--- date: 2022-01-08 03:48 modification date: Monday 24th January 2022 20:20:09 title: Algebraic Number Theory aliases: ["Algebraic Number Theory", ANT] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - [2021 Class Field Theory Notes](Projects/2021%20Class%20Field%20Theory%20Notes.md) - [Unsorted/Galois theory](Unsorted/Galois%20theory.md) - [analytic class number formula](Unsorted/analytic%20class%20number%20formula.md) --- # MOC Algebraic Number Theory # References ## Texts - Marcus, *Number Fields* > Good source of computational problems - [**Local Fields**](http://link.springer.com/book/10.1007/978-1-4757-5673-9), J.-P. Serre. - [**Class Field Theory**](http://www.jmilne.org/math/CourseNotes/cft.html), J.S. Milne. - Algebraic number theory, J.W.S. Cassels and A. Frohlich. ([**errata**](http://wwwf.imperial.ac.uk/~buzzard/CFerrata.pdf)). - [**Multiplicative Number Theory**](http://link.springer.com/book/10.1007%2F978-1-4757-5927-3), H. Davenport. - [**Algebraic Number Theory**](http://www.jmilne.org/math/CourseNotes/ant.html), J.S. Milne. - [**Algebraic Number Theory**](http://link.springer.com/book/10.1007%2F978-1-4612-0853-2), S. Lang. - [**Introduction to Modern Theory**](http://link.springer.com/book/10.1007/3-540-27692-0),Yu. I. Manin and A. A. Panchishkin. - [**Algebraic Number Theory**](http://link.springer.com/book/10.1007/978-3-662-03983-0), J. Neukirch. > Good exposition. First 2.5 chapters contains most of the core material. Supplement with problems from Marcus - [**A Course in Arithmetic**](http://link.springer.com/book/10.1007/978-1-4684-9884-4), J.-P. Serre. - Szamuely, *Galois Groups and Fundamental Groups* ## Notes - See [Definitions](Projects/2022%20Advanced%20Qual%20Projects/Algebraic%20Number%20Theory/020%20Defiinitions.md) - [this MO question](http://mathoverflow.net/questions/13282/good-algebraic-number-theory-books) - [attachments/ant.pdf](attachments/ant.pdf) - [https://www.math.ucla.edu/~sharifi/algnum.pdf](https://www.math.ucla.edu/~sharifi/algnum.pdf) - [https://wstein.org/books/ant/ant.pdf](https://wstein.org/books/ant/ant.pdf) - [https://math.berkeley.edu/~apaulin/NumberTheory.pdf](https://math.berkeley.edu/~apaulin/NumberTheory.pdf) - [https://kskedlaya.org/cft/preface-1.html](https://kskedlaya.org/cft/preface-1.html) - [https://math.ucsd.edu/~kkedlaya/math204b/](https://math.ucsd.edu/~kkedlaya/math204b/) - Lots of advice: http://www.mathcs.emory.edu/~dzb/advice.html # Topics - What is [Gauss' lemma](Gauss'%20lemma.md)? - What is the [Galois correspondence](Unsorted/Galois%20correspondence.md)? - Number fields and [ring of integers](Unsorted/ring%20of%20integers.md); - [Splitting, ramification, inertia](Unsorted/ramification%20index.md) of prime ideals under finite extensions - [efd theorem](efd%20theorem.md) - Main statements of [Unsorted/class field theory](Unsorted/class%20field%20theory.md): - [Galois cohomology](Galois%20cohomology.md) - What is the [Hasse–Minkowski theorem](Hasse–Minkowski%20theorem)? - What is [Artin symbol](Unsorted/Artin%20symbol.md)? - What is the product formula for global fields? - The [ideal class group](Unsorted/class%20group.md) is finite. - The [unit group](Unsorted/unit%20group.md) is finitely generated. - [Dirichlet's unit theorem](Dirichlet's%20unit%20theorem.md) - Minkowski’s Lattice Point Theorem - The [Minkowski bound](Minkowski%20bound.md) - The [Unsorted/Kronecker-Weber theorem](Unsorted/Kronecker-Weber%20theorem.md) - [Hilbert 90](Hilbert%2090.md) - [Kummer theory](Kummer%20theory.md) - [Krasner's lemma](Krasner's%20lemma) - [Weak approximation](Unsorted/Weak%20approximation.md) - [Strong approximation](Strong%20approximation.md) - [Unsorted/Chebotarev density](Unsorted/Chebotarev%20density.md) ## Analytic NT - Dirichlet's theorem on primes in APs - The [Riemann-Zeta function](Unsorted/Riemann%20Zeta.md) - [Poisson summation](Poisson%20summation.md) - The [Fourier transform](Unsorted/fourier%20transform.md) - [Jacobi theta](Jacobi%20theta.md) - The [Gamma function](Gamma%20function.md) - The [analytic class number formula](analytic%20class%20number%20formula.md) # Courses ## MIT OCW in ANT A useful course in #NT/algebraic which seems to motivate a lot of results in #CA - [x] 1 [Absolute values and discrete valuations (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec1.pdf) - [x] 2 [Localization and Dedekind domains (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec2.pdf) - [x] 3 [Properties of Dedekind domains, ideal class groups, factorization of ideals (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec3.pdf) - [x] 4 [Étale algebras, norm and trace (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec4.pdf) - [x] 5 [Dedekind extensions (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec5.pdf) - [x] 6 [Ideal norms and the Dedekind-Kummer theorem (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec6.pdf) - [x] 7 [Galois extensions, Frobenius elements, and the Artin map (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec7.pdf) - [x] 8 [Complete fields and valuation rings (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec8.pdf) - [x] 9 [Local fields and Hensel's lemmas (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec9.pdf) - [x] 10 [Extensions of complete DVRs (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec10.pdf) - [x] 11 [Totally ramified extensions and Krasner's lemma (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec11.pdf) - [x] 12 [The different and the discriminant (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec12.pdf) - [x] 13 [Global fields and the product formula (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec13.pdf) - [x] 14 [The geometry of numbers (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec14.pdf) - [x] 15 [Dirichlet's unit theorem (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec15.pdf) - [x] 16 [Riemann's zeta function and the prime number theorem (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec16.pdf) - [x] 17 [The functional equation (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec17.pdf) - [x] 18 [Dirichlet _L_-functions and primes in arithmetic progressions (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec18.pdf) - [x] 19 [The analytic class number formula (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec19.pdf) - [x] 20 [The Kronecker-Weber theorem (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec20.pdf) - [x] 21 [Class field theory: ray class groups and ray class fields (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec21.pdf) - [x] 22 [The main theorems of global class field theory (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec22.pdf) - [x] 23 [Tate cohomology (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec23.pdf) - [x] 24 [Artin reciprocity in the unramified case (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec24.pdf) - [x] 25 [The ring of adeles, strong approximation (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec25.pdf) - [x] 26 [The idele group, profinite groups, infinite Galois theory (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec26.pdf) - [x] 27 [Local class field theory (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec27.pdf) - [x] 28 [Global class field theory and the Chebotarev density theorem (PDF)](https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec28.pdf) ## Kedlaya, Class Field Theory **Topics by date (with videos, references, notes, and boards):** See also [https://mediaspace.ucsd.edu/playlist/dedicated/1_mudvfogg/](https://mediaspace.ucsd.edu/playlist/dedicated/1_mudvfogg/) for all of the videos at once. - Oct 2 (F): Overview of the course ([https://math.ucsd.edu/~kkedlaya/math204a/algebraic_numbers.pdf](https://math.ucsd.edu/~kkedlaya/math204a/algebraic_numbers.pdf). - Oct 5 (M): Gaussian and Eisenstein integers ([https://brilliant.org/wiki/gaussian-integers/](https://brilliant.org/wiki/gaussian-integers/). - Oct 7 (W): Eisenstein and other quadratic integers ([https://miro.com/app/board/o9J_kkyj6FU=/)](https://miro.com/app/board/o9J_kkyj6FU=/)). - Oct 9 (F): Rings of integers in number fields ([https://brilliant.org/wiki/algebraic-number-theory/ > ring-of-integers](https://brilliant.org/wiki/algebraic-number-theory/#ring-of-integers). This lecture was not fully recorded due to a technical issue. - Oct 12 (M): Unique factorization of ideals ([https://miro.com/app/board/o9J_kkyj76U=/)](https://miro.com/app/board/o9J_kkyj76U=/)). References: Neukirch I.2, I.3. - Oct 14 (W): Discriminant of a basis, proof of unique factorization, fractional ideals ([https://miro.com/app/board/o9J_kkyhUik=/)](https://miro.com/app/board/o9J_kkyhUik=/)). References: Neukirch I.2, I.3. - Oct 16 (F): The lattice of a number field ([https://miro.com/app/board/o9J_kkyhUtM=/)](https://miro.com/app/board/o9J_kkyhUtM=/)). References: Neukirch I.5. - Oct 19 (M): Minkowski's theorem ([https://miro.com/app/board/o9J_kkyipr0=/)](https://miro.com/app/board/o9J_kkyipr0=/)). References: Neukirch I.4, I.5, I.6. - Oct 21 (W): The class number; the multiplicative lattice of a number field ([https://miro.com/app/board/o9J_kkyg1wg=/)](https://miro.com/app/board/o9J_kkyg1wg=/)). References: Neukirch I.5, I.6, I.7. - Oct 23 (F): The multiplicative lattice and the units theorem ([https://miro.com/app/board/o9J_kkyg1z0=/)](https://miro.com/app/board/o9J_kkyg1z0=/)). References: Neukirch I.6, I.7. - Oct 26 (M): Computational tools for algebraic number theory ([https://miro.com/app/board/o9J_kkyvON0=/)](https://miro.com/app/board/o9J_kkyvON0=/)). - Oct 28 (W): Extensions of Dedekind domains ([https://miro.com/app/board/o9J_kkyvOPA=/)](https://miro.com/app/board/o9J_kkyvOPA=/)). References: Neukirch I.8. - Oct 30 (F): continuation ([https://miro.com/app/board/o9J_kkyvOJM=/)](https://miro.com/app/board/o9J_kkyvOJM=/)). - Nov 2 (M): Cyclotomic fields ([https://miro.com/app/board/o9J_kkyvOK8=/)](https://miro.com/app/board/o9J_kkyvOK8=/)). References: Neukirch I.10, Marcus chapter 2. - Nov 4 (W): Galois groups, ramification, and splitting ([https://miro.com/app/board/o9J_kkyvOL8=/)](https://miro.com/app/board/o9J_kkyvOL8=/)). References: Neukirch I.9. - Nov 6 (F): continuation ([https://miro.com/app/board/o9J_kkysR9o=/)](https://miro.com/app/board/o9J_kkysR9o=/)). - Nov 9 (M): Localization ([https://miro.com/app/board/o9J_kkysO_k=/)](https://miro.com/app/board/o9J_kkysO_k=/)). References: Neukirch I.11. - No lecture on Wednesday, November 11. - Nov 13 (F): continuation ([https://miro.com/app/board/o9J_kkysOGs=/)](https://miro.com/app/board/o9J_kkysOGs=/)). - Nov 16 (M): Different and discriminant ([https://miro.com/app/board/o9J_kkysOAQ=/)](https://miro.com/app/board/o9J_kkysOAQ=/)). References: Neukirch III.2. - Nov 18 (W): continuation ([https://miro.com/app/board/o9J_kkysOB8=/)](https://miro.com/app/board/o9J_kkysOB8=/)). - Nov 20 (F): Structure of ramification groups ([https://miro.com/app/board/o9J_kkysOD4=/)](https://miro.com/app/board/o9J_kkysOD4=/)). References: Neukirch II.10. - Nov 23 (M): _p_-adic numbers ([https://miro.com/app/board/o9J_kkysOMg=/)](https://miro.com/app/board/o9J_kkysOMg=/)). References: Neukirch II.1. - Nov 25 (W): _p_-adic absolute value ([https://miro.com/app/board/o9J_kkysOO4=/)](https://miro.com/app/board/o9J_kkysOO4=/)). References: Neukirch II.2, II.4. - No lecture on Friday, November 27. - Nov 30 (M): Valuations ([https://miro.com/app/board/o9J_kkysOI8=/)](https://miro.com/app/board/o9J_kkysOI8=/)). References: Neukirch II.3. - Dec 2 (W): Extensions of valuations ([https://math.ucsd.edu/~kkedlaya/math204a/extension_valuations.pdf](https://math.ucsd.edu/~kkedlaya/math204a/extension_valuations.pdf). - Dec 4 (F): Hensel's lemma ([https://miro.com/app/board/o9J_kkysOL4=/)](https://miro.com/app/board/o9J_kkysOL4=/)). References: Neukirch II.4. - Dec 7 (M): Newton polygons ([https://miro.com/app/board/o9J_kkysOUQ=/)](https://miro.com/app/board/o9J_kkysOUQ=/)). References: Neukirch II.6. - Dec 9 (W): The Kronecker-Weber theorem: preview of Math 204B ([https://kskedlaya.org/cft/](https://kskedlaya.org/cft/), chapter 1. - Dec 11 (F): The local Kronecker-Weber theorem ([https://kskedlaya.org/cft/](https://kskedlaya.org/cft/), chapter 1.