--- date: 2023-03-16 00:05 aliases: ["Untitled"] --- Last modified: `=this.file.mday` # Drinfeld Talk 2 Draft 2 - What is $d_\infty$ and $v_\infty$? - What is $\gens{\alpha}$ and $\gens{\alpha}^y$? - RH for Drinfeld modules: 4.12.8.5? - L for EC with CM factors via Hecke characters? # Setup - Basic comparison: $\zeta_A(s) \da \sum_{a\in A^{\mathrm{mon}} } a^{-s}$ compared to $\zeta_k(s) \da \sum_{D\in \Div^+(X)} \Norm(D)^{-s}$. ## Zeta functions (7.8) For $X$ a curve: ![](attachments/2023-03-16.png) ![](attachments/2023-03-16-1.png) ![](attachments/2023-03-16-2.png) ## Partial zetas ![](attachments/2023-03-16partial.png) ![](attachments/2023-03-16-3.png) ## The complex plane $S_\infty$ (8.1) ![](attachments/2023-03-16-4.png) ![](attachments/2023-03-16-5.png) Motivating these definitions: ![](attachments/2023-03-16-6.png) Behaves like exponentials: ![](attachments/2023-03-16exp.png) Prototypical L-function: ![](attachments/2023-03-16-7.png) ## Exponentiating ideals (8.2) Issue: Dedekind domains are PIDs iff factorial, so for $\ZZ$ we identify $(a)$ with $a$, but we can't generally do this for $A$ and need extend exponentiation to ideals. ![](attachments/2023-03-16-8.png) ![](attachments/Pasted%20image%2020230316003113.png) ![](attachments/2023-03-16-10.png) ## Functional analysis (8.4) ![](attachments/2023-03-16cts.png) ![](attachments/2023-03-16-11.png) ![](attachments/2023-03-16-12.png) Coefficient extraction: ![](attachments/2023-03-16-13.png) Periodicity: ![](attachments/2023-03-16-14.png) ![](attachments/2023-03-16-16.png) ![](attachments/2023-03-16-17.png) ## Entire functions (8.5) ![](attachments/2023-03-16-18.png) ![](attachments/2023-03-16-19.png) ![](attachments/Pasted%20image%2020230316005041.png) ![](attachments/2023-03-16-21.png) ![](attachments/2023-03-16-22.png) ![](attachments/2023-03-16-23.png) ![](attachments/2023-03-16-24.png) ![](attachments/2023-03-16-25.png) ![](attachments/2023-03-16-26.png) ### Algebraicity ![](attachments/2023-03-16-27.png) ![](attachments/2023-03-16-28.png) ![](attachments/2023-03-16-29.png) ![](attachments/2023-03-16-30.png) ![](attachments/2023-03-16-31.png) ## L-series (8.6) ![](attachments/2023-03-16-32.png) ![](attachments/2023-03-16-33.png) ![](attachments/2023-03-16-34.png) ![](attachments/2023-03-16-35.png) ![](attachments/2023-03-16-36.png) ![](attachments/2023-03-16-37.png) ![](attachments/2023-03-16-38.png) ![](attachments/2023-03-16-39.png) ![](attachments/2023-03-16-40.png) ![](attachments/2023-03-16-41.png) ![](attachments/2023-03-16-42.png) Half-planes of convergence: ![](attachments/2023-03-16-43.png) Use a notion of purity to get convergence for $L\dash$functions of $T\dash$modules. ![](attachments/2023-03-16-44.png) ## Dirichlet series (8.7) ![](attachments/Pasted%20image%2020230316010554.png) Determined by special values: ![](attachments/2023-03-16-46.png) ![](attachments/2023-03-16-47.png) 8.8 proves that $L(\hat\rho, s)$ is entire for certain families of compatible representations $\hat\rho$. Example: ![](attachments/2023-03-16-48.png) ![](attachments/2023-03-16-49.png) 8.9 shows that $L\dash$series associated to finite characters are entire: ![](attachments/2023-03-16-50.png) ![](attachments/2023-03-16-51.png) ![](attachments/2023-03-16-52.png) ![](attachments/2023-03-16-53.png) ## Teich. character ![](attachments/2023-03-16-54.png) ![](attachments/2023-03-16-55.png) ![](attachments/2023-03-16-56.png) ![](attachments/2023-03-16-57.png) ## Special values (8.12) ![](attachments/2023-03-16-58.png) ![](attachments/2023-03-16-59.png) ![](attachments/2023-03-16-60.png) ## Trivial zeros ![](attachments/2023-03-16-61.png) ![](attachments/2023-03-16-62.png) ![](attachments/2023-03-16-63.png) ## Class groups ![](attachments/2023-03-16-64.png) ![](attachments/2023-03-16-65.png) ![](attachments/2023-03-16-66.png) ![](attachments/2023-03-16-67.png) ![](attachments/2023-03-16-68.png) ## Arith/geom, Kummer-Vandiver ![](attachments/2023-03-16-69.png) ![](attachments/2023-03-16-70.png) ![](attachments/2023-03-16-71.png) ![](attachments/2023-03-16-72.png) ![](attachments/2023-03-16-73.png) ![](attachments/2023-03-16-74.png) ![](attachments/2023-03-16-75.png) ![](attachments/2023-03-16-76.png) ![](attachments/2023-03-16-77.png) ## Special values ![](attachments/2023-03-16-79.png) ![](attachments/2023-03-16-78.png) ![](attachments/2023-03-16-80.png) ![](attachments/2023-03-16-81.png) ## Functional equation ![](attachments/2023-03-16-82.png) ![](attachments/2023-03-16-83.png) ![](attachments/2023-03-16-84.png) ![](attachments/2023-03-16-85.png) ![](attachments/2023-03-16-86.png) Measure ![](attachments/2023-03-16-87.png) ![](attachments/2023-03-16-88.png) ![](attachments/2023-03-16-89.png) Real zeros ![](attachments/2023-03-16-90.png) ![](attachments/2023-03-16-92.png) ![](attachments/2023-03-16-91.png) ![](attachments/2023-03-16-93.png)