Title

D. Zack Garza

Monday 12th October, 2020

Contents

1	Mor	nday, October 12: Audin Chapter 10 (From Floer to Morse)	1
	1.1	Notation and Setup	1
	1.2	Strategy	2
		1.2.1 Equality of Complexes	2
		1.2.2 Equality of Differentials	3
		1.2.3 Define Morse Differentials	4
		1.2.4 Compare solutions to Floer equation and trajectories of X	5
	1.3	Summary	5
	1.4	Linearizing the Morse Equation	6
		1.4.1 Showing L_u is Fredholm	6
		1.4.2 Computing Ind L_u	7
		1.4.3 Smale Condition	7
	1.5	10.4: Morse and Floer Trajectories Coincide	8
		1.5.1 Comparing Kernels	8
		1.5.2 Trajectories are Independent of t	8

1 | Monday, October 12: Audin Chapter 10 (From Floer to Morse)

1.1 Notation and Setup

- (W, ω, J) a symplectic manifold with an almost complex structure
- $H \in C^{\infty}(W, \mathbb{R})$ will be either a Morse function or a Hamiltonian
- X will be a vector field, potentially X_H , the symplectic gradient of H:

$$\omega_x(\,\cdot\,,X_H(x))=(dH)_x(\,\cdot\,).$$

- DH will denote differentials, D^2H will denote Hessians (where they're defined)
- $CM_*(H, J)$ will be the Morse complex associated with a Morse function H, its vector field grad H the gradient for the metric defined by J, ω .
- $CF_*(H, J)$ will be the Floer complex

Theorem 1.1.1 (Main Goal).

There exists a nondegenerate Hamiltonian that is sufficiently small in the C^2 topology for which both the Floer and Morse complexes are well-defined, and

 $CF_*(H,J) \cong CM_{*+n}(H,J) = CM_*(H,J)[n].$

1.2 Strategy

Need to show two things:

1. $CF_* = CM_*[n]$, and 2. $\partial_F = \partial_M$.

1.2.1 Equality of Complexes

Definition 1.2.1 (Nondegenerate 1: Critical Points of a Function). For a function $f \in C^{\infty}(W, \mathbb{R})$, define a bilinear form

$$D^{2}f)_{p}: T_{p}W \otimes T_{p}W \to \mathbb{R}$$
$$(\mathbf{v}, \mathbf{w}) \mapsto \langle \mathbf{x}, \ (Y \cdot f)(p) \rangle$$

for some vector field Y extending \mathbf{y} .

A critical point p is **nondegenerate** iff $(D^2 f)_p$ is a nondegenerate quadratic form.

Definition 1.2.2 (Nondegenerate 2: Critical Points of Periodic Trajectories). For a Hamiltonian system H, a periodic solution x is **nondegenerate** iff $1 \notin \text{Spec}(d\psi_1)$, i.e. 1 is not an eigenvalue of the differential, i.e.

$$\det\left(\mathrm{id} - \left(D\psi^1\right)_{x(0)}\right) \neq 0.$$

Example 1.2.1. Motivation:

$$H = \frac{1}{2} \sum a_{ij} p_i p_j + \sum b_{ij} p_i q_j + \frac{1}{2} \sum c_{ij} q_i q_j \implies X_H \mathbf{p} = A \mathbf{p}, A \approx D^2 H(0).$$

Yields a flow $\psi_t = e^{tA}$, then if $\psi_1 = e^A$ doesn't have eigenvalue 1, A doesn't have eigenvalue zero, and the quadratic form H is nondegenerate, so the critical point of H at zero is nondegenerate.

Proposition 1.2.1(5.4.5).

Definition 2 implies definition 1: if x is a critical point of H which is nondegenerate as a periodic solution of the Hamiltonian system, then $a \in \operatorname{crit}(H)$ is nondegenerate as a critical point of the function H.

- Can start with an H_0 and rescale to define $H \coloneqq H_0/k$

- When H sufficiently small in the C^2 sense (close sups of 1st and 2nd derivatives), the only periodic trajectories are constant
 - Use prop: def 2 implies def 1, conclude that H is Morse.
 - As a result,

$$\operatorname{crit}(\mathcal{A}_H) \iff \operatorname{crit}(H) \iff \{\operatorname{Constant trajectories}\}.$$

- Use remark 5.4.6: for the Hessian of H, Spec $(D^2H) \cap 2\pi\mathbb{Z} = \emptyset$
- Yields Index Comparison Formula:

$$\operatorname{Ind}_H(x) = \mu(x) + n$$

Goal by end of Ch. 10:

- Show that all Floer solutions connecting two consecutive critical points are *also* Morse trajectories,
- Regularity: $d\mathcal{F}_u$ is surjective along these trajectories - Implies $\mathcal{M}^{(H,J)}(x,y)$ is a manifold, allows defining Floer complex
- Index Comparison Formula yields equality of vector spaces, up to a dimension shift.

1.2.2 Equality of Differentials

- Next need to show both differentials ∂_M, ∂_F can be defined, and they coincide
- Defining ∂_M :
 - Need a vector field X adapted to H
 - -X needs to satisfy Smale condition (genericness)
- Recall the **Smale Condition**: all stable and unstable manifolds of critical points meet transversely,

 $W^{\mathbf{u}}(a) \pitchfork W^{\mathbf{v}}(b) \qquad \forall a, b \in \operatorname{crit}(H).$

•~

The Smale condition forbids the existence of flow lines such as those shown in Figure 2.15. Figure 2.16 shows the trajectories of a neighboring field satisfying the Smale condition (obtained by the general method explained in the following subsection).

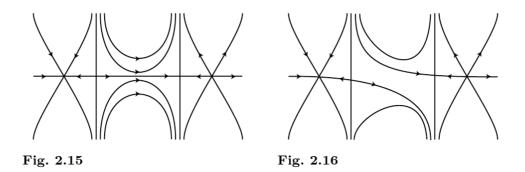


Figure 1: LHS: violates Smale condition. RHS: okay!

- Goal: given fixed data for the Floer theory, relate it to Morse data (define the Morse complex).
- Strategy: running ideas backwards, getting theorems for Morse functions similar to what we did when linearizing the Floer operator

1.2.3 Define Morse Differentials

• To define ∂_M : need to relate trajectories of X to solutions of Floer equation:

$$\begin{cases} \text{Solutions to} \\ \frac{\partial u}{\partial s} + X(u) = 0 \end{cases} \iff \begin{cases} \text{Solutions to} \\ \frac{\partial u}{\partial s} + J(u) \frac{\partial u}{\partial t} + \text{grad}H(u) = 0 \end{cases}.$$

To do this: need $X = \operatorname{grad} H$ for the metric induced by J, ω .

Definition 1.2.3 (Pseudo-Gradient).

- For $f: W \to \mathbb{R}$ a Morse function, a vector field X is a **pseudo-gradient** for f iff 1. $(Df)_p(X_p) \leq 0$ with equality iff $p \in \operatorname{crit}(f)$
 - 2. In a Morse chart about $p \in \operatorname{crit}(f)$, we have $X = -\operatorname{grad}_g f$ for the canonical metric g on \mathbb{R}^n .

Definition 1.2.4 (Morse-Smale Pair).

A pair (f, X) of a function and a vector field is a **Morse-Smale pair** iff f is Morse and X is a pseudo-gradient for f satisfying the Smale condition.

Theorem 1.2.1 (Theorem to Prove).

Let H be Morse on (W, ω) . Then there exists a dense subset $\mathcal{J}_{\text{reg}}(H)$ of almost complex structures J calibrated by ω such that $(H, -JX_H)$ is Morse-Smale.

Note: transversality result analogous to ones in $8.5\,$

Proof .

- Proof in two steps:
 - Step 1: Morse Side, arbitrary morse functions
 - ♦ Linearize the Morse equation $\frac{\partial u}{\partial s} + X(u) = 0$ of the flow of -X along one of its solutions $L_u Y = 0$.
 - \diamond Show that whenever *H* is Morse and *u* is a trajectory connecting critical points, L_u is Fredholm and

$$\operatorname{Ind}(L_u) = \operatorname{Ind}_H(y) - \operatorname{Ind}_H(x).$$

 \diamond Show that for H a nondegenerate Hamiltonian and u a trajectory of JX_H , the operators $(d\mathcal{F})_u$ and L_u are Fredholm of equal index.

5

 \diamond Show that X is Smale $\iff L_u$ is surjective.

- Step 2: Floer Side, specific case of Hamiltonian
 - \diamondsuit Prove the actual result.
- Now fix an almost complex structure to obtain a Smale vector field \boldsymbol{X}

1.2.4 Compare solutions to Floer equation and trajectories of X

• Goal: for $\operatorname{Ind}(x) - \operatorname{Ind}(y) \le 2$, get an equality

$$\left\{ \begin{array}{l} \text{Trajectories of Floer equation} \\ \text{associated to } (H,J) \text{ connecting } x,y \end{array} \right\} \iff \left\{ \begin{array}{l} \text{Trajectories of the Smale} \\ \text{vector field } -JX_H \end{array} \right\}.$$

- Solutions to Floer equation that do not depend on t are precisely trajectories of X = -gradH.
- Next show that elements in $\ker(d\mathcal{F}_u)$ do not depend on t.
- Corollary: $d\mathcal{F}_u$ is surjective along every trajectory of grad H.
- Then show that replacing $H_k := H/k$ for $k \gg 0$ preserves all critical points and all indices
- Punch line: all the solutions of the Floer equation that we need are time-independent.
 - Statement: For $k \gg 0$, solutions to the Floer equation for H_k connecting $x \to y$ with $\operatorname{Ind}(x) \operatorname{Ind}(y) \leq 2$ are independent of t.

1.3 Summary

- Take H_k for $k \gg 0$ and $J \in \mathcal{J}_{\text{reg}}$ (dense)
- Then when $\operatorname{Ind}(x) \operatorname{Ind}(y) \leq 2$, trajectories of Floer equation for (H, J) connecting critical points x, y are trajectories of the Smale vector field $X = -JX_H$.

- -x, y will be critical points for both H and \mathcal{A}_H
- Regularity? The linearized Floer operator is surjective along these trajectories
- Implies that $\mathcal{M}^{(H,J)}(x,y)$ is a manifold, so CF_* can be defined.
- Claim: this shows the differentials coincide, and we're done.

1.4 Linearizing the Morse Equation

• Let f be morse on $V \hookrightarrow \mathbb{R}^m$ $(m \gg 0)$ with adapted pseudo-gradient field X, then

$$\begin{cases} \text{Trajectories} \\ \text{of } X \end{cases} \iff \begin{cases} \text{Solutions of} \\ \frac{\partial u}{\partial s} + X(u(s)) = 0 \end{cases} .$$

- Fix a metric g on V such that $X = \operatorname{grad}_q f$.
- Define the space of solutions of finite energy:

$$E(u) \coloneqq \int_{\mathbb{R}} \left\| \frac{\partial u}{\partial s} \right\|^2 ds$$
$$\mathcal{M} \coloneqq \left\{ u \in C^{\infty}(\mathbb{R}, V) \mid \frac{\partial u}{\partial s} + \operatorname{grad} f = 0, \quad E(u) < \infty \right\}.$$

- Then \mathcal{M} is compact and equal to $\cup_{x,y} \mathcal{M}(x,y)$, using the fact that if V is compact, all trajectories are of finite energy
- Now go to coordinates and linearize the equation of the flow along the solution u to get a linear differential equation
- Yields an equation

$$L_u: W^{1,2}(\mathbb{R}, \mathbb{R}^n) \to L^2(\mathbb{R}, \mathbb{R}^n)$$
$$Y \mapsto \frac{\partial Y}{\partial s} + A(s)Y \coloneqq L_u Y,$$

where A is a matrix limiting to $\operatorname{grad}_{u}^{2} f$ and $\operatorname{grad}_{x}^{2} f$ at $s = \pm \infty$

- Limiting to Hessians of nondegenerate critical points will yield symmetric invertible matrices
- We then consider ker $L_u \subseteq \ker(d\mathcal{F}_u)$. Note: we have exponential decay.
- Note: the space of solutions to equation linearized at u is $T_u \mathcal{M}(x, y)$.

1.4.1 Showing L_u is Fredholm

- Bootstrapping: $Y \in \ker(L_u)$ in $W^{1,2}$ is continuous, thus C^1 , this C^{∞} and form a finitedimensional vector space.
- Behavior at infinity: reduces to

$$L_u Y = 0 \iff \frac{\partial Y}{\partial s} = -AY$$

where A is a constant diagonal matrix

- This is a linear system, so solutions are

$$Y(s) = e^{-As}Y(0)$$
 i.e. $y_i(s) = y_i e^{-\lambda_i s}$.

- Will prove that if u is a trajectory of grad f connecting $x \to y$ then L_u is Fredholm
 - Proof: involves bounding $W^{1,2}$ norm of Y by L^2 norms of Y, $L_u Y$.
 - Lots of integral estimates: Fourier transform, Plancherel, Cauchy-Schwarz
- Integral bound yields: dim ker $L_u < \infty$ and $\operatorname{im}(L)_u$ is closed.
- Lemma: dim coker $< \infty$.
 - Proof: computer kernel of adjoint

$$L_u^* = -\frac{\partial}{\partial s} + A^*$$

where the matrix is transposed.

- Use the fact that

$$Z \in \operatorname{coker}(L_u) \iff Z \in \ker(L_u^*),$$

i.e. $L_u^* Z = 0$ in the sense of distributions

1.4.2 Computing $\operatorname{Ind} L_u$

- Unsurprisingly, will show $\operatorname{Ind}(L_u) = \operatorname{Ind}_f(x) \operatorname{Ind}_f(y)$.
- Ideas in proof:
 - Will choose two real numbers σ , s to plug into u, and consider *resolvent*: map between tangent spaces to V at $u(\sigma), u(s)$.
 - Look at the tangent spaces at $u(\sigma)$ of the stable and unstable manifolds will be the Floer complex

$$E^{\mathbf{u}}(\sigma) \coloneqq T_{u(\sigma)}W^{\mathbf{u}}(x)$$
$$E^{\mathbf{s}}(\sigma) \coloneqq T_{u(\sigma)}W^{\mathbf{s}}(x)$$

- Then ker L_u is isomorphic to the intersection for all σ .

1.4.3 Smale Condition

- Recall $X = \operatorname{grad}_q f$ for g a metric.
- Statement: the vector field X satisfies the Smale condition \iff all L_u are surjective.

Proof.

• L_u is surjective $\iff \operatorname{coker}(L_u) = 0 \iff \operatorname{ker}(L_u^*)$ is injective

• This is equivalent to

$$T_{u(\sigma)}W^{\mathrm{u}}(x) + T_{u(\sigma)}W^{\mathrm{s}}(x) = T_{u(\sigma)}V.$$

This is exactly the transversality condition for the stable and unstable manifolds

 We want this for all critical points

1.5 10.4: Morse and Floer Trajectories Coincide

1.5.1 Comparing Kernels

• Note $\ker(L_u) \subset \ker(d\mathcal{F}_u)$ since

$$\left(\frac{\partial}{\partial s} + S(s)\right)Y = 0 \implies \left(\frac{\partial}{\partial s} + J\frac{\partial}{\partial t} + S(s)\right)Y = 0,$$

so just need to show reverse inclusion.

• Use a lemma: for $f:[0,1] \to \mathbb{R}$,

$$\|f\|_{L^p([0,1])} \le \left\|\frac{\partial f}{\partial t}\right\|_{L^p([0,1])}$$

then apply this to $f(t) \coloneqq Y(s,t)$ and p = 2.

• Yields an equation

$$\left\|\frac{\partial Y}{\partial s}\right\|_{L^{2}}^{2} + \left\|\frac{\partial Y}{\partial t}\right\|_{L^{2}}^{2} \leq \sup_{s} \|S(s)\|_{\mathrm{op}}^{2} \|Y\|_{L^{2}}^{2} \implies \|Y\|_{L^{2}}^{2} \leq \sup_{s} \|S(s)\|_{\mathrm{op}} \left\|Y_{L^{2}}^{2}\right\|$$

where the sup term being small forces Y = 0.

1.5.2 Trajectories are Independent of t

WTS: Trajectories of H_k appearing in the Floer complex are exactly those appearing in the Morse complex. I.e. proving 10.1.9

Idea of proof:

- Contradiction: suppose there exists a sequence $n_k \to \infty$ with time-dependent solutions u_{n_k} connecting $x \to y$ which solve the Floer equation
- Consider case where indices differ by 1: using broken trajectories theorem, extract a subsequence converging to some $v \in \mathcal{M}(x, y, H)$.
 - Show v doesn't depend on t
 - Since $d\mathcal{F}_v$ is surjective, v is in a 1-dim component, and thus an isolated point of $\mathcal{L}(x,y)$
 - Get a contradiction from taking $k \gg 0$ and using

$$v_{n_k}(s,t) = v(s + \sigma_k, t) = v(s + \sigma_k),$$

which does *not* depend on time

- Consider case where indices differ by 2
 - Use Smale property of the gradient $-JX_H$ of H: trajectories $x \to y$ form a 2-manifold
 - Since trajectories are also in $\mathcal{M}(x, y, H)$, parameterizes a submanifold in a neighborhood of v.
- Show that convergence toward broken orbits in Morse setting corresponds to converges toward broken trajectories in Floer setting
- Use gluing from last chapter: $\hat{v}_{n_k} \in im(\hat{\varphi})$ for $k \gg 0$, contradicting the fact that v_{n_k} doesn't depend on t