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1 Monday, October 12: Audin Chapter 10
(From Floer to Morse)

1.1 Notation and Setup
o (W,w,J) a symplectic manifold with an almost complex structure
e H € C(W,R) will be either a Morse function or a Hamiltonian

e X will be a vector field, potentially X, the symplectic gradient of H:

we (-, Xp(2)) = (dH)z ().

« DH will denote differentials, D?H will denote Hessians (where they’re defined)

o CM,.(H,J) will be the Morse complex associated with a Morse function H, its vector field
gradH the gradient for the metric defined by J, w.

CF,.(H,J) will be the Floer complex



1.2 Strategy

Theorem 1.1.1 (Main Goal).
There exists a nondegenerate Hamiltonian that is sufficiently small in the C? topology for
which both the Floer and Morse complexes are well-defined, and

CF.(H,J) =~ CM, n(H,J) = CM,(H,J)[n].

1.2 Strategy
Need to show two things:

1. CF, = CM,[n], and
2. O = 0.

1.2.1 Equality of Complexes

Definition 1.2.1 (Nondegenerate 1: Critical Points of a Function).
For a function f € C°°(W,R), define a bilinear form

(D*f)p: T,W @ T,W — R
(V7W) = <X7 (Y : f)(p>>

for some vector field Y extending y.
A critical point p is nondegenerate iff (D?f )p is a nondegenerate quadratic form.

Definition 1.2.2 (Nondegenerate 2: Critical Points of Periodic Trajectories).
For a Hamiltonian system H, a periodic solution z is nondegenerate iff 1 ¢ Spec (di)y), i.e. 1
is not an eigenvalue of the differential, i.e.

det (id - (qul)w(o)) £0.

Example 1.2.1.
Motivation:

1 1
H=3 > aipipj + Y bipigj + 5 > cijaiq; = Xup = Ap, A~ D*H(0).

Yields a flow ¢, = et then if P = e doesn’t have eigenvalue 1, A doesn’t have eigenvalue zero,
and the quadratic form H is nondegenerate, so the critical point of H at zero is nondegenerate.

Proposition 1.2.1(5.4.5).

Definition 2 implies definition 1: if x is a critical point of H which is nondegenerate as a
periodic solution of the Hamiltonian system, then a € crit(H) is nondegenerate as a critical
point of the function H.

o Can start with an Hj and rescale to define H := Hy/k
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1.2 Strategy

« When H sufficiently small in the C? sense (close sups of 1st and 2nd derivatives), the only
periodic trajectories are constant
— Use prop: def 2 implies def 1, conclude that H is Morse.
— As a result,

crit(Ag) <= crit(H) <= {Constant trajectories} .

— Use remark 5.4.6: for the Hessian of H, Spec (D*H) N 27Z = {)
— Yields Index Comparison Formula:

Indg(z) = p(z) + n.

Goal by end of Ch. 10:

o Show that all Floer solutions connecting two consecutive critical points are also Morse trajec-
tories,
o Regularity: dF, is surjective along these trajectories
— Implies MUY (2, y) is a manifold, allows defining Floer complex
e Index Comparison Formula yields equality of vector spaces, up to a dimension shift.

1.2.2 Equality of Differentials
e Next need to show both differentials dys, O can be defined, and they coincide
o Defining 9y:

— Need a vector field X adapted to H
— X needs to satisfy Smale condition (genericness)

e Recall the Smale Condition: all stable and unstable manifolds of critical points meet
transversely,

W(a) h WY (b) Va,b € crit(H).

1 MONDAY, OCTOBER 12: AUDIN CHAPTER 10 (FROM FLOER TO MORSE) 3



1.2 Strategy

The Smale condition forbids the existence of flow lines such as those shown
in Figure 2.15. Figure 2.16 shows the trajectories of a neighboring field satis-
fying the Smale condition (obtained by the general method explained in the

following subsection).

\/ \_/
a5 )

Fig. 2.15 Fig. 2.16

Figure 1: LHS: violates Smale condition. RHS: okay!

o Goal: given fixed data for the Floer theory, relate it to Morse data (define the Morse complex).

e Strategy: running ideas backwards, getting theorems for Morse functions similar to what we
did when linearizing the Floer operator

1.2.3 Define Morse Differentials

o To define Oys: need to relate trajectories of X to solutions of Floer equation:
Solutions to Solutions to
<~ .
% +X (u)=0 % —i—J(u)% +grad H (u)=0
To do this: need X = gradH for the metric induced by J, w.

Definition 1.2.3 (Pseudo-Gradient).
For f: W — R a Morse function, a vector field X is a pseudo-gradient for f iff
1. (Df)p(Xp) <0 with equality iff p € crit(f)
2. In a Morse chart about p € crit(f), we have X = —grad,f for the canonical metric g on
R™.

Definition 1.2.4 (Morse-Smale Pair).
A pair (f, X) of a function and a vector field is a Morse-Smale pair iff f is Morse and X is
a pseudo-gradient for f satisfying the Smale condition.
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1.3 Summary

Theorem 1.2.1(Theorem to Prove).
Let H be Morse on (W,w). Then there exists a dense subset Jreg(H) of almost complex
structures J calibrated by w such that (H, —JXp) is Morse-Smale.

Note: transversality result analogous to ones in 8.5

Proof .

e Proof in two steps:
— Step 1: Morse Side, arbitrary morse functions

gu + X (u) = 0 of the flow of —X along one of
s

¢ Linearize the Morse equation

its solutions L, Y = 0.
¢ Show that whenever H is Morse and w is a trajectory connecting critical points,
L, is Fredholm and

Ind(L,) = Indg(y) — Indg ().

¢ Show that for H a nondegenerate Hamiltonian and u a trajectory of J X, the
operators (dF), and L, are Fredholm of equal index.
¢ Show that X is Smale <= L, is surjective.
— Step 2: Floer Side, specific case of Hamiltonian
{ Prove the actual result.

e Now fix an almost complex structure to obtain a Smale vector field X

1.2.4 Compare solutions to Floer equation and trajectories of X
o Goal: for Ind(z) — Ind(y) < 2, get an equality

Trajectories of Floer equation Trajectories of the Smale
associated to (H,J) connecting z,y vector field —J X g

e Solutions to Floer equation that do not depend on t are precisely trajectories of X = —gradH.

o Next show that elements in ker(dF,) do not depend on t.

e Corollary: dF, is surjective along every trajectory of gradH.

o Then show that replacing Hy := H/k for k > 0 preserves all critical points and all indices
e Punch line: all the solutions of the Floer equation that we need are time-independent.

— Statement: For k£ > 0, solutions to the Floer equation for Hj connecting x — y with
Ind(z) — Ind(y) < 2 are independent of t.

1.3 Summary

o Take Hy, for k> 0 and J € Jreg (dense)
e Then when Ind(x) — Ind(y) < 2, trajectories of Floer equation for (H, J) connecting critical
points x,y are trajectories of the Smale vector field X = —J Xp.
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1.4 Linearizing the Morse Equation

— x,y will be critical points for both H and Ay
e Regularity? The linearized Floer operator is surjective along these trajectories
o Tmplies that M) (x,y) is a manifold, so C'F can be defined.
e Claim: this shows the differentials coincide, and we’re done.

1.4 Linearizing the Morse Equation

o Let f be morse on V — R™ (m > 0) with adapted pseudo-gradient field X, then

Trajectories Solutions of }
{ of X } — {% X (u(s))=01 -
o Fix a metric g on V such that X = grad,f.

o Define the space of solutions of finite energy:

E(u) ::/]R %

M = {ueCOO(RV) ‘ gz +gradf =0, E(u)< oo}.

2
ds

e Then M is compact and equal to U, M(x,y), using the fact that if V' is compact, all
trajectories are of finite energy

e« Now go to coordinates and linearize the equation of the flow along the solution u to get a
linear differential equation

e Yields an equation

Ly : WY (R,R") — L*(R,R")
oY
Y— — +A(s)Y =LY,
ds
where A is a matrix limiting to gradz f and gradi fat s =400
— Limiting to Hessians of nondegenerate critical points will yield symmetric invertible
matrices

— We then consider ker L,, C ker(dF,). Note: we have exponential decay.

o Note: the space of solutions to equation linearized at u is T, M (x,y).

1.4.1 Showing L, is Fredholm

« Bootstrapping: Y € ker(L,) in Wh? is continuous, thus C', this C* and form a finite-
dimensional vector space.
e Behavior at infinity: reduces to
oYy
L)Y =0 «— — =-AY
0s

where A is a constant diagonal matrix
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1.4 Linearizing the Morse Equation

— This is a linear system, so solutions are
Y(s) =e Y (0) ie yi(s) =ye N
o Will prove that if u is a trajectory of gradf connecting x — y then L, is Fredholm
— Proof: involves bounding W12 norm of Y by L? norms of Y, L, Y.
— Lots of integral estimates: Fourier transform, Plancherel, Cauchy-Schwarz
o Integral bound yields: dimker L, < oo and im(L), is closed.

e Lemma: dim coker < oco.

— Proof: computer kernel of adjoint
L=——+A"

where the matrix is transposed.

— Use the fact that

Z € coker(L,) <= Z € ker(L}),

i.e. L,Z =0 in the sense of distributions

1.4.2 Computing Ind L,
 Unsurprisingly, will show Ind(L,) = Ind¢(z) — Indf(y).
e Ideas in proof:

— Will choose two real numbers o, s to plug into u, and consider resolvent: map between

tangent spaces to V at u(o), u(s).
— Look at the tangent spaces at u(o) of the stable and unstable manifolds will be the Floer

complex

E%0) = Tyo)W"(2)
ES(U) = Tu(a) WS(‘T;)

— Then ker L,, is isomorphic to the intersection for all o.

1.4.3 Smale Condition
¢ Recall X = grad,f for g a metric.

e Statement: the vector field X satisfies the Smale condition <= all L,, are surjective.
Proof .

o L, is surjective <= coker(L,) =0 <= ker(L;) is injective
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1.5 10.4: Morse and Floer Trajectories Coincide

o This is equivalent to
TU(U)Wu(x) = Tu(U)WS(a:) = Tu(g)V.

o This is exactly the transversality condition for the stable and unstable manifolds
— We want this for all critical points

1.5 10.4: Morse and Floer Trajectories Coincide
1.5.1 Comparing Kernels
» Note ker(L,,) C ker(dF,) since

0 0 0
= Y = Z i g= Y =
(65 +5(s)> 0 — <as +Ig +S(s)> 0,
so just need to show reverse inclusion.
o Use a lemma: for f:[0,1] — R,
of
f S H )
0 < |55 | o

then apply this to f(t) =Y (s,t) and p = 2.
e Yields an equation

2

oY

. HW
L2 at

2 2 2
LSS ISEILIYIE = Y72 < supl1S(5)

where the sup term being small forces Y = 0.

1.5.2 Trajectories are Independent of ¢

WTS: Trajectories of Hy appearing in the Floer complex are exactly those appearing in the Morse

complex. L.e. proving 10.1.9
Idea of proof:

» Contradiction: suppose there exists a sequence nj — oo with time-dependent solutions u,,,

connecting x — y which solve the Floer equation

e Consider case where indices differ by 1: using broken trajectories theorem, extract a subse-

quence converging to some v € M(x,y, H).

— Show v doesn’t depend on ¢

— Since dJF, is surjective, v is in a 1-dim component, and thus an isolated point of £(x,y)

— Get a contradiction from taking k£ > 0 and using
U, (8,1) = v(s+ ok, t) = v(s + o),

which does not depend on time
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1.5 10.4: Morse and Floer Trajectories Coincide

o Consider case where indices differ by 2
— Use Smale property of the gradient —J Xy of H: trajectories z — y form a 2-manifold

— Since trajectories are also in M(x,y, H), parameterizes a submanifold in a neighborhood
of v.

e Show that convergence toward broken orbits in Morse setting corresponds to converges toward
broken trajectories in Floer setting

« Use gluing from last chapter: v, € im(®) for k> 0, contradicting the fact that v,, doesn’t
depend on t
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