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1.1 Notation and Setup
o (W w,J) a symplectic manifold with an almost complex structure
o H € C(W,R) will be either a Morse function or a Hamiltonian

o X will be a vector field, potentially. X g, the symplectic gradient of H:

we (-, Xp () = (dH)z(-).

o (DH will denote differentials, D*H will denote Hessians (where they’re defined)

o (CM.(H,J) will be the Morse complex associated with a Morse function H, its vector field
gradH the gradient for the metric defined by J, w.

ol CF.(H,J) will be the Floer complex

| Theorem 1.1.1(Main Goal).
There exists a nondegenerate Hamiltonian that i§ sufficiently small in the C2 topology for
which both the Floer and Morse complexes are well-defined, and S

CE,(H,J)= CMn(H, J) = CM,(H, J)[n)-

1.2 Strategy
Need to show two things:

1L CF, = CM,[n], and
2. Op = Oy

Th wm %?.(:L‘.‘d“ 7

V‘\C&
.20

Lod () = a0 + o I~
din (W) =20 L




1.2 Strategy

1.2.1 Equality of Complexes

Definition 1.2.1
For a function f € ,R), define a bilinear form

.: T,W @ T,W — R
(v, w) = (x, (Y- f)(p))

for some vector field Y ex
A critical poi

Definition 1.2.
For a Hamiltonian syste
is not an eigenvalue of the

ie. 1

Example 1.2.1.
Motivation:

1
‘ > aipipj + Y bijpig; + 3 D ity = -, A~ D*H(0).
Yields a ﬂow”then ’doesn’t have eigenvalue 1, A sn’t have eigenvalue zero,
and the quadratic form H is nondegenerate, so the critical point

N =

e Can start with an

,and rescale t ne
e When H sufficiently small in the&e !close sups of 1st and 2nd derivatives), the only
periodic trajectories are constant

ﬁdef 2 implies def 1—

— As a result,

— Use remark 5.4.6: for the ian of H,
— Yiel
Goal by end of Ch. 10:

e Show that a—onnecting tw-re—
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1.2 Strategy

o Regularity: (dF, is suri'ective Zalong these trajectories
— Implies M\ (@) is a manifold, allows defining Floer complex

o Index Comparison Formula yields equality of vector spaces, up to a dimension shift.
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1.2 Strategy

1.2.2 Equality of Differentials
e Next need to show both differentials dpz% O can be defined, and they coincide
o Defining(9p:

— Need a vector field X adapted to H
— X needs to satisfy Smale condition (genericness)

e Recall the Smale Condition: all stable and unstable manifolds of critical points meet
transversely,

W(a) h WY (b) Ya,b € crit(H).

The Smale condition forbids the existence of flow lines such as those shown
in Figure 2.15. Figure 2.16 shows the trajectories of a neighboring field satis-
fying the Smale condition (obtained by the general method explained in the

following subsection).

7

Fig. 2.15 Fig. 2.16
Mﬂ%‘\’&\a‘@ (]\}\\'\Nr h-— Co Lmﬂiﬁm)

Figure 1: LHS: violates Smale condition. RHS: okay!

o Goal: given fixed data for the Floer theory, relate it to Morse data (define the Morse complex).

« Strategy: running ideas backwards, getting theorems for Morse functions similar to what we
did when linearizing the Floer operator

1.2.3 Define Morse Differentials

e To define 0js: need to relate trajectories of X to 'solutions of Floer equation:

Solutions to Solutions to
< .
9u 1 X (1) =0 S | 9%+ ()G +eradH (u)=0
PAN

To do this: need X = grad A for the metric induced by J, w,
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1.2 Strategy

Definiti .3 (Pseudo-Gradient).
For rse function, a vector s a pseudo-gradient for f iff
1 ith equality i
2. In a Morse chart about p € crit r the canonical metric g on
R"™.

Definiti 1.2.4

A paix&of a function and a vector field is a Morse-Smale pair iff-is

a pseudo-gradient for f satisfying the Smale condition.

Let H be Morse on (W,w). en there exists a dense subset of almost complex

structures J calibrated by w such that Morse-Smale.
Note: transversality result analogous to in 8.5

Proof . Vinewtyed > 2
| Le > (32 + X0k

e Proof in two
— Step 1

< Linearize the Morse equatio f the flow of —X along one of

its solutions L, Y = 0.

{> Show that whenever H is Morse an-
‘s Fredholm and

¢ Show that fo egenerate Hamiltonian an— the

re Fredholm of equal index.

— Step 2: Floer Side, specific case o
{ Prove the actual result.
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1.3 Summary

1.2.4 Compare solutions to Floer equation and trajectories of X
o Goal: for Ind(z) — Ind(y) < 2, get an equality

Trajectories-ofi Floer-equation Trajectories of the Smale
associated to (H,J) connecting z,y vector field —J X g

e Solutions to Floer equation thati do not depend on ¢ are precisely trajectories of X = —gradH.
‘Text show that elements in ker(dF,)) do not depend on ¢.

e Corollary: dJF, is surjective along every trajectory of gradH.

o Then show that replacing Hy = H/k for k > 0 preserves all critical points and all indices

e Punch line: all the solutions of the Floer equation that we need are time-independent.

— Statement: For k > 0, solutions to the Floer equation for Hj connecting & — y with
Ind(z) — Ind(y) < 2 are independent of ¢.

1.3 Summary

o Take Hy, for k> 0 and J € Jyeg (dense)
o Then when Ind(z) — Ind(y) < 2, trajectories of Floer equation for (H,.J) connecting critical
points z,y are trajectories of the Smale vector field X = —J X .
— x,y will be critical points for both H and A
e Regularity? The linearized Floer operator is surjective along these trajectories
o Implies that M7 )(x, y) is a manifold, so C'F, can be defined.
. @m:this shows the differentials coincide, and we’re done.

1

~
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1.4 Linearizing the Morse Equation

1.4 Linearizing the Morse Equation

o Let f be morse on V < R™ (m > 0) with adapted pseudo-gradient field X, then

Trajectories - Solutions of }
{ of X } {g;‘ +X(u(s))=0{ -

« Fix a metric g on V such that X = grad,f.

e Define the space of solutions of finite energy:
ou ||?

E(u) ::/]R E
M = {u e C*[R,V) ‘ % +gradf =0, E(u)< oo}.

ds

o Then M is compact and equal to U, ,M(x,y), using the fact that if V' is compact, all
trajectories are of finite energy

e Now go to coordinates and linearize the equation of the flow along the solution u to get a
linear differential equation

e Yields an equation
Ly : WY (R,R") — L*(R,R")

Y
Y %— +A(S)Y = LY,
S

where A is a matrix limiting to gradf/ f and grad2f at s = 400

— Limiting to Hessians of nondegenerate critical points will yield symmetric invertible
matrices

— We then consider ker L,, C ker(dF,). Note: we have exponential decay.

o Note: the space of solutions to equation linearized at u is Ty, M (z,y).

1.4.1 Showing L, is Fredholm

« Bootstrapping: Y € ker(L,) in W'? is continuous, thus C*, this C* and form a finite-
dimensional vector space.

e Behavior at infinity: reduces to

L)Y =0 — a—Y = -AY
0s

where A is a constant diagonal matrix

— This is a linear system, so solutions are

Y(s) = e MY (0) ie. yi(s) = ye "
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1.4 Linearizing the Morse Equation

o Will prove that if u is a trajectory of grad f connecting x — y then L, is Fredholm
— Proof: involves bounding W12 norm of Y by L? norms of Y, L, Y.
— Lots of integral estimates: Fourier transform, Plancherel, Cauchy-Schwarz

o Integral bound yields: dimker L,, < oo and im(L),, is closed.

¢ Lemma: dim coker < oc.

— Proof: computer kernel of adjoint

Lr=—2 a4
v 83+

where the matrix is transposed.

— Use the fact that
Z € coker(L,) <= Z € ker(L}),

i.e. L;,Z = 0 in the sense of distributions

1.4.2 Computing Ind L,,
o Unsurprisingly, will show Ind(L,) = Ind¢(z) — Inds(y).
e Ideas in proof:

— Will choose two real numbers o, s to plug into u, and consider resolvent: map between
tangent spaces to V at u(o), u(s).

— Look at the tangent spaces at u(o) of the stable and unstable manifolds will be the Floer
complex

Eu(()') = Tu(U)Wu(LL‘)
ES(O') = Tu(U)WS(CC)

— Then ker L,, is isomorphic to the intersection for all o.

1.4.3 Smale Condition
» Recall X = grad,f for g a metric.

o Statement: the vector field X satisfies the Smale condition <= all L,, are surjective.

Proof .

o L, is surjective <= coker(L,) =0 <= ker(L;,) is injective
o This is equivalent to

TU(U)WU (a:) = Tu(o) w* (a;) = Tu(g)V.

o This is exactly the transversality condition for the stable and unstable manifolds
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1.5 10.4: Morse and Floer Trajectories Coincide

— We want this for all critical points

1.5 10.4: Morse and Floer Trajectories Coincide
1.5.1 Comparing Kernels
o Note ker(L,) C ker(dF,) since

(Ei +S(s)>Y:0 = <§9 +Jaat +S(3)>Y=0,

so just need to show reverse inclusion.

o Use a lemma: for f:[0,1] — R,

o1
o < 2

)

Lr([0,1])
then apply this to f(t) =Y (s,t) and p = 2.

e Yields an equation
2 at

where the sup term being small forces Y = 0.

oy 2

2 2 2
SISOV IE = Y172 < sup 1S5y

1.5.2 Trajectories are Independent of ¢

WTS: Trajectories of Hy appearing in the Floer complex are exactly those appearing in the Morse
complex. L.e. proving 10.1.9

Idea of proof:

« Contradiction: suppose there exists a sequence n; — oo with time-dependent solutions u,,,
connecting x — y which solve the Floer equation

o Consider case where indices differ by 1: using broken trajectories theorem, extract a subse-
quence converging to some v € M(x,y, H).

— Show v doesn’t depend on t
— Since dF, is surjective, v is in a 1-dim component, and thus an isolated point of £(x,y)

— Get a contradiction from taking k > 0 and using
U, (8,1) = v(s+ ok, t) = v(s + op),

which does not depend on time
e Consider case where indices differ by 2

— Use Smale property of the gradient —J X of H: trajectories x — y form a 2-manifold
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1.5 10.4: Morse and Floer Trajectories Coincide

— Since trajectories are also in M(x,y, H), parameterizes a submanifold in a neighborhood
of v.

e Show that convergence toward broken orbits in Morse setting corresponds to converges toward
broken trajectories in Floer setting

o Use gluing from last chapter: v,, € im(p) for k > 0, contradicting the fact that v,, doesn’t
depend on ¢
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