Chapter 9

D. Zack Garza

Monday $5^{\text {th }}$ October, 2020

1 Background, Notation, Setup

Goals

Theorem 1.1(Arnold Conjecture (Symplectic Morse Inequalities?)).
Let (W, ω) be a compact symplectic manifold and

$$
H: W \rightarrow \mathbb{R}
$$

a time-dependent Hamiltonian with nondegenerate 1-periodic solutions. Then

$$
\#\left\{1 \text {-Periodic trajectories of } X_{H}\right\} \geq \sum_{k \in \mathbb{Z}} \operatorname{dim}_{?} H M_{k}(W ; \mathbb{Z} / 2 \mathbb{Z}) \text {. }
$$

Here $H M_{*}(W)$ is the Morse homology, and nondegenerate means the differential of the flow at time 1 has no fixed vectors.

Important Ideas for This Chapter:
Theorem 1.2(Use Broken Trajectories to Compactify).
$\mathcal{L}(x, y)$ is compact, where the compactification is given by adding in

$$
\partial \mathcal{L}(x, y)=\{\text { "Broken Trajectories" }\}
$$

Theorem 1.3(Gluing Yields a Chain Complex).

$$
\partial^{2}=0
$$

Strategy:

In the background, have a Hamiltonian $H: W \rightarrow \mathbb{R}$. Basic idea: cook up a gradient flow.

1. Define the action functional \mathcal{A}_{H}

On an infinite-dimensional space, critical points are periodic solutions of H
2. Construct the chain complex (graded vector space) $C F_{*}$.

Uses analog of the index of a critical point.
3. Define the vector field X_{H} using $-\operatorname{grad} \mathcal{A}_{H}$.

This will be used to define ∂ later.
4. Count the trajectories of X_{H}
5. Show finite-energy trajectories connect critical points of \mathcal{A}_{H}.
6. Show Gromov Compactness for space of trajectories of finite energy

7. Define ∂

Uses another compactness property
8. Show space of trajectories is a manifold, plus analog of "Smale property"
9. Show that $\partial^{2}=0$ using a gluing property
10. Show that $H F_{*}$ doesn't depend on \mathcal{A}_{H} or X_{H}
11. Show $H F_{*} \cong H M_{*}$, and compare dimensions of the vector spaces $C M_{*}$ and $C F_{*}$.

Ingredients:

- ($W, \omega, J)$ with $\omega \in \Omega^{2}(W)$ is a symplectic manifold
- With $J: T_{p} W \rightarrow T_{p} W$ an almost complex structure, so $J^{2}=-\mathrm{id}$.
- $H \in C^{\infty}(W ; \mathbb{R})$ a Hamiltonian
- X_{H} the corresponding symplectic gradient.
- Defined by how it acts on tangent vectors in $T_{x} M$;

$$
\omega_{x}\left(\cdot, X_{H}(x)\right)=(d H)_{x}(\cdot) .
$$

Zeros of vector field X_{H} correspond to critical points of H :

$$
X_{H}(x)=0 \Longleftrightarrow(d H)_{x}=0
$$

Take the associated flow, assumed 1-periodic:

$$
\psi^{t} \in C^{\infty}(W, W) \quad \psi^{1}=\mathrm{id}
$$

- Critical points of H are periodic trajectories.
- $u \in C^{\infty}\left(\mathbb{R} \times S^{1} ; W\right)$ is a solution to the Floer equation.
- The Floer equation and its linearization:

$$
\begin{aligned}
\mathcal{F}(u) & =\frac{\partial u}{\partial s}+J \frac{\partial u}{\partial t}+\operatorname{grad}_{u}(H)=0 \\
(d \mathcal{F})_{u}(Y) & =\frac{\partial Y}{\partial s}+J_{0} \frac{\partial Y}{\partial t}+S \cdot Y
\end{aligned}
$$

$$
Y \in u^{*} T W, S \in C^{\infty}\left(\mathbb{R} \times S^{1} ; \operatorname{End}\left(\mathbb{R}^{2 n}\right)\right)
$$

- $\mathcal{L} W$ is the free loop space on W, i.e. space of contractible loops on W, i.e. $C^{\infty}\left(S^{1} ; W\right)$ with the C^{∞} topology
- Elements $x \in \mathcal{L} W$ can be viewed as maps $S^{1} \rightarrow W$.
- Can extend to maps from a closed disc, $u: \overline{\mathbb{D}}^{2} \rightarrow M$.
- Loops in $\mathcal{L} W$ can be viewed as maps $S^{2} \rightarrow W$, since they're maps $I \times S^{1} \rightarrow W$ with the boundaries pinched:

Figure 1: Loops in $\mathcal{L} W$

- The action functional is given by

$$
\begin{aligned}
\mathcal{A}_{H}: \mathcal{L} W & \rightarrow \mathbb{R} \\
x & \mapsto-\int_{\mathbb{D}} u^{*} \omega+\int_{0}^{1} H_{t}(x(t)) d t
\end{aligned}
$$

- Example: $W=\mathbb{R}^{2 n} \Longrightarrow A_{H}(x)=\int_{0}^{1}\left(H_{t} d t-p d q\right)$.
- A correspondence

$$
\left\{\begin{array}{c}
\text { Solutions to the } \\
\text { Floer equation }
\end{array}\right\}
$$

- x, y periodic orbits of H (nondegenerate, contractible), equivalently critical points of \mathcal{A}_{H}.
- Assumption of symplectic asphericity, i.e. the symplectic form is zero on spheres. Statement: for every $u \in C^{\infty}\left(S^{2}, W\right)$,

$$
\int_{S^{2}} u^{*} \omega=0 \text { or equivalently }\left\langle\omega, \pi_{2} W\right\rangle=0
$$

- Assumption of symplectic trivialization: for every $u \in C^{\infty}\left(S^{2} ; M\right)$ there exists a symplectic trivialization of the fiber bundle $u^{*} T M$, equivalently

$$
\left\langle c_{1} T W, \pi_{2} W\right\rangle=0
$$

Locally a product of base and fiber, transition functions are symplectomorphisms.

- Maslov index: used the fact that
- Every path in $\gamma: I \rightarrow \operatorname{Sp}(2 n, \mathbb{R})$ can be assigned an integer coming from a map $\tilde{\gamma}: I \rightarrow S^{1}$ and taking (approximately) its winding number.
- $\mathcal{M}(x, y)$, the moduli space of contractible finite-energy solutions to the Floer equation connecting x, y.
- After perturbing H to get transversality, get a manifold
* Dimension:

$$
\operatorname{dim} \mathcal{M}(x, y)=\mu(x)-\mu(y)
$$

- How we did it:
* Describe as zeros of a section of a vector bundle over $\mathcal{P}^{1, p}(x, y)$ (Banach manifold modeled on the Sobolev spaces $W^{1, p}$),
* Apply Sard-Smale to show $\mathcal{M}(x, y)$ is the inverse image of a regular value of some map.
- Needed tangent maps to be Fredholm operators, proved in Ch. 8 and used to show transversality.
* Showed $(d \mathcal{F})_{u}$ is a Fredholm operator of index $\mu(x)-\mu(y)$.

2 Reminder of Goals

Overall Goal:

Theorem 2.1(Symplectic Morse Inequalities).

$$
\#\left\{1 \text {-Periodic trajectories of } X_{H}\right\} \geq \sum_{k \in \mathbb{Z}} H M_{k}(W ; \mathbb{Z} / 2 \mathbb{Z}) \text {. }
$$

Important Ideas for This Chapter:

Theorem 2.2(Using Broken Trajectories to Compactify). $\mathcal{L}(x, y)$ is compact,

$$
\partial \mathcal{L}(x, y)=\{\text { "Broken Trajectories" }\}
$$

Theorem 2.3(Using Gluing to Get a Chain Complex).

$$
\partial^{2}=0
$$

$3 \mid 9.1$ and Review

- Defined moduli space of (parameterized) solutions:
$\mathcal{M}(x, y)=\{$ Contractible finite-energy solutions connecting $x, y\}$

$$
\begin{aligned}
\mathcal{M} & =\{\text { All contractible finite-energy solutions to the Floer equation }\} \\
& =\bigcup_{x, y} \mathcal{M}(x, y)
\end{aligned}
$$

- The moduli space of (unparameterized) trajectories connecting x, y :

$$
\mathcal{L}(x, y):=\mathcal{M}(x, y) / \mathbb{R} .
$$

- Use the quotient topology, define sequentially:

$$
\tilde{u}_{n} \xrightarrow{n \rightarrow \infty} \tilde{u} \Longleftrightarrow \exists\left\{s_{n}\right\} \subset \mathbb{R} \text { such that } u_{n}\left(s_{n}+s, \cdot\right) \xrightarrow{n \rightarrow \infty} u(s, \cdot) .
$$

- When $|\mu(x)-\mu(y)|=1$, get a compact 0-manifold, so the number of trajectories

$$
n(x, y):=\# \mathcal{L}(x, y)
$$

is well-defined.

- $C_{k}(H):=\mathbb{Z} / 2 \mathbb{Z}\left[\left\{\right.\right.$ Periodic orbits of X_{H} of Maslov index $\left.\left.k\right\}\right]$.

Finitely many since they are nondegeneracy implies they are isolated.

Remark 1.

Some notation:

Hats will generally denote maps induced on quotient.

- Defined a differential

$$
\begin{aligned}
\partial: C_{k}(H) & \rightarrow C_{k-1}(H) \\
x & \mapsto \sum_{\mu(y)=k-1} n(x, y) y \\
n(x, y) & : \#\left\{\text { Trajectories of grad } \mathcal{A}_{H} \text { connecting } x, y\right\} \bmod 2 \\
& =\# \mathcal{L}(x, y) \bmod 2 .
\end{aligned}
$$

- Examined ∂^{2} :

$$
\begin{aligned}
\partial^{2}: C_{k}(H) & \rightarrow C_{k-2}(H) \\
x & \mapsto \partial(\partial(x)) \\
& =\partial\left(\sum_{\mu(y)=\mu(x)-1} n(x, y) y\right) \\
& =\sum_{\mu(y)=\mu(x)-1} n(x, y) \partial(y) \\
& =\sum_{\mu(y)=\mu(x)-1} n(x, y)\left(\sum_{\mu(z)=\mu(y)-1} n(y, z) z\right) \\
& =\sum_{\mu(y)=\mu(x)-1} n(x, y) n(y, z) z
\end{aligned}
$$

$$
=\sum_{\mu(z)=\mu(y)-1}\left(\sum_{\mu(y)=\mu(x)-1} n(x, y) n(y, z)\right) z \quad \text { (finite sums, swap order) }
$$

so it suffices to show

$$
\sum_{\mu(y)=\mu(x)-1} n(x, y) n(y, z)=0 \quad \text { when } \quad \mu(z)=\mu(x)-2
$$

Easier to examine parity, so we'll show it's zero mod 2.

- When $\mu(z)=\mu(x)-2, \mathcal{L}(x, z)$ is a non-compact 1-manifold, so we compactify by adding in broken trajectories to get $\mathcal{L}(x, y)$.
- We'll then have

$$
\overline{\mathcal{L}}(x, z)=\mathcal{L}(x, z) \cup \partial \overline{\mathcal{L}}(x, z), \quad \partial \bar{L}(x, z)=\bigcup_{\mu(y)=\mu(x)-1} \mathcal{L}(x, y) \times \mathcal{L}(y, z),
$$

which "space-ifies" the equation we want.

- We'll show $\partial \mathcal{L}(x, z)$ is a 1 -manifold, which must have an even number of points, and thus

$$
\sum_{1, u} n(x, y) n(y, z)=\#(\partial \overline{\mathcal{L}}(x, z)) \equiv 0 \bmod 2 .
$$

Image here of relations between spaces!

4.1 First Theorem: Convergence to Broken Trajectories

- Recall: broken trajectories are unions of intermediate trajectories connecting intermediate critical points.
- Shown last time: a sequence of trajectories can converge to a broken trajectory, i.e. there are broken trajectories in the closure of $\mathcal{L}(x, z)$.
- This theorem describes their behavior:

Theorem 4.1(9.1.7: Convergence to Broken Trajectories)
Let $\left\{u_{n}\right\}$ be a sequence in $\mathcal{M}(x, z)$, then there exist

- A subsequence $\left\{u_{n_{j}}\right\}$
- Critical points $\left\{x_{0}, x_{1}, \cdots, x_{\ell+1}\right\}$ with $x_{0}=x$ and $x_{\ell+1}=z$
- Sequences $\left\{s_{n}^{1}\right\},\left\{s_{n}^{2}\right\}, \cdots,\left\{s_{n}^{\ell}\right\}$.
- Elements $u^{k} \in \mathcal{M}\left(x_{k}, x_{k+1}\right)$ such that for every $0 \leq k \leq \ell$,

- Upshots:
- Every sequence upstairs has a subsequence which (after reparameterizing) converges
- This descends to actual convergence after quotienting by \mathbb{R} ?
- Yields uniqueness of limits in $\mathcal{L}(x, z)$, thus a separated topology
- Sequentially compact \Longleftrightarrow compact since $\mathcal{L}(x, z)$ is a metric space?

Corollary 4.2(Compactness).
$\overline{\mathcal{L}}(x, z)$ is compact.

4.2 Second Theorem: Compactness of $\overline{\mathcal{L}}(x, z)$

Definition 4.2.1 (Regular Pair).
For an almost complex structure J and a Hamiltonian H, the pair (H, J) is regular if the Floer map \mathcal{F} is transverse to the zero section in the following vector bundle:

Most of chapter 9 is spent proving this theorem:
Theorem 4.3(9.2.1).
Let (H, J) be a regular pair with H nondegenerate and x, z be two periodic trajectories of H such that

$$
\mu(x)=\mu(z)+2 .
$$

Then $\mathcal{L}(x, z)$ is a compact 1 -manifold with boundary with

$$
\partial \overline{\mathcal{L}}(x, z)=\bigcup_{y \in \mathcal{I}(x, z)} \mathcal{L}(x, y) \times \mathcal{L}(y, z)
$$

where

$$
\mathcal{I}(x, z)=\{y \mid \mu(x)<\mu(y)<\mu(z)\} .
$$

Note: possibly a typo in the book? Has x, y on the LHS.

Corollary 4.4.

$$
\partial^{2}=0
$$

4.3 Third Theorem: Gluing

Theorem 4.5(9.2.3: Gluing).

Let x, y, z be three critical points of \mathcal{A}_{H} with three consecutive indices

$$
\mu(x)=\mu(y)+1=\mu(z)+2 .
$$

and let

$$
(u, v) \in \mathcal{M}(x, y) \times \mathcal{M}(y, z) \quad \rightsquigarrow \quad(\hat{u}, \widehat{v}) \in \mathcal{L}(x, y) \times \mathcal{L}(y, z) .
$$

Then

1. There exists a $\rho_{0}>0$ and a differentiable map

$$
\psi:\left[\rho_{0}, \infty\right) \rightarrow \mathcal{M}(x, z)
$$

such that $\hat{\psi}$, the induced map on the quotient

is an embedding that satisfies

$$
\widehat{\psi}(\rho) \xrightarrow{\rho \rightarrow \infty}(\widehat{u}, \widehat{v}) \in \overline{\mathcal{L}}(x, z) .
$$

2. ("Uniqueness") For any sequence $\left\{\ell_{n}\right\} \subseteq \mathcal{L}(x, z)$,

$$
\ell_{n} \xrightarrow{n \rightarrow \infty}(\hat{u}, \hat{v}) \quad \Longrightarrow \quad \ell_{n} \in \operatorname{im}(\hat{\psi}) \text { for } n \gg 0 .
$$

- We already know that $\overline{\mathcal{L}}(x, z)$ is compact and $\mathcal{L}(x, z)$ is a 1 -manifold, so we look at neighborhoods of boundary points.
- Why unique: will show that the broken trajectory (\hat{u}, \hat{v}) is the endpoint of an embedded interval in $\overline{\mathcal{L}}(x, z)$.
- Then show that any other sequence converging to (\hat{u}, \widehat{v}) must approach via this interval, otherwise could have cuspidal points:

Figure 2: Cuspidal Point on Boundary

5 Gluing Theorem

Broken into three steps:

1. Pre-gluing:

- Get a function w_{ρ} which interpolates between u and v in the parameter ρ.
- Not exactly a solution itself, just an "approximation".

2. Newton's Method:

- Apply the Newton-Picard method to w_{p} to construct a true solution

$$
\begin{aligned}
\psi:[-\rho, \infty) & \rightarrow \mathcal{M}(x, z) \\
\rho & \mapsto \exp _{w_{p}}(\gamma(p)) \\
\text { for some } \gamma(p) & \in W^{1, p}\left(w_{p}^{*} T W\right)=T_{w_{p}} \mathcal{P}(x, z)
\end{aligned}
$$

- GIF of Newton's Method

3. Project and Verify Properties:

- Check that the projection $\hat{\psi}=\pi \circ \psi$ satisfies the conditions from the theorem.

6 9.3: Pre-gluing, Construction of w_{ρ}

- Choose (once and for all) a bump function β on $B_{\varepsilon}(0)^{c} \subset \mathbb{R} \rightarrow[0,1]$ which is 1 on $|x| \geq 1$ and 0 on $|x|<\varepsilon$
- Split into positive and negative parts $\beta^{ \pm}(s)$:

Figure 3: Bump away from zero

- Define an interpolation w_{ρ} from u to v in the following way: let

$$
\begin{aligned}
& -\exp [\cdot]:=\exp _{y(t)}(\cdot) \text { and } \\
& -\ln (\cdot):=\exp _{y(t)}^{-1}(\cdot),
\end{aligned}
$$

then

$$
\begin{aligned}
w_{\rho}: x & \rightarrow z \\
w_{\rho}(s, t) & :=\left\{\begin{array}{ll}
u(s+\rho, t) & s \in(-\infty,-1] \\
\exp \left[\beta^{-}(s) \ln (u(s+\rho, t))+\beta^{+}(s) \ln (u(s-\rho, t))\right] & s \in[-1,1] \\
u(s-\rho, t) & s \in[1, \infty)
\end{array} .\right.
\end{aligned}
$$

- Why does this make sense?

$$
|s| \leq 1 \Longrightarrow u(s \pm \rho, t) \in\left\{\exp _{y(t)} Y(t) \mid \sup _{t \in S^{1}}\|Y(t)\| \leq r_{0}\right\} \subseteq \operatorname{im}_{\exp _{y(t)}(\cdot)}
$$

so we can apply $\exp _{y(t)}^{-1}(\cdot)$.

- Can make $|s| \leq 1$ for large ρ, since

$$
\begin{array}{rr}
u(s, t) \xrightarrow{s \rightarrow \infty} & y(t) \\
v(s, t) \xrightarrow{s \rightarrow-\infty} & y(t) .
\end{array}
$$

- So pick a ρ_{0} such that this holds for $\rho>\rho_{0}$.
- Might have to increase ρ_{0} later in the proof, so $\rho>\rho_{0}$ just means $\rho \gg 0$.
- Some properties:
$-w_{\rho} \in C^{\infty}(x, z)$ and is differentiable in ρ.
$-s \in[-\varepsilon, \varepsilon] \Longrightarrow w_{\rho}(s, t)=y(t)$.

$$
\begin{gathered}
w_{\rho}(s-\rho, t) \xrightarrow{\rho \rightarrow \infty} u(s, t) \quad \text { in } \quad C_{\mathrm{loc}}^{\infty} \\
w_{\rho}(s, t) \xrightarrow{\rho \rightarrow \infty} y(t) \quad \text { in } \quad C_{\mathrm{loc}}^{\infty} .
\end{gathered}
$$

- Now carry out the linearized version on tangent vectors, to which we will apply Newton-Picard:
- Let $Y \in T_{u} \mathcal{P}(x, y)$
- Let $Z \in T_{v} \mathcal{P}(x, y)$
- Replace w_{ρ} with the interpolation

$$
Y \#_{\rho} Z \in T_{w_{\rho}} \mathcal{P}(x, y)=W^{1, p}\left(w_{\rho}^{*} T W\right)
$$

defined by

$$
\left(Y \#_{\rho} Z\right)(s, t)= \begin{cases}Y(s+\rho, t) & s \in(-\infty,-1] \\ \exp _{T}\left[\beta^{-}(s) \ln _{T}(Y(s+\rho, t))+\beta^{+}(s) \ln _{T}(Z(s-\rho, t))\right] & s \in[-1,1] \\ Z(s-\rho, t) & s \in[1, \infty)\end{cases}
$$

where the subscript T indicates taking tangents of the exponential maps at appropriate points.

Step $1 \leadsto \omega_{p}$ (linearized)

7 9.4: Construction of ψ.

7.1 Summary

- Newton-Picard method, general idea:
- Allows finding zeros of f given an approximate zero x_{0}, using the extra information of the 1st derivative f^{\prime}.
- Original method and variant: find the limit of a sequence

- Second variant more useful: only need derivative at one point:

ing. 9.6

Figure 4: Newton Method Variants

- Pregluing function $w_{\rho} \in C_{\downarrow}^{\infty}(x, z)$ from previous section
- Exponential decay
- Want to construct true solution $\psi_{\rho} \in \mathcal{M}(x, z)$, so $\mathcal{F}\left(\psi_{p}\right)=0$.
- Suffices to get a weak solution
- Automatic continuity + elliptic regularity \Longrightarrow strong solution
- Define \mathcal{F}_{ρ} as $\mathcal{F} \circ \exp _{w_{\rho}}$ expanded bases Z_{i} from trivialization of $T W$.
- $L_{\rho}=\left(d \mathcal{F}_{\rho}\right)_{0}$ will be the linearization of the Floer operator at zero.
- Adapting Newton-Picard to operators:
- L_{ρ} won't be invertible on entire space, but

$$
\frac{1}{f^{\prime}\left(x_{0}\right)} \Longleftrightarrow L_{\rho}^{-1}
$$

- Decompose

$$
T_{w_{\rho}} \mathcal{P}(x, z)=W^{1, p}\left(w_{\rho}^{*} T W\right)=W^{1, p}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)=\operatorname{ker}\left(L_{\rho}\right) \oplus W_{\rho}^{\perp}
$$

where L_{ρ} will have a right inverse on W_{ρ}^{\perp}.

* Where does W_{ρ}^{\perp} come from? Essentially the kernel of some linear functional given by an integral:

$$
W_{\rho}^{\perp}:=\left\{Y \in W^{1, p} \mid \int_{\mathbb{R} \times S^{1}}\langle Y, \cdots\rangle d s d t=0, \text { plus conditions }\right\}
$$

- Run Newton-Picard in W_{ρ}^{\perp}
- Will obtain for every $\rho \geq \rho_{0}$ an element $\gamma(\rho) \in W_{\rho}^{\perp}$ with

$$
\mathcal{F}_{\rho}(\gamma(\rho))=0
$$

- Where does γ come from? Intersection-theoretic interpretation on page 320:

$$
\begin{aligned}
\left(\exp _{w_{\rho}}\right)^{-1} \mathcal{M}(x, z) \cap W_{\rho}^{\perp} & \subseteq T_{w_{\rho}} \mathcal{P}(x, z) \\
\mathcal{M}(x, z) \cap\left\{\exp _{w_{\rho}} W_{\rho}^{\perp} \mid \rho \geq \rho_{0}\right\} & \subseteq \mathcal{P}(x, z)
\end{aligned}
$$

which we get by exponentiating.

- This gives a codimension 1 subspace in $\mathcal{M}(x, z)$, which we take to be $\psi(\rho)$:

Figure 5: Intersection interpretation
$7.1 \quad$ Summary

- Apply the implicit function theorem to show differentiability of γ in ρ.
- Use a trivialization Z_{i}^{ρ} of $T W$ to get a vector field along w_{ρ}
- This is exactly an element of $T_{w_{\rho}} \mathcal{P}(x, z)$
- Exponentiate to get an element of $\mathcal{M}(x, z)$:

$$
\psi(\rho):=\exp _{w_{\rho}}(\gamma(\rho))
$$

- Final Result: project onto $\mathcal{L}(x, z)$ to get $\widehat{\psi}$.

Checking Properties:

- Existence: show $\hat{\psi}$ is a proper injective immersion \Longrightarrow embedding.
- Uniqueness: show the broken trajectory $(\widehat{u}, \widehat{v})$ is the endpoint of an embedded interval in $\overline{\mathcal{L}}(x, z)$.
- Show that any other sequence converging to (\widehat{u}, \widehat{v}) must approach via this interval, otherwise could have cuspidal points:

Figure 6: Cuspidal Point on Boundary

Probably not worth going farther than this! Extremely detailed analysis.

