# Useful Facts :::{.remark} Notational conventions: - Finite direct products: \( \bigoplus \) - Cohomological indexing: $C^i, \bd^i$ - Homological indexing: $C_i, \bd_i$ - Right-derived functors $R^iF$. - Come from left-exact functors - Require *injective* resolutions - Extend to the right: $0 \to F(A) \to F(B) \to F(C) \to L_1 F(A) \cdots$ - Left-derived functors $L_i F$. - Come from right-exact functors - Require *projective* resolutions - Extend to the left: $\cdots L_1F(C) \to F(A) \to F(B) \to F(C) \to 0$ - Colimits: - Examples: coproducts, direct limits, cokernels, initial objects, pushouts - Commute with left adjoints, i.e. $L(\colim F_i) = \colim LF_i$. - Examples of limits: - Products, inverse limits, kernels, terminal objects, pullbacks - Commute with right adjoints. i.e. $R(\colim F_i) = \colim RF_i$. ::: :::{.definition title="Acyclic"} A chain complex $C$ is **acyclic** if and only if $H_*(C) = 0$. ::: :::{.proposition title="Algebra Facts"} \envlist - Free $\implies$ projective $\implies$ flat $\implies$ torsionfree (for finitely-generated \(R\dash\)modules) - Over $R$ a PID: free $\iff$ torsionfree - On limits: - Limits commute with limits, and colimits commute with colimits. - Generally, limits do *not* commute with colimits. - In $\Set$, *filtered* colimits commute with *finite* limits. - In $\Ab$, direct colimits commute with finite limits. Inverse limits do not generally commute with finite colimits. - On adjoints: - Left adjoints are right-exact with left-derived functors. Right adjoints are left-exact with right-derived functors. - Left adjoints commute with colimits: $L( \colim F) = \colim (L\circ F)$ In $\Ab$, direct colimits commute with finite limits. Inverse limits do not generally commute with finite colimits. - Left adjoints are right-exact with left-derived functors. Right adjoints are left-exact with right-derived functors. - Left adjoints commute with colimits: $L( \colim F) = \colim (L\circ F)$ ::: ![](Projects/2022%20Advanced%20Qual%20Projects/Homological%20Algebra/Hom%20and%20Ext) ![](Projects/2022%20Advanced%20Qual%20Projects/Homological%20Algebra/Tensor%20and%20Tor) ## Universal Properties :::{.proposition title="Universal Property of the Quotient for Groups"} If $f: G\to K$ and $H\normal G$ (so that $G/H$ is defined), then the map $f$ descends to the quotient if and only if $H \subseteq \ker(f)$. ::: :::{.proposition title="Kernels as pullbacks and cokernels as pushouts"} The kernel $\ker f$ of a morphism $f$ can be characterized as a cartesian square, and the cokernel $\coker f$ as a cocartesian square: \begin{tikzcd} K \\ & {\ker f} && \textcolor{rgb,255:red,92;green,92;blue,214}{A} && 0 \\ \\ & 0 && \textcolor{rgb,255:red,92;green,92;blue,214}{B} && {\coker f} \\ &&&&&& C \arrow[dotted, from=2-6, to=4-6] \arrow[from=2-4, to=2-6] \arrow["f"', color={rgb,255:red,92;green,92;blue,214}, from=2-4, to=4-4] \arrow["0"', dotted, from=4-4, to=4-6] \arrow["\lrcorner"{anchor=center, pos=0.125, rotate=180}, draw=none, from=4-6, to=2-4] \arrow["{\exists !}"', dashed, from=4-6, to=5-7] \arrow[curve={height=12pt}, from=4-4, to=5-7] \arrow[curve={height=-12pt}, from=2-6, to=5-7] \arrow[dotted, from=2-2, to=2-4] \arrow[from=4-2, to=4-4] \arrow[dotted, from=2-2, to=4-2] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-2, to=4-4] \arrow[curve={height=-12pt}, from=1-1, to=2-4] \arrow[curve={height=12pt}, from=1-1, to=4-2] \arrow["{\exists !}"', dashed, from=1-1, to=2-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMywxLCJBIixbMjQwLDYwLDYwLDFdXSxbNSwxLCIwIl0sWzMsMywiQiIsWzI0MCw2MCw2MCwxXV0sWzUsMywiXFxjb2tlciBmIl0sWzYsNCwiQyJdLFsxLDEsIlxca2VyIGYiXSxbMSwzLCIwIl0sWzAsMCwiSyJdLFsxLDMsIiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFswLDFdLFswLDIsImYiLDIseyJjb2xvdXIiOlsyNDAsNjAsNjBdfSxbMjQwLDYwLDYwLDFdXSxbMiwzLCIwIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZG90dGVkIn19fV0sWzMsMCwiIiwwLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzMsNCwiXFxleGlzdHMgISIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsyLDQsIiIsMCx7ImN1cnZlIjoyfV0sWzEsNCwiIiwwLHsiY3VydmUiOi0yfV0sWzUsMCwiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZG90dGVkIn19fV0sWzYsMl0sWzUsNiwiIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZG90dGVkIn19fV0sWzUsMiwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzcsMCwiIiwxLHsiY3VydmUiOi0yfV0sWzcsNiwiIiwxLHsiY3VydmUiOjJ9XSxbNyw1LCJcXGV4aXN0cyAhIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) ::: ## Adjunctions :::{.definition title="Adjoints"} \todo[inline]{todo} ::: :::{.proposition title="Tensor-Hom Adjunction"} For a fixed $M\in \bimod{R}{S}$, there is an adjunction \[ \adjunction{ \wait \tensor_R M }{\Hom_S(M, \wait)}{ \modsright{R} } { \modsright{S} } ,\] so for $Y \in \bimod{A}{R}$ and $Z \in \bimod{B}{S}$, there is a (natural) isomorphism in \( \bimod{B}{A} \): \[ \Hom_S(X \tensor_R M, Z) \mapsvia{\sim} \Hom_R( X, \Hom_S(M, Z) ) .\] ::: :::{.proposition title="Forgetful Adjunctions"} Let \( F: \mods{R} \to \mods{\ZZ} \) be the forgetful functor, then there are adjunctions \[ \adjunction{F}{ \Hom_\ZZ(R, \wait)} {\mods{R} } {\mods{\ZZ} } \\ \\ \adjunction{R\tensor_\ZZ \wait }{F}{ \mods{\ZZ} }{ \mods{R} } .\] :::