--- date: 2021-10-18 18:54 modification date: Monday 18th October 2021 18:54:00 title: Intro Category Theory Talk aliases: [Intro Category Theory Talk] --- Tags: #todo #projects/my-talks #higher-algebra/category-theory # Intro Category Theory Talk - Definition: **category** (objects, morphisms, composition) - Big list of examples - $\Grp, \mods{R}, \kalg, \Top, \LRS, [\cat C, \cat D]$, - The free category on a poset - $\Finset_+$, the category [Finset](Unsorted/Finset.md) of finite linearly ordered sets with objects of the form $[n] = \ts{0, \cdots, n}$. - $\Delta$ the [simplex category](simplex%20category) : finite *totally ordered* sets. - The groupoid associated to a group, general groupoids - $\Grpd, \Cat$ - $\Open(X)$ for $X\in \Top$ - $\smooth\Mfd$ - $\Sch$, $\Sch\slice S$ - Definition: **functor** - Examples: - $\pi_1: \Top \to \Grp$ - $\pi_*: \Top \to \gr_\ZZ \Grp$ - Definition: **Natural transformations** - Interpretation as morphisms in $[\cat C, \cat D]$. - Definition: **isomorphism** of objects vs **equivalence** of objects - Equivalence of categories: - Definition [essentially surjective](essentially%20surjective) - Definition: [full functor](full%20functor) - Definition: [faithful functor](faithful%20functor.md) - Definition: [equivalence of categories](equivalence%20of%20categories.md) - Philosophy: [isomorphism vs equivalence](isomorphism%20vs%20equivalence) - Definition: **adjunction** - Definition: [unit of an adjunction](unit%20of%20an%20adjunction) and counit - Examples: - [tensor-hom adjunction](tensor-hom%20adjunction) - [Cartesian closed category](Cartesian%20closed%20category.md) - [free-forgetful adjunction](free-forgetful%20adjunction) - [Frobenius reciprocity](Frobenius%20reciprocity) - [restriction and extension of scalars adjunction](restriction%20and%20extension%20of%20scalars%20adjunction) - Definition: [adjoint equivalence](adjoint%20equivalence) - [adjoint functor theorem](adjoint%20functor%20theorem.md) - Useful constructions - Initial and terminal objects - Universal properties - Quotient group or quotient topology - Tensor product of modules - Product and coproduct - Pullback and pushout - [slice category](slice%20category) and [under category](under%20category) - [cone category](cone%20category.md) - [Colimit](Colimit.md) and limit - As initial/terminal objects in cone category - [Unsorted/RAPC](Unsorted/RAPC.md) and [LAPC](LAPC) - [coequalizer](coequalizer.md) and equalizer - Example: [sheaf](Unsorted/sheaf.md) and [stacks MOC](Unsorted/stacks%20MOC.md) conditions, [descent](Unsorted/descent.md) - Definition: [Yoneda embedding](Yoneda%20embedding) - Definition: [representable functor](representable%20functor) - Philosophy: [functor of points](functor%20of%20points.md) # Further Topics - [reflective](reflective) and coreflective subcategories - [cocontinuous functor](cocontinuous%20functor) and continuity of $\Hom$. - [cocomplete category](cocomplete%20category) - [monad](monad.md), [algebra over a monad](algebra%20over%20a%20monad), and [Beck's monadicity theorem](Beck's%20monadicity%20theorem) - [monoid object](monoid%20object.md) - [monoidal category](monoidal%20category.md) - [cofinal functor](cofinal%20functor.md) - [filtered category](filtered%20category) and [filtered colimits](filtered%20colimits)