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1 Monday, October 12: Audin Chapter 10
(From Floer to Morse)

1.1 Notation and Setup
• (W, ω, J) a symplectic manifold with an almost complex structure

• H ∈ C∞(W,R) will be either a Morse function or a Hamiltonian

• X will be a vector field, potentially XH , the symplectic gradient of H:

ωx( · , XH(x)) = (dH)x( · ).

• DH will denote differentials, D2H will denote Hessians (where they’re defined)

• CM∗(H, J) will be the Morse complex associated with a Morse function H, its vector field
gradH the gradient for the metric defined by J, ω.

• CF∗(H, J) will be the Floer complex

Theorem 1.1.1(Main Goal).
There exists a nondegenerate Hamiltonian that is sufficiently small in the C2 topology for
which both the Floer and Morse complexes are well-defined, and

CF∗(H, J) ∼= CM∗+n(H, J) = CM∗(H, J)[n].

1.2 Strategy
Need to show two things:

1. CF∗ = CM∗[n], and
2. ∂F = ∂M .
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1.2 Strategy

1.2.1 Equality of Complexes

Definition 1.2.1 (Nondegenerate 1: Critical Points of a Function).
For a function f ∈ C∞(W,R), define a bilinear form

(D2f)p : TpW ⊗ TpW → R
(v, w) �→ �x, (Y · f)(p)�

for some vector field Y extending y.
A critical point p is nondegenerate iff (D2f)p is a nondegenerate quadratic form.

Definition 1.2.2 (Nondegenerate 2: Critical Points of Periodic Trajectories).
For a Hamiltonian system H, a periodic solution x is nondegenerate iff 1 �∈ Spec (dψ1), i.e. 1
is not an eigenvalue of the differential, i.e.

det
�

id −
�
Dψ1

�
x(0)

�
�= 0.

Example 1.2.1.
Motivation:

H = 1
2

�
aijpipj +

�
bijpiqj + 1

2
�

cijqiqj =⇒ XHp = Ap, A ≈ D2H(0).

Yields a flow ψt = etA, then if ψ1 = eA doesn’t have eigenvalue 1, A doesn’t have eigenvalue zero,
and the quadratic form H is nondegenerate, so the critical point of H at zero is nondegenerate.

Proposition 1.2.1(5.4.5).
Definition 2 implies definition 1: if x is a critical point of H which is nondegenerate as a
periodic solution of the Hamiltonian system, then a ∈ crit(H) is nondegenerate as a critical
point of the function H.

• Can start with an H0 and rescale to define H := H0/k
• When H sufficiently small in the C2 sense (close sups of 1st and 2nd derivatives), the only

periodic trajectories are constant
– Use prop: def 2 implies def 1, conclude that H is Morse.
– As a result,

crit(AH) ⇐⇒ crit(H) ⇐⇒ {Constant trajectories} .

– Use remark 5.4.6: for the Hessian of H, Spec (D2H) ∩ 2πZ = ∅
– Yields Index Comparison Formula:

IndH(x) = µ(x) + n.

Goal by end of Ch. 10:

• Show that all Floer solutions connecting two consecutive critical points are also Morse trajec-
tories,
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1.2 Strategy

• Regularity: dFu is surjective along these trajectories
– Implies M(H,J)(x, y) is a manifold, allows defining Floer complex

• Index Comparison Formula yields equality of vector spaces, up to a dimension shift.
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1.2 Strategy

1.2.2 Equality of Differentials

• Next need to show both differentials ∂M , ∂F can be defined, and they coincide

• Defining ∂M :

– Need a vector field X adapted to H
– X needs to satisfy Smale condition (genericness)

• Recall the Smale Condition: all stable and unstable manifolds of critical points meet
transversely,

W u(a) � W v(b) ∀a, b ∈ crit(H).

Figure 1: LHS: violates Smale condition. RHS: okay!

• Goal: given fixed data for the Floer theory, relate it to Morse data (define the Morse complex).

• Strategy: running ideas backwards, getting theorems for Morse functions similar to what we
did when linearizing the Floer operator

1.2.3 Define Morse Differentials

• To define ∂M : need to relate trajectories of X to solutions of Floer equation:




Solutions to
∂u
∂s +X(u)=0



 ⇐⇒





Solutions to
∂u
∂s +J(u)∂u

∂t +gradH(u)=0



 .

To do this: need X = gradH for the metric induced by J, ω.
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1.2 Strategy

Definition 1.2.3 (Pseudo-Gradient).
For f : W → R a Morse function, a vector field X is a pseudo-gradient for f iff

1. (Df)p(Xp) ≤ 0 with equality iff p ∈ crit(f)
2. In a Morse chart about p ∈ crit(f), we have X = −gradgf for the canonical metric g on

Rn.

Definition 1.2.4 (Morse-Smale Pair).
A pair (f, X) of a function and a vector field is a Morse-Smale pair iff f is Morse and X is
a pseudo-gradient for f satisfying the Smale condition.

Theorem 1.2.1(Theorem to Prove).
Let H be Morse on (W, ω). Then there exists a dense subset Jreg(H) of almost complex
structures J calibrated by ω such that (H, −JXH) is Morse-Smale.

Note: transversality result analogous to ones in 8.5

Proof .

• Proof in two steps:
– Step 1: Morse Side, arbitrary morse functions

♦ Linearize the Morse equation ∂u

∂s
+ X(u) = 0 of the flow of −X along one of

its solutions LuY = 0.
♦ Show that whenever H is Morse and u is a trajectory connecting critical points,

Lu is Fredholm and

Ind(Lu) = IndH(y) − IndH(x).

♦ Show that for H a nondegenerate Hamiltonian and u a trajectory of JXH , the
operators (dF)u and Lu are Fredholm of equal index.

♦ Show that X is Smale ⇐⇒ Lu is surjective.
– Step 2: Floer Side, specific case of Hamiltonian

♦ Prove the actual result.
�

• Now fix an almost complex structure to obtain a Smale vector field X
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1.3 Summary

1.2.4 Compare solutions to Floer equation and trajectories of X

• Goal: for Ind(x) − Ind(y) ≤ 2, get an equality
�

Trajectories of Floer equation
associated to (H,J) connecting x,y

�
⇐⇒

�
Trajectories of the Smale

vector field −JXH

�
.

• Solutions to Floer equation that do not depend on t are precisely trajectories of X = −gradH .

• Next show that elements in ker(dFu) do not depend on t.

• Corollary: dFu is surjective along every trajectory of gradH.

• Then show that replacing Hk := H/k for k � 0 preserves all critical points and all indices

• Punch line: all the solutions of the Floer equation that we need are time-independent.

– Statement: For k � 0, solutions to the Floer equation for Hk connecting x → y with
Ind(x) − Ind(y) ≤ 2 are independent of t.

1.3 Summary
• Take Hk for k � 0 and J ∈ Jreg (dense)
• Then when Ind(x) − Ind(y) ≤ 2, trajectories of Floer equation for (H, J) connecting critical

points x, y are trajectories of the Smale vector field X = −JXH .
– x, y will be critical points for both H and AH

• Regularity? The linearized Floer operator is surjective along these trajectories
• Implies that M(H,J)(x, y) is a manifold, so CF∗ can be defined.
• Claim: this shows the differentials coincide, and we’re done.
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1.4 Linearizing the Morse Equation

1.4 Linearizing the Morse Equation
• Let f be morse on V �→ Rm (m � 0) with adapted pseudo-gradient field X, then

�
Trajectories

of X

�
⇐⇒

� Solutions of
∂u
∂s +X(u(s))=0

�
.

• Fix a metric g on V such that X = gradgf .

• Define the space of solutions of finite energy:

E(u) :=
�

R

����
∂u

∂s

����
2

ds

M :=
�

u ∈ C∞(R, V )
��� ∂u

∂s
+ gradf = 0, E(u) < ∞

�
.

• Then M is compact and equal to ∪x,yM(x, y), using the fact that if V is compact, all
trajectories are of finite energy

• Now go to coordinates and linearize the equation of the flow along the solution u to get a
linear differential equation

• Yields an equation

Lu : W 1,2(R,Rn) → L2(R,Rn)

Y �→ ∂Y

∂s
+ A(s)Y := LuY,

where A is a matrix limiting to grad2
yf and grad2

xf at s = ±∞
– Limiting to Hessians of nondegenerate critical points will yield symmetric invertible

matrices

– We then consider ker Lu ⊆ ker(dFu). Note: we have exponential decay.

• Note: the space of solutions to equation linearized at u is TuM(x, y).

1.4.1 Showing Lu is Fredholm

• Bootstrapping: Y ∈ ker(Lu) in W 1,2 is continuous, thus C1, this C∞ and form a finite-
dimensional vector space.

• Behavior at infinity: reduces to

LuY = 0 ⇐⇒ ∂Y

∂s
= −AY

where A is a constant diagonal matrix

– This is a linear system, so solutions are

Y (s) = e−AsY (0) i.e. yi(s) = yie
−λis.
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1.4 Linearizing the Morse Equation

• Will prove that if u is a trajectory of gradf connecting x → y then Lu is Fredholm

– Proof: involves bounding W 1,2 norm of Y by L2 norms of Y, LuY .

– Lots of integral estimates: Fourier transform, Plancherel, Cauchy-Schwarz

• Integral bound yields: dim ker Lu < ∞ and im(L)u is closed.

• Lemma: dim coker < ∞.

– Proof: computer kernel of adjoint

L∗
u = − ∂

∂s
+ A∗

where the matrix is transposed.

– Use the fact that

Z ∈ coker(Lu) ⇐⇒ Z ∈ ker(L∗
u),

i.e. L∗
uZ = 0 in the sense of distributions

1.4.2 Computing Ind Lu

• Unsurprisingly, will show Ind(Lu) = Indf (x) − Indf (y).

• Ideas in proof:

– Will choose two real numbers σ, s to plug into u, and consider resolvent: map between
tangent spaces to V at u(σ), u(s).

– Look at the tangent spaces at u(σ) of the stable and unstable manifolds will be the Floer
complex

Eu(σ) := Tu(σ)W
u(x)

Es(σ) := Tu(σ)W
s(x)

.

– Then ker Lu is isomorphic to the intersection for all σ.

1.4.3 Smale Condition

• Recall X = gradgf for g a metric.

• Statement: the vector field X satisfies the Smale condition ⇐⇒ all Lu are surjective.

Proof .

• Lu is surjective ⇐⇒ coker(Lu) = 0 ⇐⇒ ker(L∗
u) is injective

• This is equivalent to

Tu(σ)W
u(x) + Tu(σ)W

s(x) = Tu(σ)V.

• This is exactly the transversality condition for the stable and unstable manifolds
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1.5 10.4: Morse and Floer Trajectories Coincide

– We want this for all critical points
�

1.5 10.4: Morse and Floer Trajectories Coincide
1.5.1 Comparing Kernels

• Note ker(Lu) ⊂ ker(dFu) since
�

∂

∂s
+ S(s)

�
Y = 0 =⇒

�
∂

∂s
+ J

∂

∂t
+ S(s)

�
Y = 0,

so just need to show reverse inclusion.

• Use a lemma: for f : [0, 1] → R,

�f�Lp([0,1]) ≤
����

∂f

∂t

����
Lp([0,1])

,

then apply this to f(t) := Y (s, t) and p = 2.

• Yields an equation
����

∂Y

∂s

����
2

L2
+

����
∂Y

∂t

����
2

L2
≤ sup

s
�S(s)�2

op�Y �2
L2 =⇒ �Y �2

L2 ≤ sup
s

�S(s)�op

���Y 2
L2

���

where the sup term being small forces Y = 0.

1.5.2 Trajectories are Independent of t

WTS: Trajectories of Hk appearing in the Floer complex are exactly those appearing in the Morse
complex. I.e. proving 10.1.9

Idea of proof:

• Contradiction: suppose there exists a sequence nk → ∞ with time-dependent solutions unk

connecting x → y which solve the Floer equation

• Consider case where indices differ by 1: using broken trajectories theorem, extract a subse-
quence converging to some v ∈ M(x, y, H).

– Show v doesn’t depend on t

– Since dFv is surjective, v is in a 1-dim component, and thus an isolated point of L(x, y)

– Get a contradiction from taking k � 0 and using

vnk
(s, t) = v(s + σk, t) = v(s + σk),

which does not depend on time

• Consider case where indices differ by 2

– Use Smale property of the gradient −JXH of H: trajectories x → y form a 2-manifold
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1.5 10.4: Morse and Floer Trajectories Coincide

– Since trajectories are also in M(x, y, H), parameterizes a submanifold in a neighborhood
of v.

• Show that convergence toward broken orbits in Morse setting corresponds to converges toward
broken trajectories in Floer setting

• Use gluing from last chapter: �vnk
∈ im( �ϕ) for k � 0, contradicting the fact that vnk

doesn’t
depend on t
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