cokernel)

Compute Ind L;: explicitly describe ker Ly, coker L;.
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8.8: Replacing L

L: W' (Rx S, R*) — LP (R x S, R?")
oy oY

Y — g—i-JoE—i-S(S,t)Y

Replace in two steps:
L ~ Lo, modified in a B:(0) in s.
Use invariance of index under small perturbations.
Lo ~> Ly by a homotopy, where Sy : S ~~ S(s) a diagonal
matrix that is a constant matrix outside B.(0).
Use invariance of index under homotopy.
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8.8: Replacing L

S(s, t) T=E> 5% (1)

F)
Rt a solution to the IVP 5k = JSTR, RF =id.

Use the fact S : R x S' — Mat(2n; R) and S*(t) are symmetric.
Take corresponding symplectic paths R : | —» Sp(2n; R).
L will be a Fredholm operator if

RE € S:={R:1— Sp(2mR) ‘ R(0) = id, det(R(1)—id) #0}.
Theorem 8.8.1:

Ind(L) = u(R™(£)) — 1u(R™(£)) = (x) — ().
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8.8: LO s Ll

Prop 8.8.2: Construct an operator

Ly : WP (R x S1;R?") — LP (R x S';R?")
oY oY

Y — 2 4 102 Lss)y
55 T Hg T50)

where S : R — Mat(2n; R) is a path of diagonal matrices depending on
Ind(RE(t)); then

Ind(L) = Ind(L;) = Ind(R™(t)) — Ind(R(¢)).
Idea of proof: take a homotopy of operators
Ly: WP (R x SHR?) — LP (R x S'; R?")
oY oY

Yy 4 = 4+ Sa(s,t)Y
— 5 tho t A(S t)

which are all Fredholm and all have the same index, then take time 1.
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8.8: Index of L;

Ly: W (R x ST R*) — LP (R x S'; R*)
oy = oY

Y — E—l—JoE-l—S(S)Y

Use the fact that
coker Ly = ker L7,

and we can explicitly write the adjoint of L;.
Get a formula that resembles the Morse case
(Counting number of eigenvalues that change sign).
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