Section 8.6-8.8: Setup for Computing the Index

May 21, 2020

Intro

Outline

What we're trying to prove:

- 8.1.5: $(d \mathcal{F})_{u}$ is a Fredholm operator of index $\mu(x)-\mu(y)$.

Used to show:

- 8.1.4: $\Gamma: W^{1, p} \times C_{\varepsilon}^{\infty} \longrightarrow L^{p}$ has a continuous right-inverse and is surjective
- 8.1.3: $\mathcal{Z}(x, y, J)$ is a Banach manifold
- 8.1.1: $h \in \mathcal{H}_{\text {reg }}, H_{0}+h$ nondegenerate and

$$
(d \mathcal{F})_{u} \text { surjective } \forall u \in \mathcal{M}\left(H_{0}+h, J\right)
$$

- 8.1.2: For $h \in \mathcal{H}_{\text {reg }}$ and $x, y \sim\{\mathrm{pt}\}$ of H_{0},

$$
\operatorname{dim}_{\operatorname{mfd}} \mathcal{M}\left(x, y, H_{0}+h\right)=\mu(x)-\mu(y) .
$$

Map

8.1.4 $\Gamma: W^{1, p} \times C_{\varepsilon}^{\infty} \longrightarrow L^{p}$ cts right-inverse \quad 8.1.3: $\mathcal{Z}(x, y, J)$ a Banach manifold
8.1.1 $: h \in \mathcal{H}_{\text {reg }}, H_{0}+h$ nondegenerate and $(d \mathcal{F})_{u}$ surjective $\forall u \in \mathcal{M}\left(H_{0}+h, J\right)$
8.1.2:h $\in \mathcal{H}_{\mathrm{reg}}$ and $x, y \sim\{\mathrm{pt}\}$ of $H_{0} \Longrightarrow \operatorname{dim}_{\mathrm{mfd}} \mathcal{M}\left(x, y, H_{0}+h\right)=\mu(x)-\mu(y)$.

Destination

What we're working toward now:

- 8.1.5: $(d \mathcal{F})_{\mu}$ is a Fredholm operator of index $\mu(x)-\mu(y)$.

Outline for today:

- 8.6: Filling in lemmas used in previous sections
- Sketch proof of 8.6.3, statement of Somewhere Injectivity
- Statement of Continuation Principle
- Statement of Similarity Principle
- High-level outlines
- 8.7: Proving the operator is Fredholm
- 8.8: Computing its index

Review From Last Time

- $u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)$ is a solution to the Floer equation
- $C(u)$ the critical points and $R(u)$ the regular points of u :

$$
\begin{aligned}
& C(u):=\left\{\left(s_{0}, t_{0}\right) \in \mathbb{R} \times s^{1} \left\lvert\, \frac{\partial u}{\partial s}\left(s_{0}, t_{0}\right)=0\right.\right\} \\
& R(u):=\left\{\left(s_{0}, t_{0}\right) \in C(u)^{c} \mid v(s, t) \neq x^{ \pm}(t), s \neq s_{0} \Longrightarrow u\left(s, t_{0}\right) \neq u\left(s_{0}, t_{0}\right)\right\} .
\end{aligned}
$$

WTS: $C(u)$ is discrete and $R(u)$ is open/dense in $\mathbb{R} \times S^{1}$

- Strategy: "unwrap" u to an easier solution v on \mathbb{R}^{2}.

Strategy

Strategy:

(1) "Unwrapping" u. Replace

$$
\frac{\partial u}{\partial s}+J(t, u)\left(\frac{\partial u}{\partial t}-X(t, u)\right)=0 \quad \text { where } \quad u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)
$$

with a Cauchy-Riemann equation on \mathbb{R}^{2} :

$$
\frac{\partial v}{\partial s}+J \frac{\partial v}{\partial t}=0 \quad \text { where } \quad v \in C^{\infty}\left(\mathbb{R}^{2} ; W\right)
$$

(Reduces to showing statements for v instead of u)
2 Show $R(v) \subset \mathbb{R}^{2}$ is open (short)
(3) Show $R(v) \subset \mathbb{R}^{2}$ is dense (main obstacle)

Main Ingredients:

- Continuation Principle
- Similarity Principle

Intro

8.6.3: $R(v)$ is dense in \mathbb{R}^{2}

8.7
8.8

8.6 Review

Review: 8.6.1, Unwrapping/Reduction

If u is a solution to the following equation:

$$
\frac{\partial u}{\partial s}+J(t, u)\left(\frac{\partial u}{\partial t}-X(t, u)\right)=0
$$

Then there exist

- An almost complex structure J_{1}
- A diffeomorphism φ on W ?
- A map $v \in C^{\infty}\left(\mathbb{R}^{2} ; W\right)$
where

$$
\begin{aligned}
& \frac{\partial v}{\partial s}+J_{1}(v) \frac{\partial v}{\partial t}=0 \\
& v(s, t+1)=\varphi(v(s, t)) \\
& C(u)=C(v) \text { and } R(u)=R(v)
\end{aligned}
$$

- Recall definition of v :

$$
v(s, t):=\psi_{t}^{-1}(u(s, t))
$$

Toward 8.6.3, Injectivity: $R(v)$ is Open

$$
\begin{aligned}
& C(u):=\left\{\left(s_{0}, t_{0}\right) \in \mathbb{R} \times S^{1} \left\lvert\, \frac{\partial u}{\partial s}\left(s_{0}, t_{0}\right)=0\right.\right\} \\
& R(u):=\left\{\left(s_{0}, t_{0}\right) \in C(u)^{c} \mid v(s, t) \neq x^{ \pm}(t), \quad s \neq s_{0} \Longrightarrow u\left(s, t_{0}\right)\right.
\end{aligned}
$$

Sketch of Proof: $R(v)$ is Open

$$
\begin{aligned}
& C(u):=\left\{\left(s_{0}, t_{0}\right) \in \mathbb{R} \times S^{1} \left\lvert\, \frac{\partial u}{\partial s}\left(s_{0}, t_{0}\right)=0\right.\right\} \\
& R(u):=\left\{\left(s_{0}, t_{0}\right) \in C(u)^{c} \mid v(s, t) \neq x^{ \pm}(t), \quad s \neq s_{0} \Longrightarrow u\left(s, t_{0}\right) \neq u\left(s_{0}, t_{0}\right)\right\} .
\end{aligned}
$$

Proving $R(v)$ is open: contradict zero derivative.

- Use sequential characterization of being a closed set
- Construct a sequence in $R(v)^{c}$ converging to a point in $R(v)$.
- First two conditions of $R(v)$ are open, so extract a sequence failing injectivity
- Show it is bounded
- Apply Bolzano-Weierstrass to extract a convergent subsequence
- Use quotient definition of $\frac{\partial v}{\partial s}$, show it is zero, contradiction.

Toward 8.6.3, Injectivity: $R(v)$ is Dense

Define multiple points:

- Set $\overline{\mathbb{R}}=\mathbb{R} \amalg\{ \pm \infty\}$, extend $v: \mathbb{R}^{2} \longrightarrow W$ to

$$
\begin{aligned}
& v: \overline{\mathbb{R}} \times \mathbb{R} \longrightarrow W \\
& v(\pm \infty, t)=x^{ \pm}(t) .
\end{aligned}
$$

- Define the set of multiple points over $\left(s_{0}, t_{0}\right)$:

$$
M\left(s_{0}, t_{0}\right):=\left\{\left(s^{\prime}, t_{0}\right) \in \mathbb{R}^{2} \mid s \neq s^{\prime} \in \overline{\mathbb{R}}, \quad v\left(s^{\prime}, t_{0}\right)=v\left(s_{0}, t_{0}\right)\right\}
$$

- Multiple points are where injectivity fails in s.
- Characterizes $R(v) \subset C(v)^{c}$ as points which don't admit multiples.
8.6.3: $R(v)$ is dense in \mathbb{R}^{2}

Step 1: Exclude critical points \bigcap multiple points

- Suffices to show $R(v)$ is dense in $C(v)^{c}$

$$
(s, t) \in C(v)^{c} \Longrightarrow \exists\left(s_{n}, t\right) \subset C(v)^{c} \xrightarrow{n \longrightarrow \infty}(s, t) \text { with } v\left(s_{n}, t\right) \neq x^{ \pm}(t) \forall n .
$$

- Why? E.g.

$$
v\left(s+\frac{1}{n}, t\right)=x^{+}(t) \Longrightarrow \frac{\partial v}{\partial s}=0 \Longrightarrow\left(s+\frac{1}{n}, t\right) \in C(v)
$$

- Then suffices to show every $\left(s_{0}, t_{0}\right) \in \mathbb{R} \times[0,1]$ with (importantly)

$$
\begin{equation*}
\frac{\partial v}{\partial s}\left(s_{0}, t_{0}\right) \neq 0 \quad \text { and } \quad v\left(s_{0}, t_{0}\right) \neq x^{ \pm}\left(t_{0}\right) \tag{1}
\end{equation*}
$$

is the limit of a sequence of points in $R(v)$.

- Proceed by assuming this is not the case, toward a contradiction.

Step 1: Exclude critical points \bigcap multiple points

$$
\begin{equation*}
\frac{\partial v}{\partial s}\left(s_{0}, t_{0}\right) \neq 0 \quad \text { and } \quad v\left(s_{0}, t_{0}\right) \neq x^{ \pm}\left(t_{0}\right) . \tag{2}
\end{equation*}
$$

A Small Ball Avoids Critical Points in the Image

- Surround $\left(s_{0}, t_{0}\right)$ by a ball $B_{\varepsilon}\left(s_{0}, t_{0}\right) \subset R(v)^{c}$
- We can choose ε small enough and $M \gg 1$ big enough, defining

$$
\mathbf{M}=[-M, M] \subset \mathbb{R}
$$

such that several properties hold:

Step 1: Exclude critical points \bigcap multiple points

$$
\frac{\partial v}{\partial s}\left(s_{0}, t_{0}\right) \neq 0 \quad \text { and } \quad v\left(s_{0}, t_{0}\right) \neq x^{ \pm}\left(t_{0}\right)
$$

(1) Translate to far enough to get a point outside the image of the ball:

$$
\begin{array}{r}
(s, t) \in \mathbf{M}^{c} \times\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right] \subset \mathbb{R} \times I \Longrightarrow \\
v(s, t) \bigcap v\left(B_{\varepsilon}\left(s_{0}, t_{0}\right)=\emptyset \quad \text { and } \quad x^{ \pm}(t) \notin v\left(B_{\varepsilon}\left(s_{0}, t_{0}\right)\right) .\right.
\end{array}
$$

- Idea: else, cook up sequences forcing $v\left(s_{0}, t_{0}\right)=x^{ \pm}\left(t_{0}\right)$, contradicting open conditions

2 For $t \in B_{\varepsilon}\left(t_{0}\right), B_{\varepsilon}\left(s_{0}\right) \hookrightarrow W$ is an injective immersion

Step 1: Exclude critical points \bigcap multiple points

(1) Translated boxes that miss the image of $B_{\varepsilon}\left(s_{0}, t_{0}\right)$ and contain no multiple points over $\left(s_{0}, t_{0}\right)$
(2) $B_{\varepsilon}\left(s_{0}\right) \hookrightarrow W$ immersively

8.3

Combine 1 and 2 to show that

- v is locally constant
- $\left(s_{0}, t_{0}\right) \in C(v)$
- Every point in $B_{\varepsilon}\left(s_{0}, t_{0}\right)$ satisfies open conditions

$$
\frac{\partial v}{\partial s}\left(s_{0}, t_{0}\right) \neq 0 \quad \text { and } \quad v\left(s_{0}, t_{0}\right) \neq x^{ \pm}\left(t_{0}\right)
$$

Step 1: Exclude critical points \bigcap multiple points

3

$$
\left|\mathbf{M}_{C}\right|:=|(\mathbf{M} \times I) \bigcap C(v)|<\infty
$$

since it's the intersection of a compact and a discrete set

- Perturb $\left(s_{0}, t_{0}\right)$ so that

$$
(s, t) \in \mathbf{M}_{C} \Longrightarrow v\left(s_{0}, t_{0}\right) \neq v(s, t)
$$

- Possible since $\left(s_{0}, t_{0}\right) \notin C(v) \Longrightarrow v$ is non-constant in a neighborhood of $\left(s_{0}, t_{0}\right)$.
- Decrease ε so that

$$
v\left(B_{\varepsilon}\left(s_{0}, t_{0}\right)\right) \bigcap v\left(\mathbf{M}_{C}\right)=\emptyset
$$

Step 1: Exclude critical points \bigcap multiple points

$$
v\left(B_{\varepsilon}\left(s_{0}, t_{0}\right)\right) \bigcap v\left(\mathbf{M}_{C}\right)=\emptyset .
$$

This means that in the thick strip containing (s_{0}, t_{0}), no critical points land in its image.

Conclude that we only have to consider injectivity, not critical points that are also multiple points.

Step 2: Failure of Injectivity in Small Boxes

- Define the set of multiple points over s_{0} :

$$
\mathbf{S}_{M}\left(t_{0}\right)=\left\{s_{1}, \cdots, s_{N}\right\}=\left\{s_{i} \in[-M, M] \mid v\left(s_{i}, t_{0}\right)=v\left(s_{0}, t_{0}\right)\right\},
$$

- Finite, since infinite \Longrightarrow limit point $\Longrightarrow \frac{\partial v}{\partial s}=0 . \Rightarrow$
- Lemma: For every $\varepsilon>0$ there exists a $\delta>0$ such that defining

$$
\Delta_{0}=\left[s_{0}-\delta, s_{0}+\delta\right] \times\left[t_{0}-\delta, t_{0}+\delta\right]
$$

then

$$
(s, t) \in \Delta_{0} \Longrightarrow \exists s^{\prime} \in B_{\varepsilon}\left(s_{j}\right) \text { s.t. } v(s, t)=v\left(s^{\prime}, t\right)
$$

for some $1 \leq j \leq N$.

Step 2: Failure of Injectivity in Small Boxes

- In words: for every ε, we can find a δ-box $\Delta_{0} \ni\left(s_{0}, t_{0}\right)$ such that every point in Δ_{0} is a multiple point over some point in an epsilon ball around some point in $\mathbf{S}_{M}\left(t_{0}\right)$.
- Fix $\varepsilon^{\prime}<\varepsilon / 2$ form Step 1 and apply the lemma to ε^{\prime} to produce δ and Δ_{0}.
- Apply the lemma: shrink Δ_{0} to a closed delta ball $\bar{B}_{\delta}\left(s_{0}, t_{0}\right)$.
- Upshot: Every point in Δ_{0} is a multiple point over some s_{j}.

Step 2: Failure of Injectivity in Small Boxes

$$
\mathbf{S}_{M}\left(t_{0}\right)=\left\{s_{1}, \cdots, s_{N}\right\}=\left\{s_{i} \in[-M, M] \mid v\left(s_{i}, t_{0}\right)=v\left(s_{0}, t_{0}\right)\right\}
$$

- So partition the ball up: define Σ_{j} : all multiple points over $s_{j} \in \mathbf{S}_{M}\left(t_{0}\right)$.
- Take smaller ρ-ball some $\left(s_{\star}, t_{\star}\right) \in \Sigma_{1}^{\circ}$, choose ε^{\prime} small enough such that

$$
B_{\rho}\left(s_{\star}, t_{\star}\right) \bigcap\left(\left[s_{1}-\varepsilon^{\prime}, s_{1}+\varepsilon^{\prime}\right] \times\left[t_{0}-\delta, t_{0}+\delta\right]\right)=\emptyset .
$$

Upshot: the shaded region is disjoint from the ρ-ball.

Step 3: Final Contradiction

- Construct v_{1}, v_{2} which
- Satisfy the same Cauchy-Riemann equations
- Are equal at the origin
- Have nonzero derivative at the origin.
- We want to show they are equal on \mathbb{R}^{2}
- Constructing them: use points from step 2 to translate
- Obtain $\left(s_{\star}, t_{\star}\right)$ and $\left(s_{\star}^{\prime}, t_{\star}\right)$ from previous step.
- Define

$$
\begin{aligned}
& v_{1}(s, t)=v\left(s+s_{\star}, t+t_{\star}\right) \quad \Longrightarrow v_{1}(z)=v\left(z+w_{1}\right) \\
& v_{2}(s, t)=v\left(s+s_{\star}^{\prime}, t+t_{\star}\right) \quad \Longrightarrow v_{2}(z)=v\left(z+w_{2}\right)
\end{aligned}
$$

- Satisfy the same CR equations
- By construction, they coincide at $(0,0)$ since $v\left(s_{\star}, t_{\star}\right)=v\left(s_{\star}^{\prime}, t_{\star}\right)$.
- Derivatives at the origin are nonzero, coming from the fact that $\frac{\partial v}{\partial s}\left(s_{\star}, t_{\star}\right) \neq 0$.

Step 3: Final Contradiction

- Now work at zero: for every $(s, t) \in B_{\rho}(0,0)$ there exists a multiple point $s^{\prime} \in B_{2 \varepsilon^{\prime}}(0)$ over s.
- Use the following extension lemma, consequence of Continuation Principle: in this situation, with $X_{t} \equiv 0$ on $B_{\varepsilon}(\mathbf{0})$, then

$$
z \in B_{\varepsilon}(\mathbf{0}) \Longrightarrow v_{1}(z)=v_{2}(z)
$$

- Define

$$
\begin{aligned}
\mathcal{F}: \mathrm{C}^{\infty}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow \mathrm{C}^{\infty}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
w & \longmapsto\left(\frac{\partial}{\partial s}+J \cdot \frac{\partial}{\partial t}\right) w
\end{aligned}
$$

- Since v_{1}, v_{2} satisfy the same CR equation, $\mathcal{F}\left(v_{1}\right)=\mathcal{F}\left(v_{2}\right)$

Step 3: Final Contradiction

$$
\begin{aligned}
\mathcal{F}: \mathrm{C}^{\infty}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow \mathrm{C}^{\infty}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
w & \longmapsto\left(\frac{\partial}{\partial s}+J \cdot \frac{\partial}{\partial t}\right) w
\end{aligned}
$$

Linearize \mathcal{F} as we did for the Floer operator to obtain

$$
(d \mathcal{F}) \ldots(Y)=\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+\tilde{S}\right) Y
$$

where $\tilde{S}: I \times \mathbb{R}^{2} \longrightarrow \operatorname{End}\left(\mathbb{R}^{2 n}\right)$

Step 3: Final Contradiction

- Set $Y=v_{1}-v_{2}$, then

$$
S=\int_{[0,1]} \tilde{S} \Longrightarrow S\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+S\right) Y=0
$$

- From above, $Y \equiv 0$ in $B_{\varepsilon}(\mathbf{0})$, apply Continuation Principle to obtain $v_{1}=v_{2}$ on \mathbb{R}^{2}
- Inductive argument to show

$$
\forall k \in \mathbb{Z}, \quad v(s, t)=v\left(k\left(s_{\star}^{\prime}-s_{\star}\right), t\right) \xrightarrow{k \longrightarrow \infty} x^{ \pm}(t),
$$

which contradicts an open condition.

The Continuation Principle

- Take the perturbed CR equation

$$
\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+S\right) Y=0 \quad \text { where } \quad S: \mathbb{R}^{2} \longrightarrow \operatorname{End}\left(\mathbb{R}^{2 n}\right)
$$

where J_{0} is the standard complex structure on $\mathbb{R}^{2 n}$.

- Define an infinite-order zero z of an arbitrary function f as

$$
z_{0} \in Z_{\infty} \Longleftrightarrow \sup _{B_{r}\left(z_{0}\right)} \frac{|f(z)|}{r^{k}} \stackrel{r \longrightarrow 0}{\longrightarrow} 0 \quad \forall k \in \mathbb{Z}^{\geq 0},
$$

or for a smooth function,

$$
z_{0} \in Z_{\infty} \Longleftrightarrow f^{(k)}\left(z_{0}\right)=0 \quad \forall k \in \mathbb{Z}^{\geq 0}
$$

The Continuation Principle

- Statement: If Y solves $C R$ on $U \subset \mathbb{R}^{2}$ then the set $C:=\{(s, t) \in U \mid Y$ is an infinite-order zero at $(s, t)\}$.
- Explanation: for f smooth, Z_{∞} is closed. For f holomorphic, it is clopen.
- From complex analysis: for a connected domain Ω, the only clopen subsets are \emptyset, Ω, so nonempty and $f=g$ on a connected subset implies $f=g$ on Ω.
- In particular, $Y=0$ on $U^{\prime} \subseteq U$ implies $Y=0$ on U.
- Proof is a consequence of the Similarity Principle

Similarity Principle

- Recall definition of perturbed CR equation:

$$
\left(\frac{\partial}{\partial s}+J_{0} \cdot \frac{\partial}{\partial t}+S\right) Y=0 \quad \text { where } \quad S: \mathbb{R}^{2} \longrightarrow \operatorname{End}\left(\mathbb{R}^{2 n}\right)
$$

Let
$Y \in C^{\infty}\left(B_{\varepsilon} ; \mathbb{C}^{n}\right)$, or more generally $W^{1, p}\left(B_{\varepsilon} ; \mathbb{C}^{n}\right)$, be a solution

- $S \in C^{\infty}\left(\mathbb{R}^{2}, \operatorname{End}\left(\mathbb{R}^{2}\right)\right)$ or more generally $L^{p}\left(B_{\varepsilon} ; \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^{2 n}\right)\right)$
- $p>2$

Then there exist

$$
\begin{aligned}
& \delta \in(0, \varepsilon) \\
& \sigma \in C^{\infty}\left(B_{\delta}, \mathbb{C}^{n}\right) \\
& A \in W^{1, p}\left(B_{\delta}, \mathrm{GL}\left(\mathbb{R}^{2 n}\right)\right)
\end{aligned}
$$

such that

$$
\forall(s, t) \in B_{\delta}, \quad Y(s, t)=A(s, t) \cdot \sigma(s+i t) \quad \text { and } \quad J_{0} A(s, t)=A(s, t) J_{0} .
$$

Similarity Principle

Used to prove:

- $C(v)$ is discrete
- "Extension" lemma used to prove $R(v)$ is dense

Some ideas from proof:

- Matrix A will look like the fundamental matrix of solutions to an equation
- Compactify to get $B_{\delta} \subset S^{2}$, if $Y: S^{2} \longrightarrow \mathbb{C}^{n}$ then we can consider \bar{Y} as a section of the bundle

$$
\left(A^{0,1} T^{\star} S^{2}\right)^{n}=\Lambda^{0,1} T^{\star} S^{2} \otimes \mathbb{C}^{n}
$$

$-\bar{Y}=0$ makes Y a holomorphic sphere in \mathbb{C}^{n}.

$$
8.7
$$

8.7 Outline

What we're trying to prove

- 8.1.5: $(d \mathcal{F})_{u}$ is a Fredholm operator of index $\mu(x)-\mu(y)$.
- Setup

$$
\begin{aligned}
& S^{ \pm}(t)=\lim _{s \longrightarrow \pm \infty} S(s, t), \\
& R_{t}^{ \pm} \text {a solution to the IVP } \\
& \frac{\partial}{\partial t} R=J_{0} S^{ \pm} R, \quad R_{0}^{ \pm}=\mathrm{id.}
\end{aligned}
$$

- Statement: if $\operatorname{det}\left(\mathrm{id}-R_{1}^{ \pm}\right) \neq 0$ then the operator

$$
\begin{aligned}
L: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \\
L & =\bar{\partial}+S(s, t)
\end{aligned}
$$

is Fredholm for every $p>1$.
(i.e. index makes sense, $\operatorname{dim} \operatorname{ker} L, \operatorname{dim} \operatorname{coker} L<\infty$)

- Most of the work: $\operatorname{dim}(\operatorname{ker} L)<\infty$ and $\operatorname{im}(L)$ closed.

8.7 Outline: Step 1, $\operatorname{dim} \operatorname{ker} L<\infty$

- Main ingredients:
- Elliptic regularity: For $Y \in L^{P}\left(\mathbb{R} \times S^{1}\right)$ a weak solution of the linearized Floer equation

$$
L Y=0 \Longrightarrow Y \in W^{1, p}\left(\mathbb{R} \times S^{1}\right) \bigcap C^{\infty}
$$

- A consequence of the Calderón-Zygmund (CZ) Inequality: For $Y \in W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)$ and $p>1$,

$$
\begin{equation*}
\|Y\|_{W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)} \leq C\left(\|L Y\|_{L^{p}\left(\mathbb{R} \times S^{1}\right)}+\|Y\|_{L^{p}\left(\mathbb{R} \times S^{1}\right)}\right) \tag{3}
\end{equation*}
$$

for some constant C.

- Strategy: split into cases
- Case 1: $S(s, t)=S(t)$ doesn't depend on s.
- Case 2: $S(s, t)$ does depend on s

8.7 Outline: $\operatorname{dim} \operatorname{ker} L<\infty$

CZ inequality:

$$
\begin{equation*}
\|Y\|_{W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)} \leq C\left(\|L Y\|_{L^{p}\left(\mathbb{R} \times S^{1}\right)}+\|Y\|_{L^{p}\left(\mathbb{R} \times S^{1}\right)}\right) \tag{4}
\end{equation*}
$$

Step 1: $S(s, t)=S(t)$ doesn't depend on s, prove improved estimate.

- Consider the "asymptotic operator"

$$
\begin{aligned}
D: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbb{R} \times S^{1}\right) \\
D=\bar{\partial}+S(t) & =\lim _{s \longrightarrow \pm \infty} L:=\lim _{s \longrightarrow \pm \infty}(\bar{\partial}+S(s, t)) .
\end{aligned}
$$

- Show for $p>1, D$ is invertible.
- Invertibility improves estimate: replace \mathbb{R} with $[-M, M]$.

8.7 Outline: $\operatorname{dim} \operatorname{ker} L<\infty$

- Step 2: $S(s, t)$ does depend on s
- Improved estimate in Step 1 allows replacing weak soln:

$$
Y \in L^{p}\left(\mathbb{R} \times S^{1} ; \cdot\right) \rightsquigarrow Y \in L^{p}\left([-M, M] \times S^{1}, \cdot\right)
$$

- Then restrict

$$
\begin{aligned}
L: W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \\
L & :=\bar{\partial}+S(s, t) \\
\rightsquigarrow L_{M}: W^{1, p}\left(\mathbb{R} \times S^{1}\right) & \longrightarrow L^{p}\left([-M, M] \times S^{1}\right)
\end{aligned}
$$

- Since the restriction is a compact operator, it is "semi-Fredholm", apply a theorem:
$C Z$ inequality satisfied $\Longrightarrow \operatorname{dim} \operatorname{ker} L_{M}<\infty, \operatorname{im} L_{M}$ closed.

8.7 Outline: $\operatorname{dim} \operatorname{ker} L<\infty$

- Will need some real/functional analysis to invert operators:
- "Variation of constants"
- Hilbert spaces and Spectrum of an operator
- Hille-Yosida theory: existence and uniqueness for operator IVPs, e.g. $\frac{\partial Y}{\partial s}=-A Y$
- Young's Inequality (some convolution integrals)
- Holder's Inequality
- Distribution theory
- Rellich's Theorem (Multiple uses)
- Hahn-Banach Theorem
- Riesz Representation Theorem
- Conclude 8.7 by showing L is Fredholm:
- $\operatorname{dim} \operatorname{ker} L<\infty$ (long)
- dim coker $L<\infty$ (very short)

$$
8.8
$$

8.8: Outline

What we're trying to prove

- 8.1.5: $(d \mathcal{F})_{u}$ is a Fredholm operator of index $\mu(x)-\mu(y)$.
- Define

$$
\begin{aligned}
L: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S(s, t) Y
\end{aligned}
$$

- 8.7: Shows L is Fredholm
- By the end of 8.8: replace L by L_{1} with the same index - (not the same kernel/cokernel)
- Compute Ind L_{1} : explicitly describe $\operatorname{ker} L_{1}, \operatorname{coker} L_{1}$.

8.8: Replacing L

$$
\begin{aligned}
L: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S(s, t) Y
\end{aligned}
$$

- Replace in two steps:
- $L \rightsquigarrow L_{0}$, modified in a $B_{\varepsilon}(0)$ in s.
- Use invariance of index under small perturbations.
- $L_{0} \rightsquigarrow L_{1}$ by a homotopy, where $S_{\lambda}: S \rightsquigarrow S(s)$ a diagonal matrix that is a constant matrix outside $B_{\varepsilon}(0)$.
- Use invariance of index under homotopy.

8.8: Replacing L

$$
\begin{aligned}
& S(s, t) \xrightarrow{s \longrightarrow \pm} S^{ \pm}(t) \\
& R_{t}^{ \pm} \text {a solution to the IVP } \quad \frac{\partial}{\partial t} R=J_{0} S^{ \pm} R, \quad R_{0}^{ \pm}=\mathrm{id} .
\end{aligned}
$$

- Use the fact $S: \mathbb{R} \times S^{1} \longrightarrow \operatorname{Mat}(2 n ; \mathbb{R})$ and $S^{ \pm}(t)$ are symmetric.
- Take corresponding symplectic paths $R^{ \pm}: I \longrightarrow \operatorname{Sp}(2 n ; \mathbb{R})$.
- L will be a Fredholm operator if

$$
R^{ \pm} \in \mathcal{S}:=\{R: I \longrightarrow \operatorname{Sp}(2 n ; \mathbb{R}) \mid R(0)=\mathrm{id}, \quad \operatorname{det}(R(1)-\mathrm{id}) \neq 0\}
$$

- Theorem 8.8.1:

$$
\operatorname{Ind}(L)=\mu\left(R^{-}(t)\right)-\mu\left(R^{+}(t)\right)=\mu(x)-\mu(y) .
$$

8.8: $L_{0} \rightsquigarrow L_{1}$

- Prop 8.8.2: Construct an operator

$$
\begin{aligned}
L_{1}: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S(s) Y
\end{aligned}
$$

where $S: \mathbb{R} \longrightarrow \operatorname{Mat}(2 n ; \mathbb{R})$ is a path of diagonal matrices depending on $\operatorname{Ind}\left(R^{ \pm}(t)\right)$; then

$$
\operatorname{Ind}(L)=\operatorname{Ind}\left(L_{1}\right)=\operatorname{Ind}\left(R^{-}(t)\right)-\operatorname{Ind}\left(R^{+}(t)\right)
$$

- Idea of proof: take a homotopy of operators

$$
\begin{aligned}
L_{\lambda}: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S_{\lambda}(s, t) Y
\end{aligned}
$$

which are all Fredholm and all have the same index, then take time 1.

8.8: Index of L_{1}

$$
\begin{aligned}
L_{1}: W^{1, p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) & \longrightarrow L^{p}\left(\mathbf{R} \times S^{1} ; \mathbf{R}^{2 n}\right) \\
Y & \longmapsto \frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S(s) Y
\end{aligned}
$$

- Use the fact that

$$
\operatorname{coker} L_{1} \cong \operatorname{ker} L_{1}^{*},
$$

and we can explicitly write the adjoint of L_{1}.

- Get a formula that resembles the Morse case
- (Counting number of eigenvalues that change sign).

