--- created: 2023-03-27T14:32 updated: 2023-03-27T14:32 --- --- date: 2023-01-09 12:23 aliases: ["Winter 2022 reading group talk"] --- Last modified: `=this.file.mday` --- - Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - #todo/create-links --- # Winter 2022 reading group talk References: - [https://math.mit.edu/~poonen/papers/drinfeld.pdf](https://math.mit.edu/~poonen/papers/drinfeld.pdf) - [http://personal.psu.edu/mup17/Research/ODM.pdf](http://personal.psu.edu/mup17/Research/ODM.pdf) - Goss, Basic Structures of Function Field Arithmetic - https://www.youtube.com/watch?v=kxxNoLl8h5s&list=PLQZfZKhc0kiC1X2PmKsWV0RnR5QSsPWYQ&index=2 - http://personal.psu.edu/mup17/Research/ODM.pdf MIHRAN PAPIKIAN ⭐ My notes: [Books Basic Structures of Function Field Arithmetic Goss](Annotations/Books%20Basic%20Structures%20of%20Function%20Field%20Arithmetic%20Goss.md) [[Projects/0000 Talks/2023 Function Fields and Drinfeld Modules/2023 Drinfeld 1/Notes 2]] # Notes Drinfeld modules generalize the Carlitz module, a module over $k(C)$ the ring of functions on a curve $C$ over a finite field $\FF_q$. Give a function field analog of CM. Generalize to shtukas (vector bundles over curves). $\tau$ is a generaliation of Frobenius. # Motivation ![2023-01-09-22](attachments/2023-01-09-22.png) ## Langlands ![2023-01-09-20](attachments/2023-01-09-20.png) ![2023-01-09-21](attachments/2023-01-09-21.png) Explicit class field theory ![](attachments/2023-01-09-classfieldexpli.png) ## Analogies ![2023-01-09-13](attachments/2023-01-09-13.png) ![2023-01-09-16](attachments/2023-01-09-16.png) # Carlitz ![2023-01-09-14](attachments/2023-01-09-14.png) ![2023-01-09-15](attachments/2023-01-09-15.png) ![2023-01-09-17](attachments/2023-01-09-17.png) ![2023-01-09-18](attachments/2023-01-09-18.png) ![2023-01-09-19](attachments/2023-01-09-19.png) **Theorem 8.5.** For nonzero $M$ in $\mathbf{F}_p[T], \Lambda_M=\left\{e_C\left((A / M) \xi_p\right): A \in \mathbf{F}_p[T]\right\}$. # Defining Drinfeld modules ![2023-01-09-23](attachments/2023-01-09-23.png) ![2023-01-09-24](attachments/2023-01-09-24.png) ![](attachments/2023-01-09-25.png) ![](attachments/2023-01-09-forma.png)