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1 ‘ Background, Notation, Setup

Goals

Theorem 1.1(Arnold Conjecture (Symplectic Morse Inequali-
ties?)).
Let (W, w) be a compact symplectic manifold and

H:W-—->R

a time-dependent Hamiltonian with nondegenerate 1-periodic solutions.
Then

# {1-Periodic trajectories of Xy} > Y dim» HM(W; Z/2Z).
keZ

Here HM., (W) is the Morse homology, and nondegenerate means the differential of the
flow at time 1 has no fixed vectors.

Important Ideas for This Chapter:

Theorem 1.2 (Use Broken Trajectories to Compactify).
L(x,y) is compact, where the compactification is given by adding in

OL(x,y) = {"Broken Trajectories"}

Theorem 1.3 (Gluing Yields a Chain Complex).

P =0



Strategy:
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In the background, have a Hamiltonian H : W — R. Basic idea: cook up a gradient flow.
Define the action functional Ay

On an infinite-dimensional space, critical points are periodic solutions of H

Construct the chain complex (graded vector space) C'F.

Uses analog of the indez of a critical point.

Define the vector field Xy using —grad Apy.

This will be used to define O later.

Count the trajectories of Xp

Show finite-energy trajectories connect critical points of Ag.

Show Gromov Compactness for space of trajectories of finite energy
Define 0

Uses another compactness property

Show space of trajectories is a manifold, plus analog of “Smale property”
Show that 0° = 0 using a gluing property

Show that HF, doesn’t depend on Ay or Xy

Show HF, = HM.,, and compare dimensions of the vector spaces C'M, and
CF..
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Ingredients:
o (W,w,J) with w € Q*(W) is a symplectic manifold
— With J : T, W — T,W an almost complex structure, so J 2 = —id.
« H € C*(W;R) a Hamiltonian

— Xy the corresponding symplectic gradient.
— Defined by how it acts on tangent vectors in T, M:

wil-, Xpr(@)) = (dH), ().
— Zeros of vector field Xy correspond to critical points of H:
Xy(r)=0 < (dH), =0.
— Take the associated flow, assumed 1-periodic:
e COWW) = id,
— Critical points of H are periodic trajectories.

e uc€ C™(R x S W) is a solution to the Floer equation.

o The Floer equation and its linearization:

ou ou
oY oY
(AF),(Y) = 5=+ Jog +5-Y

Y € w*TW, S € C*(R x S'; End(R*")).
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o LW is the free loop space on W, i.e. space of contractible loops on W,
i.e. C°°(S'; W) with the C*™ topology

— Elements x € LW can be viewed as maps S' — W.

— Can extend to maps from a closed disc, u : D* — M.

— Loops in LW can be viewed as maps S*> — W, since they’re maps
I x 8 — W with the boundaries pinched:

TN
_
N

N

Figure 1: Loops in LW

o The action functional is given by
.AH LW — R
1
- —/Du*w+/0 Hy(z(t)) dt

1
— Example: W = R¥ = Ap(z) = /0 (H, dt — p dg).
— A correspondence

Solutions to the Trajectories
{ loer equation } — {of grad AH}-

 x,y periodic orbits of H (nondegenerate, contractible), equivalently critical
points of Ay.
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Assumption of symplectic asphericity, i.e. the symplectic form is zero on
spheres. Statement: for every u € C™(S* W),

/52 w'w =0 orequivalently (w, mW) =0.

Assumption of symplectic trivialization: for every u € C™(S% M) there
exists a symplectic trivialization of the fiber bundle v*T' M, equivalently

<01TW, 72W> = 0.

Locally a product of base and fiber, transition functions are symplectomorphisms.

Maslov index: used the fact that

— Every path in v : I — Sp(2n,R) can be assigned an integer coming
from a map 7 : I — S’ and taking (approximately) its winding number.

M(z,y), the moduli space of contractible finite-energy solutions to the
Floer equation connecting x, y.

— After perturbing H to get transversality, get a manifold

* Dimension:

dim M(z, y) = p(z) — p(y).
— How we did it:
+ Describe as zeros of a section of a vector bundle over P'?(z, y)
(Banach manifold modeled on the Sobolev spaces W'?),

« Apply Sard-Smale to show M (z,y) is the inverse image of a regular
value of some map.

— Needed tangent maps to be Fredholm operators, proved in Ch. 8 and
used to show transversality.

* Showed (dF), is a Fredholm operator of index pu(z) — u(y).
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2 ‘ Reminder of Goals

Overall Goal:
Theorem 2.1 (Symplectic Morse Inequalities).

# {1-Periodic trajectories of Xy} > > HM(W; Z/2Z).
keZ

Important Ideas for This Chapter:

Theorem 2.2 (Using Broken Trajectories to Compactify).
L(x,y) is compact,

OL(x,y) = {"Broken Trajectories"}

Theorem 2.3 (Using Gluing to Get a Chain Complex).

P =0
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3 ‘ 9.1 and Review

 Defined moduli space of (parameterized) solutions:

M(z,y) = {Contractible finite-energy solutions connecting z, y}

M = {All contractible finite-energy solutions to the Floer equation}
= U M(z,y).
.y

e The moduli space of (unparameterized) trajectories connecting x, y:
L(z,y) = M(z,y)/R.

— Use the quotient topology, define sequentially:

~ N—00 ~ —00

U, — 4 <= 3{s,} C Rsuch that u,(s, +s, ) = u(s, -).

— When |u(x) — u(y)| = 1, get a compact 0-manifold, so the number of
trajectories

n(z,y) = #L(z,y)
is well-defined.
o Cy(H) = 7Z/2Z]{Periodic orbits of X of Maslov index k}].

— Finitely many since they are nondegeneracy implies they are isolated.

Remark 1.
Some notation:

R —— M(z,2)

&

L(x,z)

Hats will generally denote maps induced on quotient.
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e Defined a differential

0 : Ck(H) — Ck_l(H)

r— Y n(x,y)y
n(y)=k—1

n(x,y) = # {Trajectories of grad Apg connecting x,y} mod 2
= #/L(z,y) mod 2.

o Examined 0°:

0% : Cp(H) — Cy_o(H)
z +— 0(0(x))

= 3( n(z, y)y)
p(y)=p(x)—1

>, n(x,y)oy)

wy)=p(z)—1

= > n(fv,y)( > n(y,Z)Z)

pw(z)=p(y)—1
= > n(xy)n(y, 2) 2

= > ( > n(x,y)n(y, z)) 2 (finite sums, swap order),
p(y)

so it suffices to show

> nleyn(y,2) =0 when u(z) = p(x) - 2.
w(y)=p(z)—1

Easier to examine parity, so we’ll show it’s zero mod 2.
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e When u(z) = pu(x) — 2, L(x, 2) is a non-compact 1-manifold, so we com-
pactify by adding in broken trajectories to get L(x,y).

e We’'ll then have
L(x,z) = L(x,2) UOL(x, 2), OL(r,z)= U  L(z,y) x L(y, 2),

which “space-ifies” the equation we want.

o We'll show dL(z, z) is a 1-manifold, which must have an even number of
points, and thus

> n(z,y)n(y, z) = #(3Z(x,z)) =0 mod 2.

p(y)=p(x)—1

Image here of relations between spaces!
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4 ‘ Three Important Theorems

4.1 First Theorem: Convergence to Broken Trajectories

o Recall: broken trajectories are unions of intermediate trajectories connect-
ing intermediate critical points.

o Shown last time: a sequence of trajectories can converge to a broken tra-
jectory, i.e. there are broken trajectories in the closure of L(z, z).

e This theorem describes their behavior:

Theorem 4.1(9.1.7: Convergence to Broken Trajectories).
Let {u,} be a sequence in M(x, z), then there exist

A subsequence {unj }

Critical points {xg, x1, -+ , 211} with xg = x and x4 = 2

Sequences {s,ll} : {si} AR {sfb}

Elements u* € Mz, 41) such that for every 0 < k < /,

n—oo  k

Uy, - 87 "X P,

J
e Upshots:
— Every sequence upstairs has a subsequence which (after reparameter-
izing) converges
— This descends to actual convergence after quotienting by R?
— Yields uniqueness of limits in £(z, z), thus a separated topology
— Sequentially compact <= compact since L(z, z) is a metric space?

Corollary 4.2 (Compactness).

L(x, z) is compact.
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4.2 Second Theorem: Compactness of L(z, )

4.2 Second Theorem: Compactness of L(z, 2)

Definition 4.2.1 (Regular Pair).

For an almost complex structure J and a Hamiltonian H, the pair (H, J)
is regular if the Floer map F is transverse to the zero section in the
following vector bundle:

E, = {Vector fields tangent to M along u} —— C®(R x S*; T M)

® [ &

F 0

COO(RX Sl;M)

Most of chapter 9 is spent proving this theorem:

Theorem 4.3(9.2.1).
Let (H, J) be a regular pair with H nondegenerate and x, z be two periodic
trajectories of H such that

() = (=) + 2.

Then L(z, z) is a compact 1-manifold with boundary with

0L(z,2) = U Llz,y) x L(y,2)

yeZ(x,2)
where  Z(z,2) = {y ] u(x) < ply) < u(Z)}-

Note: possibly a typo in the book? Has z,y on the LHS.

Corollary 4.4.
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4.3 Third Theorem: Gluing

4.3 Third Theorem: Gluing

Theorem 4.5(9.2.3: Gluing).
Let z,y, z be three critical points of Ag with three consecutive indices

u(z) = ply) + 1 = p(z) + 2.
and let
(u,v) € M(z,y) x M(y,z) ~ (4,0) € L(x,y) X L(y, 2).

Then
1. There exists a pp > 0 and a differentiable map

¢ : [pO; OO) — M(SU,Z)

such that 1/3, the induced map on the quotient
(
[P0, 00) —— M(z, 2)

(!

L(x,2)

is an embedding that satisfies

d(p) =% (a,0) € L(z, 2).
2. (“Uniqueness”) For any sequence {¢,} C L(z, 2),

l, =% (4,0) = L, €im(y) for n > 0.
o We already know that L£(z,z) is compact and L(z, z) is a I-manifold, so

we look at neighborhoods of boundary points.

o Why unique: will show that the broken trajectory (u, ) is the endpoint of
an embedded interval in £(z, 2).

— Then show that any other sequence converging to (4, v) must approach
via this interval, otherwise could have cuspidal points:
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4.3 Third Theorem: Gluing

(w,)

Figure 2: Cuspidal Point on Boundary
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5 ‘ Gluing Theorem

Broken into three steps:
1. Pre-gluing;:
e Get a function w, which interpolates between u and v in the parameter p.
— Not exactly a solution itself, just an “approximation”.
2. Newton’s Method:
« Apply the Newton-Picard method to w, to construct a true solution
v [=p,00) = M(z, 2)
p = exp, (7(p))

for some v(p) € W'P(w; TW) = T,, P(x, 2)
e GIF of Newton’s Method

3. Project and Verify Properties:

e Check that the projection ¢y = 7 o 1) satisfies the conditions from the
theorem.
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6 ‘ 9.3: Pre-gluing, Construction of w,

 Choose (once and for all) a bump function 5 on B.(0)° C R — [0, 1] which
islon|z|]>1andOon |z| <e
« Split into positive and negative parts 3%(s):

Figure 3: Bump away from zero

o Define an interpolation w, from u to v in the following way: let
—exp[-] = expiy(t)( -) and
— In(-) =exp, (),
then
W, : T — 2

u(s + p,t) s € (—oo, —1]

w,y(s,t) = {exp [6‘(3) In(u(s + p,t)) + B7(s) In(u(s — p, t))} s € [—1,1]

u(s — p,t) s € [1,00)
o Why does this make sense?

<1 — (s pit) € fexpy V(E) | sup VO < rof € imexpy(-)
c 1

so we can apply eXp;é)( ).
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o Can make |s| <1 for large p, since

— So pick a pp such that this holds for p > py.

— Might have to increase py later in the proof, so p > py just means
p>0.

e Some properties:

—w, € C®(x, z) and is differentiable in p.
—s€[—e,e] = wy(s,t)=y(1).

P—00

wy(s —p,t) — u(s,t) in Cp

w,y(s,t) = y(t) in CX.

o Now carry out the linearized version on tangent vectors, to which we will
apply Newton-Picard:

—Let Y € T,P(z,vy)
— Let Z € T,P(x,y)
— Replace w, with the interpolation

Y#,Z € Ty, P(x,y) = W (wiTW).
defined by

Y(s+p,t) s € (—oo, —1]

(Y#,Z)(s,t) = { expp [6‘(5) Ing(Y (s + p,t)) + B (s)Inp(Z(s — p,t))} s € [—1,1]

Z(s—p,t) s € [1,00)

where the subscript T indicates taking tangents of the exponential
maps at appropriate points.
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7 ‘ 9.4: Construction of .

7.1 Summary

o Newton-Picard method, general idea:

— Allows finding zeros of f given an approximate zero x, using the extra
information of the 1st derivative f'.

— Original method and variant: find the limit of a sequence

f(@n) (@)

Tn+l = T — f,(xn)7 I+l = T — f/(ilj'(]) .

— Second variant more useful: only need derivative at one point:

e ——————

L N ——

:1:2 T

=
e

fig. 9.6

Figure 4: Newton Method Variants
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7.1 Summary

Pregluing function w, € CT(x, ) from previous section

— Exponential decay

Want to construct true solution ¢, € M(z, z), so F(1,) = 0.

— Suffices to get a weak solution
— Automatic continuity + elliptic regularity = strong solution

Define F, as F o XDy, expanded bases Z; from trivialization of TW.

L, = (dF,)o will be the linearization of the Floer operator at zero.

Adapting Newton-Picard to operators:
— L, won’t be invertible on entire space, but

— Decompose
Tw,P(z,2) = W (w,TW) = WP(R x SYR*) = ker(L,) & W,

where L, will have a right inverse on WpL.
x Where does W,j come from? Essentially the kernel of some linear
functional given by an integral:

VVpl = {Y cwtr ‘ /Rxsl (Y, ---)dsdt =0, plus conditions} :

— Run Newton-Picard in I/VpL

« Will obtain for every p > py an element v(p) € VVpL with

Fo(v(p)) = 0.
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7.1 Summary

e Where does v come from? Intersection-theoretic interpretation on page
320:

(expwp)_lj\/l(x, z) N I/VpL C Ty, Pz, 2) ~ Y
M(x,2) 0 {exp,, Wi | p 2 oo} € Pla,2) - U(p),
which we get by exponentiating.

 This gives a codimension 1 subspace in M(z, z), which we take to be 1 (p):

Figure 5: Intersection interpretation
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7.1 Summary

Schematic picture here for -, ¥ (p).

7 9.4: CONSTRUCTION OF 1.
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7.1 Summary

Apply the implicit function theorem to show differentiability of v in p.

Use a trivialization Z of TW to get a vector field along w,

— This is exactly an element of T, P(x, 2)

Exponentiate to get an element of M(x, 2):

U(p) = exp,, (7(p))-

Final Result: project onto £(z, 2) to get ).

Checking Properties:
« Existence: show ¢ is a proper injective immersion = embedding.

« Uniqueness: show the broken trajectory (u, v) is the endpoint of an embed-
ded interval in L(z, 2).

— Show that any other sequence converging to (u,¥) must approach via
this interval, otherwise could have cuspidal points:

(w,v)

Figure 6: Cuspidal Point on Boundary

Probably not worth going farther than this! Extremely detailed analysis.
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