Chapter 9

D. Zack Garza

Monday 5th October, 2020

1 Background, Notation, Setup

Goals

Theorem 1.1*(Arnold Conjecture (Symplectic Morse Inequalities?)).*

Let (W, ω) be a compact symplectic manifold and

$$
H:W\to\mathbb{R}
$$

a time-dependent Hamiltonian with nondegenerate 1-periodic solutions. Then

{1-Periodic trajectories of
$$
X_H
$$
} $\geq \sum_{k \in \mathbb{Z}} \dim_{?} HM_k(W; \mathbb{Z}/2\mathbb{Z}).$

Here *HM*∗(*W*) is the Morse homology, and *nondegenerate* means the differential of the flow at time 1 has no fixed vectors.

Important Ideas for This Chapter:

Theorem 1.2*(Use Broken Trajectories to Compactify).* $\mathcal{L}(x, y)$ is compact, where the compactification is given by adding in

 $\partial \mathcal{L}(x, y) = \{$ "Broken Trajectories" }

Theorem 1.3*(Gluing Yields a Chain Complex).*

 $\partial^2 = 0$

Strategy:

In the background, have a Hamiltonian $H: W \to \mathbb{R}$. Basic idea: cook up a gradient flow.

1. Define the action functional A_H

On an infinite-dimensional space, critical points are periodic solutions of *H*

2. Construct the chain complex (graded vector space) *CF*∗.

Uses analog of the *index* of a critical point.

3. Define the vector field X_H using $-\text{grad }\mathcal{A}_H$.

This will be used to define *∂* later.

- 4. Count the trajectories of *X^H*
- 5. Show finite-energy trajectories connect critical points of A_H .
- 6. Show *Gromov Compactness* for space of trajectories of finite energy
- 7. Define *∂*

Uses another compactness property

- 8. Show space of trajectories is a manifold, plus analog of "Smale property"
- 9. **Show that** $\partial^2 = 0$ using a gluing property
- 10. Show that HF_* doesn't depend on \mathcal{A}_H or X_H
- 11. Show $HF_* \cong HM_*,$ and compare dimensions of the vector spaces CM_* and *CF*∗.

Ingredients:

- (W, ω, J) with $\omega \in \Omega^2(W)$ is a symplectic manifold
	- $-$ With *J* : *T_pW* → *T_pW* an almost complex structure, so $J^2 = -id$.
- $H \in C^{\infty}(W;\mathbb{R})$ a Hamiltonian
	- X_H the corresponding symplectic gradient.
	- $-$ Defined by how it acts on tangent vectors in T_xM :

$$
\omega_x(\,\cdot\,,X_H(x))=(dH)_x(\,\cdot\,).
$$

– Zeros of vector field *X^H* correspond to critical points of *H*:

$$
X_H(x) = 0 \iff (dH)_x = 0.
$$

– Take the associated flow, assumed 1-periodic:

$$
\psi^t \in C^\infty(W, W) \qquad \psi^1 = \mathrm{id},
$$

- **–** Critical points of *H* are periodic trajectories.
- $u \in C^{\infty}(\mathbb{R} \times S^1; W)$ is a solution to the Floer equation.
- The Floer equation and its linearization:

$$
\mathcal{F}(u) = \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \text{grad }_{u}(H) = 0
$$

$$
(d\mathcal{F})_{u}(Y) = \frac{\partial Y}{\partial s} + J_{0} \frac{\partial Y}{\partial t} + S \cdot Y
$$

$$
Y \in u^*TW, \ S \in C^{\infty}(\mathbb{R} \times S^1; \text{End}(\mathbb{R}^{2n})).
$$

- L*W* is the *free loop space* on *W*, i.e. space of contractible loops on *W*, i.e. $C^{\infty}(S^1; W)$ with the C^{∞} topology
	- − Elements $x \in \mathcal{L}W$ can be viewed as maps $S^1 \to W$.
	- $-$ Can extend to maps from a closed disc, $u : \overline{\mathbb{D}}^2 \to M$.
	- $-$ Loops in $\mathcal{L}W$ can be viewed as maps $S^2 \to W$, since they're maps $I \times S^1 \to W$ with the boundaries pinched:

Figure 1: Loops in L*W*

• The action functional is given by

$$
\mathcal{A}_H: \mathcal{L}W \to \mathbb{R}
$$

$$
x \mapsto -\int_{\mathbb{D}} u^*\omega + \int_0^1 H_t(x(t)) dt
$$

- Example: $W = \mathbb{R}^{2n} \implies A_H(x) = \int_0^1 (H_t dt - p dq).$
- A correspondence

$$
\left\{ \begin{matrix} \text{Solutions to the } \\ \text{Floer equation } \end{matrix} \right\} \iff \left\{ \begin{matrix} \text{Trajectories} \\ \text{of grad } A_H \end{matrix} \right\}.
$$

• *x, y* periodic orbits of *H* (nondegenerate, contractible), equivalently critical points of \mathcal{A}_H .

• Assumption of *symplectic asphericity*, i.e. the symplectic form is zero on spheres. Statement: for every $u \in C^{\infty}(S^2, W)$,

$$
\int_{S^2} u^*\omega = 0 \quad \text{or equivalently} \quad \langle \omega, \pi_2 W \rangle = 0.
$$

• Assumption of *symplectic trivialization*: for every $u \in C^{\infty}(S^2; M)$ there exists a symplectic trivialization of the fiber bundle u^*TM , equivalently

$$
\langle c_1 TW, \pi_2 W \rangle = 0.
$$

Locally a product of base and fiber, transition functions are symplectomorphisms.

- Maslov index: used the fact that
	- Every path in $\gamma: I \to \text{Sp}(2n, \mathbb{R})$ can be assigned an integer coming from a map $\tilde{\gamma}: I \to S^1$ and taking (approximately) its winding number.
- $\mathcal{M}(x, y)$, the moduli space of contractible finite-energy solutions to the Floer equation connecting *x, y*.
	- **–** After perturbing *H* to get transversality, get a manifold
		- ∗ Dimension:

$$
\dim \mathcal{M}(x, y) = \mu(x) - \mu(y).
$$

- **–** How we did it:
	- ∗ Describe as zeros of a section of a vector bundle over P ¹*,p*(*x, y*)
		- (Banach manifold modeled on the Sobolev spaces $W^{1,p}$),
	- ∗ Apply Sard-Smale to show M(*x, y*) is the inverse image of a regular value of some map.
- **–** Needed tangent maps to be Fredholm operators, proved in Ch. 8 and used to show transversality.
	- ∗ Showed (*d*F)*^u* is a Fredholm operator of index *µ*(*x*) − *µ*(*y*).

 \blacksquare

2 Reminder of Goals

Overall Goal:

Theorem 2.1*(Symplectic Morse Inequalities).*

{1-Periodic trajectories of
$$
X_H
$$
} $\geq \sum_{k \in \mathbb{Z}} HM_k(W; \mathbb{Z}/2\mathbb{Z}).$

Important Ideas for This Chapter:

Theorem 2.2*(Using Broken Trajectories to Compactify).* $\mathcal{L}(x, y)$ is compact,

 $\partial \mathcal{L}(x, y) = \{$ "Broken Trajectories"}

Theorem 2.3*(Using Gluing to Get a Chain Complex).*

 $\partial^2 = 0$

3 9.1 and Review

- Defined moduli space of (parameterized) **solutions**:
	- $\mathcal{M}(x, y) = \{$ Contractible finite-energy solutions connecting $x, y\}$

 $M = \{All contractible finite-energy solutions to the Floer equation\}$ $= \bigcup$ *x,y* $\mathcal{M}(x,y)$.

• The moduli space of (unparameterized) **trajectories** connecting *x, y*:

$$
\mathcal{L}(x,y) \coloneqq \mathcal{M}(x,y)/\mathbb{R}.
$$

– Use the quotient topology, define sequentially:

$$
\tilde{u}_n \stackrel{n \to \infty}{\longrightarrow} \tilde{u} \iff \exists \{s_n\} \subset \mathbb{R} \text{ such that } u_n(s_n + s, \cdot) \stackrel{n \to \infty}{\longrightarrow} u(s, \cdot).
$$

– When |*µ*(*x*) − *µ*(*y*)| = 1, get a compact 0-manifold, so the number of trajectories

$$
n(x,y) \coloneqq \# \mathcal{L}(x,y)
$$

is well-defined.

• $C_k(H) := \mathbb{Z}/2\mathbb{Z}[\{\text{Periodic orbits of } X_H \text{ of Maslov index } k\}].$

– Finitely many since they are nondegeneracy implies they are isolated.

Remark 1.

Some notation:

$$
\mathbb{R} \longrightarrow \mathcal{M}(x, z)
$$

$$
\downarrow^{\pi}
$$

$$
\mathcal{L}(x, z)
$$

Hats will generally denote maps induced on quotient.

• Defined a differential

$$
\partial: C_k(H) \to C_{k-1}(H)
$$

$$
x \mapsto \sum_{\mu(y)=k-1} n(x, y)y
$$

$$
n(x, y) := # \{ \text{Trajectories of grad } \mathcal{A}_H \text{ connecting } x, y \} \mod 2
$$

$$
= # \mathcal{L}(x, y) \mod 2.
$$

• Examined ∂^2 :

$$
\partial^2 : C_k(H) \to C_{k-2}(H)
$$
\n
$$
x \mapsto \partial(\partial(x))
$$
\n
$$
= \partial \left(\sum_{\mu(y)=\mu(x)-1} n(x,y)y \right)
$$
\n
$$
= \sum_{\mu(y)=\mu(x)-1} n(x,y)\partial(y)
$$
\n
$$
= \sum_{\mu(y)=\mu(x)-1} n(x,y) \left(\sum_{\mu(z)=\mu(y)-1} n(y,z)z \right)
$$
\n
$$
= \sum_{\mu(y)=\mu(x)-1} \sum_{\mu(z)=\mu(y)-1} n(x,y)n(y,z)z
$$
\n
$$
= \sum_{\mu(z)=\mu(y)-1} \left(\sum_{\mu(y)=\mu(x)-1} n(x,y)n(y,z) \right)z \qquad \text{(finite sums, swap order)},
$$

so it suffices to show

$$
\sum_{\mu(y)=\mu(x)-1} n(x,y)n(y,z) = 0 \text{ when } \mu(z) = \mu(x) - 2.
$$

Easier to examine parity, so we'll show it's zero mod 2.

- When $\mu(z) = \mu(x) 2$, $\mathcal{L}(x, z)$ is a non-compact 1-manifold, so we compactify by adding in *broken trajectories* to get $\overline{\mathcal{L}}(x, y)$.
- We'll then have

$$
\overline{\mathcal{L}}(x,z) = \mathcal{L}(x,z) \cup \partial \overline{\mathcal{L}}(x,z), \qquad \partial \overline{\mathcal{L}}(x,z) = \bigcup_{\mu(y) = \mu(x) - 1} \mathcal{L}(x,y) \times \mathcal{L}(y,z),
$$

which "space-ifies" the equation we want.

• We'll show $\partial \overline{\mathcal{L}}(x, z)$ is a 1-manifold, which must have an even number of points, and thus

$$
\sum_{\mu(y)=\mu(x)-1} n(x,y)n(y,z) = \#(\partial \overline{\mathcal{L}}(x,z)) \equiv 0 \mod 2.
$$

Image here of relations between spaces!

 \blacksquare

4 Three Important Theorems

4.1 First Theorem: Convergence to Broken Trajectories

- Recall: *broken trajectories* are unions of intermediate trajectories connecting intermediate critical points.
- Shown last time: a sequence of trajectories can converge to a broken trajectory, i.e. there are broken trajectories in the closure of $\mathcal{L}(x, z)$.
- This theorem describes their behavior:

Theorem 4.1*(9.1.7: Convergence to Broken Trajectories).* Let $\{u_n\}$ be a sequence in $\mathcal{M}(x, z)$, then there exist

- A subsequence $\{u_{n_j}\}\$
- Critical points $\{x_0, x_1, \dots, x_{\ell+1}\}$ with $x_0 = x$ and $x_{\ell+1} = z$
- Sequences $\{s_n^1\}$ *n* $\}, \{s_n^2\}$ *n* $\}, \cdots, \{s^\ell_n\}$ *n* $\big\}.$
- Elements $u^k \in \mathcal{M}(x_k, x_{k+1})$ such that for every $0 \leq k \leq \ell$,

$$
u_{n_j} \cdot s_n^k \stackrel{n \to \infty}{\longrightarrow} u^k.
$$

- Upshots:
	- **–** Every sequence upstairs has a subsequence which (after reparameterizing) converges
	- **–** This descends to actual convergence after quotienting by R?
	- \sim Yields uniqueness of limits in $\mathcal{L}(x, z)$, thus a separated topology
	- Sequentially compact \iff compact since $\mathcal{L}(x, z)$ is a metric space?

Corollary 4.2*(Compactness).* $\overline{\mathcal{L}}(x,z)$ is compact.

4.2 Second Theorem: Compactness of $\overline{\mathcal{L}}(x, z)$

Definition 4.2.1 (Regular Pair)**.** For an almost complex structure J and a Hamiltonian H , the pair (H, J) is **regular** if the Floer map $\mathcal F$ is transverse to the zero section in the following vector bundle:

$$
E_u \coloneqq \{\text{Vector fields tangent to } M \text{ along } u\} \longrightarrow C^\infty(\mathbb{R} \times S^1; TM)
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
C^\infty(\mathbb{R} \times S^1; M)
$$

Most of chapter 9 is spent proving this theorem:

Theorem 4.3*(9.2.1).*

Let (H, J) be a regular pair with *H* nondegenerate and x, z be two periodic trajectories of *H* such that

$$
\mu(x) = \mu(z) + 2.
$$

Then $\overline{\mathcal{L}}(x, z)$ is a compact 1-manifold with boundary with

$$
\partial \overline{\mathcal{L}}(x, z) = \bigcup_{y \in \mathcal{I}(x, z)} \mathcal{L}(x, y) \times \mathcal{L}(y, z)
$$

$$
\mathcal{I}(x, z) = \left\{ y \middle| \mu(x) < \mu(y) < \mu(z) \right\}.
$$

Note: possibly a typo in the book? Has *x, y* on the LHS.

where

Corollary 4.4.

$$
\partial^2=0.
$$

4.3 Third Theorem: Gluing

Theorem 4.5*(9.2.3: Gluing).*

Let x, y, z be three critical points of \mathcal{A}_H with three consecutive indices

$$
\mu(x) = \mu(y) + 1 = \mu(z) + 2.
$$

and let

$$
(u, v) \in \mathcal{M}(x, y) \times \mathcal{M}(y, z) \quad \rightsquigarrow \quad (\widehat{u}, \widehat{v}) \in \mathcal{L}(x, y) \times \mathcal{L}(y, z).
$$

Then

1. There exists a $\rho_0 > 0$ and a differentiable map

$$
\psi : [\rho_0, \infty) \to \mathcal{M}(x, z)
$$

such that $\hat{\psi}$, the induced map on the quotient

is an embedding that satisfies

$$
\widehat{\psi}(\rho) \stackrel{\rho \to \infty}{\longrightarrow} (\widehat{u}, \widehat{v}) \in \overline{\mathcal{L}}(x, z).
$$

2. ("Uniqueness") For any sequence $\{\ell_n\} \subseteq \mathcal{L}(x, z)$,

$$
\ell_n \stackrel{n \to \infty}{\longrightarrow} (\hat{u}, \hat{v}) \quad \Longrightarrow \quad \ell_n \in \text{im}(\hat{\psi}) \text{ for } n \gg 0.
$$

- We already know that $\overline{\mathcal{L}}(x, z)$ is compact and $\mathcal{L}(x, z)$ is a 1-manifold, so we look at neighborhoods of boundary points.
- Why unique: will show that the broken trajectory (\hat{u}, \hat{v}) is the endpoint of an embedded interval in $\overline{\mathcal{L}}(x, z)$.
	- Then show that any other sequence converging to (\hat{u}, \hat{v}) must approach via this interval, otherwise could have cuspidal points:

Figure 2: Cuspidal Point on Boundary

 \blacksquare

5 Gluing Theorem

Broken into three steps:

- 1. **Pre-gluing**:
- Get a function w_{ρ} which interpolates between u and v in the parameter ρ . **–** Not exactly a solution itself, just an "approximation".
- 2. **Newton's Method**:
- Apply the Newton-Picard method to w_p to construct a true solution

$$
\psi : [-\rho, \infty) \to \mathcal{M}(x, z)
$$

$$
\rho \mapsto \exp_{w_p}(\gamma(p))
$$

for some
$$
\gamma(p) \in W^{1,p}(w_p^*TW) = T_{w_p} \mathcal{P}(x, z)
$$

- [GIF of Newton's Method](https://www.maplesoft.com/support/help/content/4702/plot552.gif)
- 3. **Project and Verify Properties**:
- Check that the projection $\hat{\psi} = \pi \circ \psi$ satisfies the conditions from the theorem.

ш

6 9.3: Pre-gluing, Construction of *^w^ρ*

- Choose (once and for all) a bump function β on $B_\varepsilon(0)^c \subset \mathbb{R} \to [0,1]$ which is 1 on $|x| \ge 1$ and 0 on $|x| < \varepsilon$
- Split into positive and negative parts $\beta^{\pm}(s)$:

Figure 3: Bump away from zero

• Define an interpolation w_{ρ} from u to v in the following way: let

$$
-\exp[\cdot] := \exp_{y(t)}(\cdot) \text{ and } -\ln(\cdot) := \exp_{y(t)}^{-1}(\cdot),
$$

then

$$
w_{\rho}: x \to z
$$

$$
w_{\rho}(s,t) := \begin{cases} u(s+\rho,t) & s \in (-\infty, -1] \\ \exp\left[\beta^-(s)\ln(u(s+\rho,t)) + \beta^+(s)\ln(u(s-\rho,t))\right] & s \in [-1,1] \\ u(s-\rho,t) & s \in [1,\infty) \end{cases}
$$

• Why does this make sense?

$$
|s| \le 1 \implies u(s \pm \rho, t) \in \left\{ \exp_{y(t)} Y(t) \mid \sup_{t \in S^1} ||Y(t)|| \le r_0 \right\} \subseteq \text{im} \exp_{y(t)}(\cdot),
$$
 so we can apply $\exp_{y(t)}^{-1}(\cdot)$.

.

• Can make $|s| \leq 1$ for large ρ , since

$$
u(s,t) \stackrel{s \to \infty}{\longrightarrow} y(t)
$$

$$
v(s,t) \stackrel{s \to -\infty}{\longrightarrow} y(t).
$$

- **−** So pick a $ρ₀$ such that this holds for $ρ > ρ₀$.
- **–** Might have to increase ρ_0 later in the proof, so $\rho > \rho_0$ just means $\rho \gg 0$.
- Some properties:

$$
- w_{\rho} \in C^{\infty}(x, z) \text{ and is differentiable in } \rho.
$$

$$
- s \in [-\varepsilon, \varepsilon] \implies w_{\rho}(s, t) = y(t).
$$

$$
w_{\rho}(s - \rho, t) \stackrel{\rho \to \infty}{\longrightarrow} u(s, t) \text{ in } C^{\infty}_{\text{loc}}.
$$

$$
w_{\rho}(s, t) \stackrel{\rho \to \infty}{\longrightarrow} y(t) \text{ in } C^{\infty}_{\text{loc}}.
$$

- Now carry out the linearized version on tangent vectors, to which we will apply Newton-Picard:
	- $-$ Let $Y \in T_u \mathcal{P}(x, y)$

$$
- \; {\rm Let} \; Z \in T_v\mathcal{P}(x,y)
$$

– Replace *w^ρ* with the interpolation

$$
Y\#_{\rho}Z \in T_{w_{\rho}}\mathcal{P}(x,y) = W^{1,p}(w_{\rho}^*TW).
$$

defined by

$$
(Y \#_{\rho} Z)(s,t) = \begin{cases} Y(s+\rho,t) & s \in (-\infty,-1] \\ \exp_T \left[\beta^-(s) \ln_T(Y(s+\rho,t)) + \beta^+(s) \ln_T(Z(s-\rho,t)) \right] & s \in [-1,1] \\ \\ Z(s-\rho,t) & s \in [1,\infty) \end{cases}
$$

where the subscript *T* indicates taking tangents of the exponential maps at appropriate points.

■

7 9.4: Construction of *^ψ***.**

7.1 Summary

- Newton-Picard method, general idea:
	- **–** Allows finding zeros of *f* given an approximate zero *x*0, using the extra information of the 1st derivative f' .
	- **–** Original method and variant: find the limit of a sequence

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}.
$$

– Second variant more useful: only need derivative at one point:

Figure 4: Newton Method Variants

- Pregluing function $w_{\rho} \in C^{\infty}_{\searrow}(x, z)$ from previous section
	- **–** Exponential decay
- Want to construct true solution $\psi_{\rho} \in \mathcal{M}(x, z)$, so $\mathcal{F}(\psi_{p}) = 0$.
	- **–** Suffices to get a weak solution
	- **–** Automatic continuity + elliptic regularity =⇒ strong solution
- Define \mathcal{F}_{ρ} as $\mathcal{F} \circ \exp_{w_{\rho}}$ expanded bases Z_i from trivialization of TW.
- $L_{\rho} = (d\mathcal{F}_{\rho})_0$ will be the linearization of the Floer operator at zero.
- Adapting Newton-Picard to operators:
	- $-L_{\rho}$ won't be invertible on entire space, but

$$
\frac{1}{f'(x_0)} \iff L_{\rho}^{-1},
$$

– Decompose

$$
T_{w_{\rho}}\mathcal{P}(x,z) = W^{1,p}(w_{\rho}^*TW) = W^{1,p}(\mathbb{R} \times S^1; \mathbb{R}^{2n}) = \ker(L_{\rho}) \oplus W_{\rho}^{\perp},
$$

where L_{ρ} will have a right inverse on W_{ρ}^{\perp} .

 \ast Where does W_{ρ}^{\perp} come from? Essentially the kernel of some linear functional given by an integral:

$$
W_{\rho}^{\perp} \coloneqq \left\{ Y \in W^{1,p} \mid \int_{\mathbb{R} \times S^1} \langle Y, \cdots \rangle \, ds \, dt = 0, \text{ plus conditions} \right\}.
$$

 $-$ Run Newton-Picard in W_{ρ}^{\perp}

• Will obtain for every $\rho \ge \rho_0$ an element $\gamma(\rho) \in W_\rho^{\perp}$ with

$$
\mathcal{F}_{\rho}(\gamma(\rho))=0.
$$

• Where does γ come from? Intersection-theoretic interpretation on page 320:

$$
(\exp_{w_{\rho}})^{-1} \mathcal{M}(x, z) \cap W_{\rho}^{\perp} \subseteq T_{w_{\rho}} \mathcal{P}(x, z) \longrightarrow \gamma
$$

$$
\mathcal{M}(x, z) \cap \left\{ \exp_{w_{\rho}} W_{\rho}^{\perp} \middle| \rho \ge \rho_0 \right\} \subseteq \mathcal{P}(x, z) \longrightarrow \psi(\rho),
$$

which we get by exponentiating.

• This gives a codimension 1 subspace in $\mathcal{M}(x, z)$, which we take to be $\psi(\rho)$:

Figure 5: Intersection interpretation

Schematic picture here for γ , $\psi(\rho)$.

- Apply the implicit function theorem to show differentiability of γ in ρ .
- Use a trivialization Z_i^{ρ} of TW to get a vector field along w_{ρ} – This is exactly an element of $T_{w_p} \mathcal{P}(x, z)$
- Exponentiate to get an element of $\mathcal{M}(x, z)$:

$$
\psi(\rho) \coloneqq \exp_{w_{\rho}} (\gamma(\rho)).
$$

• **Final Result**: project onto $\mathcal{L}(x, z)$ to get $\hat{\psi}$.

Checking Properties:

- Existence: show $\hat{\psi}$ is a proper injective immersion \implies embedding.
- Uniqueness: show the broken trajectory (\hat{u}, \hat{v}) is the endpoint of an embedded interval in $\overline{\mathcal{L}}(x, z)$.
	- $-$ Show that any other sequence converging to (\hat{u}, \hat{v}) must approach via this interval, otherwise could have cuspidal points:

Figure 6: Cuspidal Point on Boundary

Probably not worth going farther than this! Extremely detailed analysis.

 \blacksquare