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Definition: A map π : Σ→ Σ′ of Riemann surfaces is said to be ramified at a point p ∈ Σ′ iff in
local charts π has the form z 7→ zn for some n > 1.

I.e. all points in a punctured neighborhood of π(p) have n preimages.

Definition: If π is ramified at p, the number of preimages n is referred to as ep, the ramification
index of p.

Fact: β(Σg) = [1, 2g, 1, 0, · · · ] and χ(Σ) = 2− 2g.

Theorem: If π is an unramified covering map of degree n, then χ(Σ′) = nχ(Σ).

Theorem (Riemann-Hurwitz): If π : Σ→ Σ′ is a ramified covering map of degree N , then

χ(Σ′) = Nχ(Σ)−
∑

(ep − 1) i.e. 2g(Σ′)− 2 = N(2g(Σ)− 2) +
∑

(ep − 1).

Another useful form: Let r ∈ Σ′ be the number of ramification points, and b the number of branch
points, i.e. their images in Σ. Then

χ(Σ′) = N(χ(Σ)− b) + r.

Holomorphic Forms: A holomorphic p-form on X is a section of ΛpT∨X, the pth exterior power
of the holomorphic cotangent bundle of X.

For n = dimCX, the n-forms are an important special case. Any such form w is given in local
coordinates (z1, · · · , zn) by

w = w(z1, · · · , zn)dz1 ∧ · · · ∧ dzn

for some holomorphic function w : Cn →?.

Canonical Bundle: Given a complex manifold M , we can define the tangent bundle Cn → TM →
M and the cotangent bundle Cn → T∨M →M , which we’ll just denote T∨M . Then the canonical
bundle is the bundle C→ ΛnT∨M →M?, denoted by ω, obtained by taking the nth exterior power.

It is a theorem that the fibers are in fact complex lines C1. For vector bundles, this is referred to as
the determinant bundle. If M is a smooth manifold, then ω has a global section.

Note: a holomorphic n-form is exactly the same as a section of the canonical bundle.

Interesting aside: a Calabi-Yau is a manifold with a nowhere vanishing holomorphic n-form, which
implies that the canonical bundle admits a map to a trivial line bundle that is an isomorphism,
i.e. the canonical bundle is trivial.

Exercise: For Σg a compact Riemann surface of genus g, the dimension of the space of holomorphic
sections of the canonical bundle, i.e. the space of holomorphic differentials on ΣG, is given by
dimH0(X; Ω) = g (the genus of the surface). Proof: use Riemann-Roch.
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Classification of elliptic orbifolds of dimension 2: Define (n1, · · · ;m1, · · · ) as the profile, where ni
are elliptic points (locally look like quotient by Z/nZ), and mi are corner reflectors (locally look
like quotient by a dihedral group):

Conformal (or equivalently complex) structures on a genus g surface form a moduli spaceMg of
dimension 3g − 3 for g > 1.

Let α be any partition of 2g− 2, and H(α) the moduli space of pairs (Σg, ω) where Σg is a Riemann
surface of genus g and ω is a holomorphic 1-form (Abelian differential) on M with the orders of its
zeros given by α. Letting H be the moduli space of all abelian differentials on Riemann surfaces of
genus g is stratified by H(α) as α ranges over all partitions. For flat tori, H = GL+(2,R)/SL(2,Z).

For Σg a Riemann surface, there is a formula (Gauss-Bonnet in the flat metric) relating the degrees
of the zeros of a holomorphic 1-form to the genus:

∑
dj = 2g − 2.

2 Notes on Paper
Reference: https://arxiv.org/abs/math/0609392

2.1 Section 1
Flat surfaces are characterized as surfaces with a flat metric and (finitely many?) cone-like
singularities. These surfaces appear to be isomorphic to moduli spaces of holomorphic 1-forms. It is
profitable to study the orbit of the surface under the Teichmüller geodesic flow, as well as a GLn
action.

Some introductory surveys:

• A. Eskin [E],
• G. Forni [For2],
• P. Hubert and T. Schmidt [HuSdt5]
• H. Masur [Ma7],
• H. Masur and S. Tabachnikov [MaT]
• J. Smillie [S].

We usually associate

• Constant positive curvature = S2

• Constant zero curvature = S1 × S1 := T 1 = Σ1
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Figure 1: Image

• Constant negative curvature = Σg for g ≥ 2, a surface of higher genus

Proposition: Any surface can be given a flat metric, possibly introducing singular points.

Idea: Push all of the curvature into a cone point.

Example: The standard cube embedded in R3.

This is a flat surface with 8 cone points located at the vertices. Note that the metric is non-degenerate
on the edges, since any neighborhood of a point on an edge is still homeomorphic to R2:

Any neighborhood of a vertex is isometric to the vertex of the usual notion of a cone. The cone
angle can be measured by cutting a cone from the base to the vertex, yielding a flat pattern that
sits in R2, and measuring the “missing” angle in the resulting circle:

This shows that the cone angle of the cube is 3π/2, which coincides with the fact that there are 3
square (and thus 3 right angles) adjacent to any cone point.

Definition: Geodesic (todo)

Definition: Ergodic (todo)

Here this means that a typical geodesic will visit any region in phase space and time spent in a
region is proportional to volume.

Definition: Holonomy and Holonomy group (todo)

General (wildly open) problem:

• Describe the behavior of a generic geodesic on a surface
• Prove that the geodesic flow is ergodic on a typical flat surface
• Does almost every surface have a closed geodesic that does not pass through singular points?

– If so, how many?
– Find the (asymptotic) number of such closed geodesics of length shorter than L

This remains unsolved for S2 with 3 singularities (equivalent to a certain billiards problem). It is
not even known if any flat sphere admits a single closed geodesic.
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Figure 2: Image

Flat surfaces have nontrivial holonomy, which makes them resemble Riemannian manifolds more
than flat tori.

If we take the surface and puncture the conical points, it is locally isometric to the punctured
Euclidean plane. This allows a notion of parallel transport of tangent vectors.

Parallel transports along homotopically trivial loops are always the identity; otherwise, for homo-
topically nontrivial loops this rotates the vector by some angle. Parallel transport around a cone
point rotates by exactly the cone angle. Nontrivial holonomy forces geodesics to self-intersect many
times.

Exercise: parallel transport a vector around the cone point of a cube.

The flat torus has trivial linear holonomy – all geodesics either close up, or never self-intersect and
produce a dense winding path.

Definition: A translation surface is closed orientable surface with a flat metric, a finite number of
conical singularities, and trivial linear holonomy.

Note that trivial linear holonomy implies that cone angles are all integer multiples of 2π.

Convention: we assume all flat surfaces come with a distinguished direction.

Remark: Billiards gives rise to a flat surface with nontrivial linear holonomy.

Definition: A half-translation surface is a surface with a flat metric and holonomy group Z/(2).

In this case, a vector v may come back as −v after parallel transport.

We’ll often consider families of flat surface sharing the same genus and number/type of conical
singularities. These will correspond to strata of moduli spaces of one-forms.

It will often be useful to let SL(2,R) act on these families, consider the orbits, and take its closure.
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Central problem / conjecture: Taking the closure of an orbit under the action of GL+(2,R) is a
complex subvariety, so both the moduli space of holomorphic one-forms and the moduli space of
quadratic differentials resemble homogeneous spaces under the action of a unipotent group.

The there is a projection from these orbits (Teichmüller discs) to the moduli space of complex
structures (?), which will be denotedMg. It is well-known that moduli spaces are not homogeneous
spaces, but the conjecture here is that they behave as if they were.

2.2 Section 2: Motivations
Open problems in rectangular billiards:

1. Describe the behavior of a billiard trajectory in a generic triangle, and prove that the billiard
flow is ergodic.

2. Does (almost) any table have at least one regular periodic trajectory? Is it preserved under
deformations?

3. Asymptotically in length, how many periodic trajectories are there?
4. Does any obtuse triangle have a single periodic trajectory?

Known example: Acute triangles have at least 1, see Fagnano trajectory

Fox-Kershner construction: Yields a way to go from billiard trajectories to geodesics on a flat surface.
General idea: glue two copies of the billiard table along the edge to get a flat sphere; then paths lift
to geodesics. Such surfaces are not “very flat”, i.e. they have nontrivial linear holonomy.

3 Thursday, Week 1
Motivation: Gauss’ Unicursal Problem. How many distinct curves α : [0, 1]→ R2 are there with
no triple crossings?

Note that if we compactify the plane to the Riemann sphere (and possibly take the curve to be
piecewise linear) then we obtain a tiling of the sphere. We can also take a dual tiling by taking the
barycenters of each polygon and connecting them by an edge iff their corresponding polygons share
an edge.

Definition: A translation surface is the 2-dimensional topological manifold obtained by taking any
set of polygons in R2 and gluing their edges by translations.

Example: Any elliptic curve (topologically a torus) is a translation surface.

We take equivalence up to cutting, pasting, and rearranging.

Lemma: Two elliptic curves (of genus 2) are isomorphic iff the translation surfaces differ by a
homothety, i.e. a rotation and scaling.

Note: we will eventually see that the data of a translation surface is equivalently a holomorphic
1-form.

Definition: A half-translation surface is a translation surface where we now additionally allow
gluing by rotations of π radians.

Example:
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aa

b b

c c

Note that the gluing b now requires a rotation.

By gluing edges with matching letters, we get a “hot pocket” surface:

Lemma: Any game of rectangular billiards yields a half-translation surface.

Given any domain for rectangular billiards, we inflate it to a surface:
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We can then cut along everything but the bottom edge to “unwrap” it into a half-translation surface:

a

b

a

b

Some questions related to rectangular billiards:

Question 1: Given a random starting point and direction, what proportion of the total region is
traversed? Will the trajectory entire a given region? How long does the billiard spend in any given
region?

Theorem: The percentage of time spent in a given region is equal to the proportion of its area to
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the total area.

This requires some ergodic theory.

Question 2: If you shine a laser from a given spot, is the entire region illuminated?

Theorem: No! There is a counterexample with 18 sides. Moreover, no positive-area region can be
avoided, but certain finite sets can.

Definition: A flat surface is a generalization of translation surfaces that now allows gluing by any
isometry of R2.

Example: A cube in R3 is a flat surface, noting that the planar gluing diagram for it now requires
rotations of π/2 radians:
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Note that we can form higher genus surfaces using polygon gluing:
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d

a

b

c

d

a

b

c

Exercise: Check that there is only one vertex in this polygon.

In general, the vertices may have total angle greater than 2πn. We refer to these as cone points,
and the total angle as the cone angle.

Exercise: Check that the cone angle in the above example is 6π by taking a loop around the cone
point.

Note on a weird phenomenon: it seems difficult to find Z2 or Q2 points on the sloped edges of
a regular polygon, based on computer drawings.

Remark: This flat surface admits charts to C with the following transition functions. Let P denote
the single cone point.

Then there is a 3-fold cover give by the following space, thought of as a singular helical
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P C

A

P A

B

P B

C

which maps onto the unit disc in C:
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P

1

2

3

The covering map from the former to the latter is given by z 7→ z
1
3 , which coincides with the fact

that the cone angle at P is 3(2π) = 6π.

One can also imagine this space in R3 with a projection onto the plane:

−2
0

2

−4
−2

0
2

0

2

4

6

8

10

12

14

16

18

20

Here the helicoid goes through three full twists, where the top and bottom pieces are identified.

Proposition: In a neighborhood of a cone point P with cone angle 2πn, the map z 7→ z
1
n will be a
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Figure 3: Image

local chart for any z in a neighborhood of P .

This gives the resulting surface the structure of a Riemann surface, i.e. a surface admitting charts
to C with holomorphic transition functions.

Let X be a Riemann surface, we can look at the canonical bundle over X with sections that are
compatible collections of fu(zu) dzu for each chart zu, and for each such chart a holomorphic function
fu(zu) on zu(U) where on overlaps

fu(zu) dzu = fv(zv) dzv
= fv(zv ◦ zu)z′v(zu) dzu.

Updated Definition: A translation surface is a Riemann surface with a section of its canonical
bundle.

Example: C/Λ for Λ any rank-2 lattice:

Note that the translation here is given by λ.

Definition: A holomorphic 1-form is a section of the canonical bundle.

Example: For the above surface, we have zv = zu + λ and thus dzu = dzv is nonvanishing.

Note that dz is a holomorphic 1-form on the complement of the vertex/vertices of the polygon.

Proposition: dz extends holomorphically to charts containing cone points with cone angle 2πn
and has a zero of order n− 1 at such cone points.
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Example: For the chart z = w3 where w is the local coordinate, we have dz = 3w2, yielding a zero
of order 2.

4 Thursday January 16th
4.1 Correspondence
Recall: Start with a translation surface with cone points with angles 2πni. This yields a Riemann
surface Σ and a holomorphic 1-form ω with zeros of order ni − 1.

Given a square fundamental domain, there is an order 4 automorphism given by rotating 90 degrees.
In charts, this is multiplication by i and possibly a translation, which is a holomorphic map f : Σ	.
We then have f∗(dz) = d(f(z)) = idz, so dz is an eigenvector for f∗.

An elliptic curve can be specified by y2 = f4(x) for a degree 4 polynomial, so we can obtain it as a
double branched cover of S2. (i.e. glue along the slits joining pairs of roots)

Take E : y2 = x4 − 1, this is the only elliptic curve with an order 4 automorphism. In coordinates,
this is generated by (x, y) 7→ (−ix, y). So ω = c

dx

y
, i.e. dx/y up to scaling, and f∗(dx/y) = i

dx

y
.

What is the constant c?

Take closed cycles on E given by α, β (see diagram), then by FTC
∫
α
ω = z

∣∣∣1
0
= 1. Negation is 4

fixed points on the elliptic curve, the 2-torsion points.
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We can then compute

I =
∫
α

dx

y
=
∫ 2

1

dx√
x4 − 1

.

and since 2cI = 1, this uniquely determines c.
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Note that this can be numerically evaluated, but this is an elliptic integral with (possibly) no
elementary antiderivative.

Consider the decagon with sides identified. We get a complex structure (Σ, ω) with cone angles 4π
and dz has 2 zeros of order 1 (namely the two cone points).

What is the genus? The degree of the canonical bundle is

g(Σ) = degKΣ = 2g − 2 =
∑
p∈Σ

Ordpω

and thus g = 2.

Fact: Every genus 2 curve is a double branched cover of P1 branched over 6 points.
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Use Riemann-Roch.

Consider automorphisms that preserve the decagon. Rotation by π/10 swaps the two cone points,
to take rotation by −2π/5 (inserting the negative to account for pullbacks). Then f∗ω = ζ5ω, where
again we just write locally z f−→ ζ−1

5 + c =⇒ f∗dz = ζ5dz.

Consider points of order 5 on P1, we can take ζk5 and ∞.

This corresponds to the curves y2 = x5 − 1, with an automorphism (x, y) 7→ (ζ5x, y). This is the
only genus 2 curve with an order 5 automorphism.

Fact: The space of sections of the canonical H0(KE) = Cg.
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We can write a basis for the space of 1-forms: dx
y

and (1− x)dx
y
. Alternatively, ω = (a+ bx)dx

y
where a, b ∈ C. What are the zeros of ω? V (ω) = V (a+ bx) where if b = 0 it’s ∞. Because this has
to preserve the order 5 symmetric and map cone points to themselves, this forces ω = bx

dx

y
, which

has exactly two zeros: (x, y) = (0,±i).

We can also consider the doubled pentagon, which has only one point. This has an automorphism
given by rotating each pentagon by 1/5, it has cone angle 6π, and ω has a double zero at the cone
point. Since there is only one genus 2 curve with order 5 automorphisms, this yields the previous
Riemann surface but a distinct translation surface and a distinct form.

We can write α = a
dx

y
.

Proposition: One Riemann surface has many translation structures, and the space of such
structures is the space of 1-forms.

Proof: Pick a chart w : U → C avoiding the zeros of ω. Then ω = f(z) dz in this chart, and we
want to compose with a biholomorphism x to obtain a new chart z such that ω = dz in this chart.
We can solve dz = e = f(w) dw and dz

dw
= f(w) and by integrating we get z(w) =

∫ w

p0
f(w0)dw0.

In this chart, ω = dz, and we can correct near zeros by finding charts such that ω = zndz where n
is the order of the zero.

What does this buy us? We get a translation structure by considering transitions, and ω = dz1 =
dz2 =⇒ z1 = z2 + c, which is exactly a translation structure. Thus every (Σ, ω) has a translation
structure for which ω = dz in local polygonal charts.
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Theorem: There is a bijection

{Translation surfaces with cone angles 2πni } ⇐⇒
{

(Σ, ω) a Riemann surface with holomorphic
1-forms with zeros of order ni − 1

}
.

What do half-translations correspond to? Note that dz 7→ −dz, so we don’t get a well-defined
holomorphic 1-form.
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The fix? (dz)2 is some well-defined object. What is it?

The set
{
f(z)(dz)2 = g(w)(dw)2

}
corresponds with line bundles with transition functions given by

(dz/dw)2.

Thus the correspondence is

{Half translation surfaces with cone angle πni} ⇐⇒ {Riemann surfaces with q a section of K⊗2
Σ } .

I.e., these correspond with sections of the second tensor power of the canonical bundle of Σ.

A defining property of q = (dz)2 for half-translation charts z: we can measure the order of the zero
by going to charts, finding a chart to C (see image) e.g. w = z2/3, and then defining

ω = dz = d(w3/2) = 3/2w1/2dw

Then q = w2 = (dz)2 is well-defined and equal to 9
4w(dw)2 in the local chart w.
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In this case, we get points that are poles of order 1 for the quadratic differential (sections of K⊗2).

Note: 1-forms are referred to as “abelian differentials” in the literature.

We know that KP1 = O(−2) and K⊗2
P1 = O(−4).

4.2 Moduli Spaces

Definition: H(k1, · · · , kn) =
{

Σ with abelian differentialDivω =
∑

kpi
}
where the ki record the

orders of zeros of ω.

Second condition on divisor records zeros.

Similarly, define Q(k1, · · · , kn) =
{
· · ·

∣∣∣ quadratic differential
}
where now ki ≥ −1, 6= 0.

These moduli spaces are called strata of abelian/quadratic differentials.

Consider Mg, the moduli space of genus g surfaces. There is a vector bundle (the Hodge bundle)
over Mg where the fiber over [c] is H0(KC) with strata given by Q.

This is a bundle of rank g, and by Riemann-Roch, ? 3g − 3 and is the (co?)tangent bundle of
something.

There is an SL(2,R) action on any stratum. How to define – use isomorphism with translation
structures (see image) by just applying any such form γ to the entire plane and gluing polygons in
the same way. This gives a non-holomorphic action on any stratum.

Next time: to special case of square tiled surfaces.

5 Thursday January 23rd
5.1 Counting Square Tiled Surfaces
Square tiled surfaces in H(k) with d squares correspond to degree d branched covers of the
identification square, branched over the origin, with profile (?).

To count square-tiled surfaces: label squares, look at inverse images of ∗ by {1, · · · , d}. Consider the
monodromy representation ρ : π1(T\{0} , ∗)→ Sd where σ = ρ(α) = (1)(23) and τ = ρ(β) = (12)(3).
We compute ramification orders by considering the commutators [α, β]. Then ρ([α, β]) has cycle
type (1, 1, · · · 1, 1 + k, · · · , 1 + kn). Note that [(23), (12)] is a 3 cycle.
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Conclusion: The number of square-tiled surfaces in H(k) with d squares is exactly

1
d!

∣∣∣{σ, τ ∈ Sd ∣∣∣ [σ, τ ] ∈ C1,··· ,1,1+k,··· ,1+kn

}∣∣∣.
Note that the division is due to the artificial labeling of squares.

Main theorem from “Branched Covers of Torus” Paper: The generating function

fκ(q) :=
∑
d≥1

# {Square tiled, d squares in H(k)} qd

is a modular form.

Follows from taking q = e2πiτ which is holomorphic on H the upper half-plane, satisfying a
transformation rule with respect to τ 7→ −1/τ , which is a finite-dimensional space.

Actual: quasimodular mixed form.

The weights are bounded by |κ|+ `(κ).

Concretely, fκ ∈ Q[E2, E4, E8] where Ek(q) = const +
∑
d≥1

σk−1(d)qd, where σk−1(d) =
∑
e

∣∣∣d
ek−1.

This is the ring of quasimodular forms.
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• 1 is weight 0,
• E2 is weight 2,
• E2

2 , E4 are weight 4,
• E3

2 , E2E4, E6 are weight 6, etc

Example: Take κ = {2} ⇐⇒ H(2), then |κ|+ `(κ) = 3 and f{z}(q) = c1 + c2E2(q). In this case
[q1] = [q2] = 0.

Note that surfaces in H(2) have 1 vertex of cone angle 6π and all others of angle 2π, corresponding
to an abelian differential with a single zero of order 2.

A special type of square-tiled surfaces: 1 cylinder surfaces, where ρ(α) is a full length cycle.

This is in H(3, 1), and corresponding surface (Σ, ω), which is a holomorphic 1-form with a triple
zero and a single zero. By Riemann-Hurwitz, 2g − 2 = degω = 3 + 1 =⇒ g = 3.

Note: the genus here difficult to compute otherwise!

Main Result of 1-Cylinder Surface Paper: 1-cylinder surfaces have roughly a 1/d proportion
in all square tiled surfaces, where d = dimH(κ).

Recall that we can get a square tiled surface from any unicursal curve:

Note that these aren’t always translation surfaces:
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This has transition maps that looks like z 7→ ikz + z0 = w and thus dz = ikdw, so dzk is the
well-defined object here.

Recall

• (Σ, dz) ⇐⇒ translation surfaces
• (Σ, (dz)2) ⇐⇒ 1

2 -translation surfaces

• (Σ, (dz)4) ⇐⇒ 1
4 -translation surfaces

– I.e. a Riemann surface with a section of K⊗4
ε .

Can consider a tricursal curve instead (a curve that requires lifting the pen 3 times). Taking the
dual complex yields a cube.
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This has charts w = z4/3 and thus (dz)4 = w−1(dw)4. Let H(κ) be the quartic differentials with
dvω = σκipi. Then the cube is in H4(−1, · · · − 1) with 8 copies of −1.

This gives cone angles n2π
4 and the order of the zero/pole is n− 4.

This example is in H4(−3,−3,−2).

Proposition: The generating functions for square-tiled surfaces H4(κ) is now a quasimodular form
for Γ1(4).

5.2 Open Questions
Question (can find numerical evidence?): How can we count these in terms of the symmetric
group? Analogous result to proportion result earlier? Can try to lift square example, but admits no
map from a torus – instead, quotient square by Z/4Z and take fundamental domain. What kind of
branching do these covers have?

Every center of a square is branched of order 4. Every center of an edge is branched of order 2.
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The ramification order of a vertex is its valence, divided by the number of squares meeting at that
vertex. The degree of the covering map is 4n where n is the number of squares.

Identify the fundamental domain with P1, We get a monodromy representation:

ρ : π1(P1 \ (0, 1,∞), ∗)→ S4d

γ0 7→ ρ(γ0).

Note that γ0γ1γ∞ = 1.

It then follows that this has cycle type (4, · · · , 4).

So the number of square tiled surfaces in H4(κ) is given by

1
(4d)! = #

{
(σ0, σ1, σ∞)

∣∣∣ σ0 ∈ C4,··· ,4(d), σ1 ∈ C2,··· ,2(2d), σ∞ ∈ C4,··· ,4,4+k,··· ,4+kn , σ0σ1σ∞ = 1
}
.

Would be nice to figure out what the proportionality constant here is.

6 Ben’s Talk: Eskin’s Ramified Coverings of a Torus
Today: Section 2. Main theorem: a certain generating function is quasimodular.

Consider a torus T with marked points Z = {z1, · · · zs} with a map σ : Σ→ T which is unramified
outside of Z.

Then σ is determined by the representation π1(T \ Z, ∗) → Aut(σ−1(∗)) ∼= Sd if σ is a degree d
cover. There is a correspondence
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Figure 4: Image
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{d-fold covers ramified over {zi}} ⇐⇒ hom(π1(T \ Z, ∗), Sd).

Fix C1, · · · , Cs conjugacy classes in Sd, and let Hd(C1, · · · , Cs) be the homomorphisms sending
small loops around zi to Ci.

Then cycle types correspond to branching orders over points.

One way to count d-fold covers is to look at the weights of Aut(σ). We define

Covd(C1, · · · , Cs) =
∑

σ∈Hd(Ci)/S(d)

1
|Aut(σ)| =

∣∣∣Hd(C1, · · · , C2)
∣∣∣

d! .

This just yields a number, so we can define a generating function:
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Cov(C1, · · · , Cs) =
∞∑
d=0

qdCovd(C1, · · · , Cs).

Important note: To make sense of Ci in all Sd, write Ci = (mi1, · · · ,mik) and set Covd(Ci) = 0
iff ik < d, and otherwise pad with 1s to get Ci := (mi1, · · · ,mik, 1, 1, · · · ).

Remark: The generating function counts all (possibly) disconnected covers. Example: Cov( · ) counts
all unramified covers, and φ(C1, · · ·Cs) counts connected covers. These generating functions will
end up being quasimodular.

Definition: Set H1
d(C1, · · · , CS) ⊂ Hd(C1, · · · , CS) be the degree d coverings without unramified

components.

Definition: Set Cov′(C1, · · · , CS) =
∑

qd
∣∣H1

d(C1, · · · , Cs)
∣∣

d! .

This yields the generating function for number of coverings without unramified components.

Lemma: Cov′(C1, · · · , CS) = Cov(C1, · · · , CS)/Cov().

Sketch of proof: Look at coefficients in the expansion

|Hd(C1, · · · , CS)| =
d∑

k=0

(
d

k

)
|Hk(C1, · · · , CS)| · |Hd−k()|.

Recall that Covd(C1, · · ·CS) correspond to Sd representations of π1(T \ Z), and we can get a
presentation

π1(T \ Z) =
〈
σ, γ, gi

∣∣∣ [ω, γ]
∏

gi = e
〉
.

30



This just comes from doing one full loop around the outside square, which should be equivalent
(up to orientation) to going around all 3 punctures.

Definition: Conjugacy classes corresponds to partitions of d.

Definition: For C a conjugacy class correspond to a partition λ′ in Sd. For any partition λ, let
fC(λ) = #Cχλ(C)/ dimλ, where χλ is the irreducible representation associated to λ (note that this
is a rescaling of a row of the character table, since irreducible reps happen to correspond to conjugacy
classes for Sd). This is a class function, so χλ(C) is its value on any c ∈ C, and dimλ := χλ(1).

Proposition: Covd(C1, · · · , CS)−
∑
|λ|=d

S∏
i=1

fCi(λ).

Proof: Let
∏

Ci =
∏ ∑

aj∈Ci

aj ∈ Z(C[Sd]). Why? Commutating elements reindexes the sum here.

We also have
∑
g,h

[g, h]
∏

Ci ∈ Z(C([Sd])), since [g, h]k = [gk, hk], which again just reindexes the

sum.

We’ll pull out a factor of 1
d! [id], and consider what the coefficient of [id] is in the group algebra.

31



Thus 1
d! [id] = 1

(d!)2 Trreg
(∑

[g, h]
∏

Ci
)
, where we consider the regular representation: multiplying

by elements of g is a fixed-point free action, so these are traceless (no terms on the diagonal) whereas
the trace of the identity is exactly the dimension of the regular representation, which is d! (?).

Thus we define Trreg( · ) =
∑
λ

(dimλ)Trλ( · ).

Note that ρ : Sd → GL(V ) extends to ρ : C[Sd]→ End(V ), and thus by Schur’s Lemma, the image
of the center will commute with every endomorphism.

We get a formula:

[id]
d! = 1

(d!)2

∑
|λ|=d

dimλTrλ(
∑

[g, h]
∏
i

Ci)

=
∑
|λ|=d

(dimλ)2

(|λ|!)2 W (λ)Trλ(
∏

Ci).

where W (λ) is a scalar
∑

[g, h] by the above observation.

Recall that fc(λ) = #Cχ
λ(C)

dimλ
and thus

[id]
d! =

∑
|λ|=d

(dimλ

|λ|

)2
W (λ)

∏
fCi(λ).

Fact: W (λ) =
( |λ|!

dimλ

)2
.

6.1 Quasimodularity
Fact: The functions fC(λ) are polynomial functions in the following way:

Definition: Let Λ∗(n) be the algebra of “shifted symmetric functions”, i.e. symmetric functions in
the λi − i.

Subtlety: it’s necessary to order to partition in weakly decreasing order of the numbers occurring!
Example: p(λ) = (λ1−1)(λ2−2), but swapping λ1 ⇐⇒ λ2 results in ((λ2−2)+1)((λ1−1)−1)
is no longer symmetric in λi − i.

Then define Λ∗ = lim
←

Λ∗(n).

Schur-Weyl duality: bijects representations of GLn and Sn.

Then fc ∈ Λ∗ and the degree of fC is exactly the number of non-fixed points of any permutation
from C.

From the paper,
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Cov(C1, · · · , CS) =
∑
λ

q|λ|
∏
i

fCi(λ)

Cov() =
∑

a|λ| =

∏
n≥1

1− qn
−1

= (q)−1
∞ .

Note: the partition functions appears!

For any F ∈ Λ∗, we set 〈F 〉q = (q)∞
∑
λ

q|λ|F (λ) and

〈
F1
∣∣∣ F2

∣∣∣ · · · ∣∣∣ FS〉
q

=
∑
α∈πS

(−1)φ(α)−1(φ(α)− 1)!
φ(α)∏
k=1

〈∏
i∈αj

Fi

〉
q

.

This comes from Möbius inversion, and is a form of inclusion-exclusion.

Proposition: Cov′(C1, · · · , CS) = 〈fC1 · · · fCS
〉q and φ(C1, · · · , CS) =

〈
fC1

∣∣∣ · · · ∣∣∣ fCS

〉
q
.

Theorem: For all F ∈ Λ∗, 〈F 〉q is a quasimodular form, i.e in C[E2, E4, E6] where Ei(q) =
const. +

∑
σ + i− 1(n)qn.
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