--- date: 2023-03-13 00:19 aliases: ["Untitled"] --- Last modified: `=this.file.mday` # Ch 7 Setup: $k$ a global field over $\FF_r$, $A$ the subring of functions regular away from $\infty$ Drinfeld/$T\dash$module structure: a representation of $A$ as a ring of operators on $\GG_a^d$ for some $d$. Shtuka: proper model of this action; locally free sheaves on the complex curve $X$ correspond to $k$. Zeta functions: $\Norm(x) \da \size(\OO_{X ,x}/ \mfm_x)$ and set $\zeta_X(s) \da \prod_{x\in \abs{X}} (1 - \Norm(x)^{-s})\inv$. In terms of divisors, $\zeta_k(s) = \sum_{D\in \Div(X), D > 0} \Norm(D)$ where $\Norm(D) \da r^{\deg D}$. Then $Z_k(u) = { p_k(u) \over (1-u)(1-ru)}$ for $u\da r^{-s}$, where $p_k(1)$ is the class number of $k$ and there is a functional equation $p_k(u) = r^g u^{2g} p_k\qty{1\over ru}$. Complete to obtain $\zeta_A(s) \da \qty{1 - \Norm(\infty)^{-s} }\zeta_k(s)$ ![](attachments/2023-03-13class.png) ![](attachments/2023-03-13ff.png)![](attachments/2023-03-13analog.png) # Ch 8 $L_V(s) \da \prod_{w \in \abs X} f_w(\Norm(w)^{-s})\inv$ where $f_w(u) \da \det \qty{\id - \Frob^{\mathrm{geom}}_w u \mid V^{I_w}}$ where $I_w$ is the decomposition group in $\Gal(k^\sep/k)$ and $V$ is e.g. $H^1_\et(Z; \QQladic)$ where $Z/k$ is a abeian variety. Exponentiating: ![](attachments/2023-03-13exponen.png) ![](attachments/2023-03-13lfn.png) Exponentiating ideals: ![](attachments/2023-03-13ideal.png) ![](attachments/2023-03-13dicih.png) Converges on some half-plane of $S_\infty$. ![](attachments/2023-03-13entire.png) ![](attachments/2023-03-13cms.png) ![](attachments/2023-03-13divisib.png) ![](attachments/2023-03-13mainconj.png) ![](attachments/2023-03-13zeta.png) ![](attachments/2023-03-13functional.png) ![](attachments/2023-03-13asdasd.png) ![](attachments/2023-03-13entire-1.png) ![](attachments/2023-03-13gemoburn.png) Real: ![](attachments/2023-03-13real.png)