## Preliminaries :::{.remark} > Reference: [@Zak17b] Where we are: - Yesterday: classical scissors congruence. - Today: $\SC \to \K$, i.e. how can we encode/detect scissors congruence in the language of $\K$ theory using assemblers? - Tomorrow: $\K\to \SC$: enriching motivic measures, generalizing assemblers to other cut-and-paste problems, towards a topological approach on a generalized Hilbert's 3rd problem. ::: :::{.definition title="Varieties"} Let $k$ be a field and $\Var\slice k$ be the category of **varieties** over $k$, i.e. reduced separated schemes of finite-type over the point $\spec k$. Two varieties $X, Y$ are isomorphic iff they are isomorphic in $\Sch\slice k$. **Write this as $X\cong Y$.** ::: :::{.warnings} Note that an morphism (and hence an isomorphism) of schemes is *not* a morphism of ringed spaces! Instead, they are defined as maps defined on an open affine cover which are induced by ring morphisms. ::: :::{.definition title="Stratified spaces"} A **stratification** of a topological space $X$ is the data of a partition $X=\biguplus_{i \in I} X_{i}$ into locally closed subsets over a poset $I$ such that for each $j \in I$ we have $$ \overline{X_{j}} \subset \biguplus_{i \leq j} X_{i} $$ The parts $X_{i}$ are called the **strata** of the stratification. ::: :::{.definition title="The Grothendieck ring of varieties"} Let $\Sp$ be a category of spectra -- in particular, we use symmetric spectra of simplicial sets, where we take stable model structure with levelwise cofibrations. Let $\mcv = \mcv_k$ to be the assembler of varieties over $k$ and closed inclusions (locally closed embeddings) and $\K(\mcv)$ its associated \(\K\dash\)theory spectrum. The group \[ \K_0(\mcv)\da \pi_0 \K(\mcv) \] has a ring structure and coincides with the **Grothendieck ring of varieties** as in Michael's talk (Talk 7). We'll write elements in this ring as $[X]$. ::: :::{.definition title="The annihilator of the Lefschetz motive"} The element $\LL \da [\AA^1\slice k]$ is the **Lefschetz motive**, the class of the affine line. This is an element of a ring, so define $$\Ann(\LL) \da \ker(\K_0(\mcv) \mapsvia{\cdot \LL} \K_0(\mcv) )$$ where $\cdot \LL$ is the map induced by the map of varieties $X\mapsto X\fiberprod{k}\AA^1\slice k$. ::: :::{.fact} Recall from commutative algebra that $\LL$ is a zero divisor $\iff \Ann(\LL) = 0$. ::: :::{.example title="Working with $\LL$"} If $\mce \to X$ is a rank $n$ vector bundle (Zariski-locally trivial fibration with fibers $\AA^n$) then \[ [\mce] = [X]\cdot [\AA^n] = [X]\cdot \LL^n .\] ::: :::{.definition title="Birational varieties"} $X, Y$ are **birational** iff there is an isomorphism $\varphi: U \iso V$ of dense open subschemes. **Write this as $X\birational Y$.** ::: :::{.remark} So in equations $\varphi$ is given by rational functions. How to think of these: "almost isomorphisms" which allow not just polynomial but rational functions, and are isomorphisms away from an exceptional set of e.g. poles or a branch locus Motivations: the minimal model program, which is a research program aimed at classifying varieties, and it turns out the studying them up to birational equivalence yields a good classification theory in which each birational isomorphism class admits a "minimal" representative. ::: :::{.definition title="Stably birational varieties"} $X, Y$ are **stably birational** iff $X\times \PP^N \birational Y\times \PP^M$ for some $N, M$. **Write this as $X\sbirational Y$.** ::: :::{.remark} Lots of interesting aspects of birational geometry, e.g. $h^0(X; \Omega_X), \pi_1(X^\an), \CH_0(X)$, are *stable* birational invariants -- see recent 2010s work of Claire Voisin. ::: :::{.definition title="Piecewise isomorphisms"} $X,Y$ are **piecewise isomorphic** if there are stratifications $X = \biguplus_{i\in I} X_i$ and $Y = \biguplus_{i\in I} Y_i$ with each $X_i \cong Y_i$. **Write this as $X\pwiso Y$.** ::: :::{.remark} Think of this as cut-and-paste equivalence for varieties. Note \[ X\pwiso Y \implies [X] = [Y] \in \K_0(\mcv) .\] If $X \birational Y$ and additionally $X\sm U \cong Y\sm V$, then $X \pwiso Y$ and $[X] = [Y]$. ![](attachments/Pasted%20image%2020220612045700.png) \begin{tikzpicture} \fontsize{22pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Obsidian/Projects/2022 Talbot/figures}{2022-06-15_22-38.pdf_tex} }; \end{tikzpicture} ::: ### Motivation Summary of big questions: :::{.question} When is $\K_0(\mcv) \to \K_0(\mcv)\invert{\LL}$ injective? I.e., when are equations in the localization still valid in the original ring? ::: :::{.question} What does equality in $\K_0(\mcv)$ mean geometrically? Given an equation in this ring, what geometric information is this telling you? ::: :::{.remark} There are two primary structural questions concerning $\K_0(\mcv)$ that we're looking at in this paper: ::: ### Question 1: Does $\K_0(\mcv_k)$ detect birationality or piecewise isomorphisms? :::{.fact} There is a filtration on $\K_0(\mcv_k)$ where $\gr_n$ is induced by the image of $$ \gr_n \K_0(\mcv) = \im\qty{ {\mathbb{Z}\adjoin{X \mid \operatorname{dim} X \leq n} \over \gens{ [X]=[Y]+[X \backslash Y]}} \overset{\psi_n}\longrightarrow \K_{0}(\mcv_k)} $$ ::: :::{.question title="Gromov"} If $U,V\injects X$ with $X\sm U \cong X\sm V$, how far are $U$ and $V$ from being birational? ::: :::{.question title="Larsen-Lunts"} Is it true that $[X] = [Y] \implies X\pwiso Y$? ::: :::{.answer} No! Borisov and Karzhemanov construct counterexamples for $k\injects \CC$, Inna shows that this fails for *convenient* fields. ::: :::{.conjecture} This is almost true, and the only obstructions come from $\Ann(\LL)$. ::: :::{.conjecture} For certain varieties, $[X] = [Y] \implies X,Y$ are **stably birational**. ::: :::{.remark} We'll encode these questions as questions about injectivity of $\psi_n$, so when $\ker \psi_n = 0$. Thus we can equivalently ask: when does $X\birational Y$ extend to $X\pwiso Y$? ::: ### Question 2: Is $\Ann(\LL)$ zero? If so, when? :::{.question} When is $\Ann(\LL)$ nonzero? ::: :::{.remark} Important for motivic measures, rationality questions. ::: :::{.answer} An answer due to Borisov: $\LL$ generally **is** a zero divisor, Borisov and Karzhemanov construct elements in $\Ann(\LL)$ and seemingly coincidentally constructs elements in $\ker \psi_n$. ::: :::{.proposition title="Borisov, Theorem 2.13"} The cut-and-paste conjecture of Larsen and Lunts fails. ::: :::{.proof title="?"} There are certain "mirror" varieties $X_W$ and $Y_W$ which are known to not be birational and for which stable birationality would imply birationality. An equality in the Grothendieck ring shows: \[ \left[X_{W}\right]\left(\LL^{2}-1\right)(\LL-1) \LL^{7} &= \left[Y_{W}\right]\left(\LL^{2}-1\right)(\LL-1) \LL^{7} \\ \implies [ \GL_2(\CC) \times \CC^6 \times X_W] &= [ \GL_2(\CC) \times \CC^6 \times Y_W] \\ \implies \GL_2(\CC) \times \CC^6 \times X_W &\pwiso \GL_2(\CC) \times \CC^6 \times Y_W \\ \implies X_{W} \times \GL_2(\mathbb{C}) \times \mathbb{C}^{6} &\birational Y_{W} \times \GL_2(\mathbb{C}) \times \mathbb{C}^{6} \\ \implies X_W &\sbirational Y_W \\ \implies X_W &\birational Y_W \qquad \contradiction .\] ::: :::{.question} How and why are $\Ann(\LL)$ and $\ker \psi_n$ related? This paper gives a precise answer. ::: ### Outline of Results :::{.slogan} Slogans for what's shown in this paper: - **Thm A:** Constructs a stable (filtered) homotopy type $\K(\mcv)$ where $\gr \K(\mcv)$ is simpler than $\gr \K_0(\mcv)$. - **Thm B**: The associated spectral sequence is an obstruction theory for birational automorphisms extending to piecewise isomorphisms. Thus this detects $\ker \psi_n$ for various $n$. - **Thm C:** Questions 1 and 2 are precisely linked: elements in $\Ann(\LL)$ yield elements in $\ker(\psi_n)$. - **Thm D**: Partial characterizations of $\Ann(\LL)$. - **Thm E**: Identification of $\K_0(\mcv)/\gens{\LL}$ in terms of stable birational geometry. One main conclusions is that elements in $\Ann(\LL)$ *always* produce elements in $\ker \psi_n$ ::: ## Theorems ### Thm A: There is a homotopical enrichment of $\K_0(\mcv)$ with a simple associated graded :::{.theorem title="A: There is a homotopical enrichment of $\K_0(\mcv)$ with a simple associated graded"} Let - $\mcv^{(n)}_k$ be the $n$th filtered assembler of $\mcv$ generated by varieties of dimension $d\leq n$. - $\Aut_k\, k(X)$ be the group of birational automorphisms of the variety $X$. - $B_n$ be the set of birational isomorphism classes of varieties of dimension $d=n$. There is a spectrum $\K(\mcv)$ such that $\K_0(\mcv) \da \pi_0 \K(\mcv)$ coincides with the Grothendieck group of varieties discussed previously, and $\mcv^{(n)}$ induces a filtration on the $\K(\mcv)$ such that $$ \gr_n \K(\mcv) = \bigvee_{[X]\in B_n} \Sigma^\infty_+ \B\Aut_k\, k(X), $$ with an associated spectral sequence $$E_{p, q}^1 = \bigvee_{[X]\in B_n} \qty{\pi_p \Sigma_+^\infty \B \Aut_k\, k(X) \oplus \pi_p \SS} \abuts \K_p(\mcv)$$ ::: :::{.remark} Note that the $p=0$ column converges to $\K_0(\mcv)$. ::: :::{.proof title="of theorem"} \envlist - Define $\mcv^{(n. n-1)} = \Var^{\dim = n}\slice k \union \ts{\emptyset}$, the varieties of dimension *exactly* $n$. - Zak17b Thm. 1.8: extract cofibers in the filtration to see the associated graded: \begin{tikzcd} {\K(\mcv)} \\ \vdots \\ {\K(\mcv^{(n)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{\K(\mcv^{(n-1)})} \\ {\K(\mcv^{(n-1)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{\K(\mcv^{(n-1, n-2)})} \\ \vdots \\ {\K(\mcv^{(2)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{\K(\mcv^{(2, 1)})} \\ {\K(\mcv^{(1)})} \\ \Fil && \Fil \\ {} \arrow[hook, from=7-1, to=6-1] \arrow[hook, from=6-1, to=5-1] \arrow[hook, from=5-1, to=4-1] \arrow[hook, from=4-1, to=3-1] \arrow[hook, from=3-1, to=2-1] \arrow[hook, from=2-1, to=1-1] \arrow[two heads, from=3-1, to=3-3] \arrow[two heads, from=4-1, to=4-3] \arrow[two heads, from=6-1, to=6-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTMsWzAsMiwiXFxLKFxcbWN2Xnsobil9KSJdLFswLDQsIlxcdmRvdHMiXSxbMCwzLCJcXEsoXFxtY3ZeeyhuLTEpfSkiXSxbMCw1LCJcXEsoXFxtY3ZeeygyKX0pIl0sWzAsNiwiXFxLKFxcbWN2XnsoMSl9KSJdLFswLDEsIlxcdmRvdHMiXSxbMCwwLCJcXEsoXFxtY3YpIl0sWzIsNSwiXFxLKFxcbWN2XnsoMiwgMSl9KSIsWzAsNjAsNjAsMV1dLFsyLDMsIlxcSyhcXG1jdl57KG4tMSwgbi0yKX0pIixbMCw2MCw2MCwxXV0sWzIsMiwiXFxLKFxcbWN2Xnsobi0xKX0pIixbMCw2MCw2MCwxXV0sWzAsOF0sWzAsNywiXFxGaWwiXSxbMiw3LCJcXEZpbCJdLFs0LDMsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMSwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMSwyLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsyLDAsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzAsNSwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNSw2LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFswLDksIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFsyLDgsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFszLDcsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dXQ==) - Finish by a magic computation: \[ \K(\mcv^{(n, n-1)}) &\homotopic \tilde \K(\mcv^{(n, n-1)}) \\ &\homotopic \K(\cat C) \\ &\homotopic \K\qty{\bigvee_{\alpha\in B_n} \cat{C}_{X_\alpha}} \\ &\homotopic\bigvee_{\alpha\in B_n}\K(\cat C_{X_\alpha}) \\ &\cong \bigvee_{\alpha\in B_n} \Sigma_+^\infty \B\Aut_k k(X_\alpha) \qquad \text{Zak17a}\\ &\da \bigvee_{\alpha\in B_n} \Sigma_+^\infty \B\Aut(\alpha). ,\] where - $\tilde \K(\mcv^{(n, n-1)})$: the full subassembler of irreducible varieties. - **Why the reduction works:** general theorem [@Zak17b Thm. 1.9] on subassemblers with enough disjoint open covers - $\cat C \leq \mcv^{(n, n-1)}$: subvarieties of some $X_\alpha$ representing some $\alpha$, as $\alpha$ ranges over $B_n$. - **Why the reduction works:** apply [@Zak17b Thm. 1.9] again - $\cat{C}_{X_\alpha}$ is the subassembler of only those varieties admitting a (unique) morphism to $X_\alpha$ for a fixed $\alpha$. - **Why the reduction works:** each nonempty variety admits a morphism to exactly one $X_\alpha$ representing some $\alpha$ -- otherwise, if $X\mapsto X_\alpha, X_\beta$ then $X_\alpha$ and $X_\beta$ are forced to be birational (the morphisms are inclusions of dense opens) implying $\alpha = \beta$ - $\Aut(\alpha) \da \Aut_k k(X)$ for any $X$ representing $\alpha\in B_n$. ::: ### Thm B: the spectral sequence measures $\ker \psi_n$ and how birational morphisms can fail to extend to piecewise isomorphisms :::{.theorem title="B:"} There exists nontrivial differentials $d_r$ from column 1 to column 0 in some page of $E^* \iff \Union_n \ker \psi_n\neq 0$ ($\psi_n$ has a nonzero kernel for some $n$), More precisely, $\varphi \in \Aut_k k(X)$ extends to a piecewise automorphism $\iff d_r[\varphi] = 0 \quad \forall r\geq 1$. ::: :::{.remark} Before proving, a look at this spectral sequence: \begin{tikzcd} \textcolor{rgb,255:red,92;green,214;blue,92}{q} \\ & {} & \vdots && \vdots \\ {\Fil_n} && {\K_0(\mcv^{(n, n-1)})} && {\K_1(\mcv^{(n, n-1)})} & \cdots \\ {\Fil_{n-1}} && {\K_0(\mcv^{(n-1, n-2)})} && {\K_1(\mcv^{(n-1, n-2)})} & \cdots \\ \vdots && \vdots && \vdots \\ {\Fil_0} && {\K_0(\mcv^{(1, 0)})} && {\K_1(\mcv^{(1, 0)})} & \cdots \\ & {} &&&& {} \\ && {\pi_0} && {\pi_1} && \textcolor{rgb,255:red,92;green,214;blue,92}{p} \arrow[no head, from=7-2, to=7-6] \arrow["{d_1}"', curve={height=6pt}, from=3-5, to=4-3] \arrow["{d_n}", curve={height=6pt}, from=3-5, to=6-3] \arrow[no head, from=2-2, to=7-2] \arrow[curve={height=6pt}, dashed, from=3-5, to=5-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMjQsWzIsMiwiXFxLXzAoXFxtY3ZeeyhuLCBuLTEpfSkiXSxbMiwzLCJcXEtfMChcXG1jdl57KG4tMSwgbi0yKX0pIl0sWzIsNCwiXFx2ZG90cyJdLFsyLDUsIlxcS18wKFxcbWN2XnsoMSwgMCl9KSJdLFs0LDIsIlxcS18xKFxcbWN2Xnsobiwgbi0xKX0pIl0sWzQsMywiXFxLXzEoXFxtY3ZeeyhuLTEsIG4tMil9KSJdLFs0LDUsIlxcS18xKFxcbWN2XnsoMSwgMCl9KSJdLFs0LDQsIlxcdmRvdHMiXSxbMiw3LCJcXHBpXzAiXSxbNCw3LCJcXHBpXzEiXSxbMCw1LCJcXEZpbF8wIl0sWzAsMywiXFxGaWxfe24tMX0iXSxbMCwyLCJcXEZpbF9uIl0sWzEsMV0sWzEsNl0sWzUsNl0sWzAsNCwiXFx2ZG90cyJdLFsyLDEsIlxcdmRvdHMiXSxbNCwxLCJcXHZkb3RzIl0sWzUsMiwiXFxjZG90cyJdLFs1LDMsIlxcY2RvdHMiXSxbNSw1LCJcXGNkb3RzIl0sWzYsNywicCIsWzEyMCw2MCw2MCwxXV0sWzAsMCwicSIsWzEyMCw2MCw2MCwxXV0sWzE0LDE1LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzQsMSwiZF8xIiwyLHsiY3VydmUiOjF9XSxbNCwzLCJkX24iLDAseyJjdXJ2ZSI6MX1dLFsxMywxNCwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs0LDIsIiIsMCx7ImN1cnZlIjoxLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) Compute \[ \K_p(\mcv^{(n, n-1)}) &\da \pi_p \K(\mcv^{(n, n-1)}) \\ &\homotopic \pi_p \bigvee_{\alpha\in B_n} \Sigma_+^\infty \B \Aut(\alpha) \\ &\cong \bigoplus_{\alpha\in B_n} \pi_p \Sigma_+^\infty \B \Aut(\alpha) ,\] and use $\pi_p \Sigma_+^\infty \BG$ is $\ZZ$ for $p=0$ and $G^\ab \oplus C_2$ for $p=2$ to identify \begin{tikzcd} \textcolor{rgb,255:red,92;green,214;blue,92}{q} \\ & {} & \vdots && \vdots \\ {\Fil_n} && {\bigoplus_{\alpha\in B_{n}} \mathbb{Z}} && {\bigoplus_{\alpha\in B_{n}} \Aut(\alpha)^\ab \oplus C_2} & \cdots \\ {\Fil_{n-1}} && {\bigoplus_{\alpha\in B_{n-1}} \mathbb{Z}} && {\bigoplus_{\alpha\in B_{n-1}} \Aut(\alpha)^\ab \oplus C_2} & \cdots \\ \vdots && \vdots && \vdots \\ {\Fil_0} && {\bigoplus_{\alpha\in B_0} \mathbb{Z}} && {\bigoplus_{\alpha\in B_{0}} \Aut(\alpha)^\ab \oplus C_2} & \cdots \\ & {} &&&& {} \\ && {\pi_0} && {\pi_1} && \textcolor{rgb,255:red,92;green,214;blue,92}{p} \arrow[no head, from=7-2, to=7-6] \arrow["{d_1}"', curve={height=12pt}, from=3-5, to=4-3] \arrow["{d_n}", curve={height=12pt}, from=3-5, to=6-3] \arrow[no head, from=2-2, to=7-2] \arrow[curve={height=12pt}, dashed, from=3-5, to=5-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMjQsWzIsMiwiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl97bn19IFxcbWF0aGJie1p9Il0sWzIsMywiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl97bi0xfX0gXFxtYXRoYmJ7Wn0iXSxbMiw0LCJcXHZkb3RzIl0sWzIsNSwiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl8wfSBcXG1hdGhiYntafSJdLFs0LDIsIlxcYmlnb3BsdXNfe1xcYWxwaGFcXGluIEJfe259fSBcXEF1dChcXGFscGhhKV5cXGFiIFxcb3BsdXMgQ18yIl0sWzQsMywiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl97bi0xfX0gXFxBdXQoXFxhbHBoYSleXFxhYiBcXG9wbHVzIENfMiJdLFs0LDUsIlxcYmlnb3BsdXNfe1xcYWxwaGFcXGluIEJfezB9fSBcXEF1dChcXGFscGhhKV5cXGFiIFxcb3BsdXMgQ18yIl0sWzQsNCwiXFx2ZG90cyJdLFsyLDcsIlxccGlfMCJdLFs0LDcsIlxccGlfMSJdLFswLDUsIlxcRmlsXzAiXSxbMCwzLCJcXEZpbF97bi0xfSJdLFswLDIsIlxcRmlsX24iXSxbMSwxXSxbMSw2XSxbNSw2XSxbMCw0LCJcXHZkb3RzIl0sWzIsMSwiXFx2ZG90cyJdLFs0LDEsIlxcdmRvdHMiXSxbNSwyLCJcXGNkb3RzIl0sWzUsMywiXFxjZG90cyJdLFs1LDUsIlxcY2RvdHMiXSxbNiw3LCJwIixbMTIwLDYwLDYwLDFdXSxbMCwwLCJxIixbMTIwLDYwLDYwLDFdXSxbMTQsMTUsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbNCwxLCJkXzEiLDIseyJjdXJ2ZSI6Mn1dLFs0LDMsImRfbiIsMCx7ImN1cnZlIjoyfV0sWzEzLDE0LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzQsMiwiIiwwLHsiY3VydmUiOjIsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) There is a boundary map $\bd$ coming from the connecting map in the LES in homotopy of a pair for the filtration. ::: :::{.lemma title="3.2: Let's try to understand $\K_1$!"} If $\varphi\in \Aut(\alpha)$ for $\alpha\in B_q$ is represented by $\varphi: U\to V$ then $$ \bd[\varphi] = [X\sm V] - [X\sm U] \quad \in \K_0(\mcv^{(q-1)}) $$ ::: :::{.proof title="of lemma 3.2"} \envlist - In general, $x\in \K_1(\mcv^{(q, q-1) })$ corresponds to data: $X$ a variety, a dense open subset embedded in two different ways, and the two possible complements, where $\ts{X_i}$ is a covering family over $X$ where $\Union_i X_i$ is a dense open subset of $X$, and the complemenets are of dimension at most $q-1$: \begin{tikzcd} &&&& {Y = X\sm \im (F)} \\ {\bigcup_i X_i} && X \\ &&&& {Z = X \sm \im(G)} \arrow[from=1-5, to=2-3] \arrow[from=3-5, to=2-3] \arrow["G"', shift right=2, from=2-1, to=2-3] \arrow["F", shift left=2, from=2-1, to=2-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwxLCJcXGJpZ2N1cF9pIFhfaSJdLFsyLDEsIlgiXSxbNCwwLCJZID0gWFxcc20gXFxpbSAoRikiXSxbNCwyLCJaID0gWCBcXHNtIFxcaW0oRykiXSxbMiwxXSxbMywxXSxbMCwxLCJHIiwyLHsib2Zmc2V0IjoyfV0sWzAsMSwiRiIsMCx7Im9mZnNldCI6LTJ9XV0=) - [@Zak17B Prop 3.13] shows that for this data, $$\bd[x] = [Z] - [Y] \in \K_0(\mcv^{(q-1)})$$ - For $\varphi$, we can represent it with the data: \begin{tikzcd} &&&& {Y = X\sm \im (\iota_U)} \\ U & {} & X \\ & V &&& {Z = X \sm \im(\iota_V\circ \varphi)} \arrow[from=1-5, to=2-3] \arrow[from=3-5, to=2-3] \arrow["{\iota_U}", shift left=2, from=2-1, to=2-3] \arrow["\varphi"', shift right=2, from=2-1, to=3-2] \arrow["{\iota_V}"', from=3-2, to=2-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwxLCJVIl0sWzIsMSwiWCJdLFs0LDAsIlkgPSBYXFxzbSBcXGltIChcXGlvdGFfVSkiXSxbNCwyLCJaID0gWCBcXHNtIFxcaW0oXFxpb3RhX1ZcXGNpcmMgXFxwaGkpIl0sWzEsMiwiViJdLFsxLDFdLFsyLDFdLFszLDFdLFswLDEsIlxcaW90YV9VIiwwLHsib2Zmc2V0IjotMn1dLFswLDQsIlxccGhpIiwyLHsib2Zmc2V0IjoyfV0sWzQsMSwiXFxpb3RhX1YiLDJdXQ==) - Then \[ \bd[\varphi] = [Z] - [Y] = [X\sm V] - [X\sm U] .\] ::: :::{.proof title="of theorem B"} $\implies$: suppose $\varphi$ extends to a piecewise automorphism. - Then $[X\sm U] = [X\sm V]\in \K_0(\mcv^{q-1})$ since $X\sm U\iso X\sm V$ by assumption - By lemma 3.2 above, $$\bd [\varphi] = [X\sm V] - [X\sm U] = 0$$ - [@Zak17b Lemma 2.1] shows that $d_1$ and higher $d_r$ are built using $\bd$, so $\bd(x) = 0 \implies d_r(x) = 0$ for all $r\geq 1$ (permanent boundary). $\impliedby$: suppose $d_r[\varphi] = 0$ for all $r\geq 1$. - Since $d_1[\varphi] = 0$ in particular, $$[X\sm U] = [X\sm V]\in \K_0(\mcv^{(q, q-1)})$$ since $d_1 = \bd \circ p$ for some map $p$. - An inductive argument allows one to write $X = U_r \uplus X_r' = V_r \uplus Y_r'$ where $$ U_r \pwiso V_r, \quad \dim X_r',\, \dim Y_r' < n-r, \quad \bd[\varphi] = [Y_r'] - [X_r'] $$ - Take $r=n$ to get $$ \dim X_n', \dim Y_n' < 0 \implies X_n' = Y_n' = \emptyset \quad\text{and}\quad X = U_n = V_n $$ - Then $$\bd[\varphi] = [\emptyset] - [\emptyset] = 0 \implies \varphi \text{ extends}.$$ ::: :::{.remark} A general remark on why $\bd[\varphi] =0$ implies it extends: - $\bd[\varphi]$ measures the failure of $\varphi$ to extend to a piecewise isomorphism: $$ \bd[\varphi] = 0 \implies [X\sm V] = [X\sm U] \implies \exists \psi: X\sm V \pwiso X\sm U $$ - If additionally $U\cong V$ then $\varphi \uplus \psi$ assemble to a piecewise automorphism of $X$. ::: ### Thm C: There is a direct link between $\Union_{n\geq 0} \ker \psi_n$ and $\Ann(\LL)$ :::{.theorem title="C"} Let $k$ be a **convenient field**, e.g. $\characteristic k = 0$. Then $\LL$ is a zero divisor in $\K_0(\mcv)$ $\implies \psi_n$ is not injective for some $n$. In other words, for $k$ convenient, $$\Ann(\LL)\neq 0 \implies \Union_n \ker \psi_n \neq \emptyset.$$ ::: :::{.proof title="of theorem C"} \envlist - Strategy: contrapositive. Suppose $\ker \psi_n = 0$ for all $n$. Write $\mcv \da \mcv_k$. - There is a cofiber sequence $$\K(\mcv) \injectsvia{\cdot \LL} \K(\mcv) \surjectsvia{\ell} \K(\mcv/\LL) $$ where $\mcv/\LL$ is a "cofiber assembler" [@Zak17b Def 1.11]. - Take the LES to identify $\ker(\cdot \LL)$ with $\coker(\ell)$: \begin{tikzcd} &&&& \vdots \\ \\ {\K_1(\mcv)} && \textcolor{rgb,255:red,92;green,92;blue,214}{\K_1(\mcv)} && \textcolor{rgb,255:red,92;green,92;blue,214}{\K_1(\mcv/\LL)} & {} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\K_0(\mcv)} && \textcolor{rgb,255:red,214;green,92;blue,92}{\K_0(\mcv)} && {\K_0(\mcv/\LL)} \arrow["{\cdot \LL}", from=3-1, to=3-3] \arrow["\ell", color={rgb,255:red,92;green,92;blue,214}, from=3-3, to=3-5] \arrow["\bd", from=3-5, to=5-1] \arrow["{\cdot \LL}", color={rgb,255:red,214;green,92;blue,92}, from=5-1, to=5-3] \arrow["\ell", from=5-3, to=5-5] \arrow[dashed, from=1-5, to=3-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCw0LCJcXEtfMChcXG1jdikiLFswLDYwLDYwLDFdXSxbMiw0LCJcXEtfMChcXG1jdikiLFswLDYwLDYwLDFdXSxbNCw0LCJcXEtfMChcXG1jdi9cXExMKSJdLFs0LDIsIlxcS18xKFxcbWN2L1xcTEwpIixbMjQwLDYwLDYwLDFdXSxbMiwyLCJcXEtfMShcXG1jdikiLFsyNDAsNjAsNjAsMV1dLFswLDIsIlxcS18xKFxcbWN2KSJdLFs0LDAsIlxcdmRvdHMiXSxbNSwyXSxbNSw0LCJcXGNkb3QgXFxMTCJdLFs0LDMsIlxcZWxsIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXX0sWzI0MCw2MCw2MCwxXV0sWzMsMCwiXFxiZCJdLFswLDEsIlxcY2RvdCBcXExMIiwwLHsiY29sb3VyIjpbMCw2MCw2MF19LFswLDYwLDYwLDFdXSxbMSwyLCJcXGVsbCJdLFs2LDUsIiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) - Reduce to analyzing $$\coker(E_{1, q}^\infty \to \tilde E_{1, q}^\infty )$$ where $\tilde E$ is an auxiliary spectral sequence. - Suppose all $\alpha$ extend, then all differentials from column 1 to column 0 are zero. - The map $E^r \to \tilde E^r$ is surjective for all $r$ on all components that survive to $E^\infty$. - All differentials out of these components are zero, so $E^\infty \surjects \tilde E^\infty$. - Then $\K_1(\mcv) \surjectsvia{\ell} \K_1(\mcv/\LL)$, making $0 = \coker(\ell) = \ker(\cdot \LL)$ so $\LL$ is not a zero divisor. ::: ### Thm D: Equality in $\K_0$ doesn't imply PW iso and elements in $\Ann(\LL)$ give rise to elements in $\Union \ker \psi_n$. :::{.theorem title="D"} Suppose that $k$ is a *convenient* field. If $\chi \in \Ann(\LL)$ then $\chi = [X]-[Y]$ where $$\left[X \times \mathbb{A}^{1}\right]=\left[Y \times \mathbb{A}^{1}\right] \quad \text{but } X \times \mathbb{A}^{1}\not \pwiso Y \times \mathbb{A}^{1} .$$ Thus elements in $\Ann(\LL)$ give rise to elements in $\Union \ker \psi_n$. ::: :::{.proof title="of theorem D"} \envlist - Let $\chi \in \ker(\cdot \LL)$ and pullback in the LES to $x \in \K(\mcv^{(n)}/\LL)$ where $n$ is minimal among filtration degrees: \begin{tikzcd} &&&& \vdots \\ \\ {\K_1(\mcv^{(n-1)})} && \textcolor{rgb,255:red,92;green,92;blue,214}{\K_1(\mcv^{(n)})} && \textcolor{rgb,255:red,92;green,92;blue,214}{\K_1(\mcv^{(n)}/\LL)\ni x} & {} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\K_0(\mcv^{(n-1)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{\K_0(\mcv^{(n)})} && {\K_0(\mcv^{(n)}/\LL)} \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\chi} && \textcolor{rgb,255:red,214;green,92;blue,92}{0} \arrow["{\cdot \LL}", from=3-1, to=3-3] \arrow["\ell", color={rgb,255:red,92;green,92;blue,214}, from=3-3, to=3-5] \arrow["\bd", from=3-5, to=5-1] \arrow["{\cdot \LL}", color={rgb,255:red,214;green,92;blue,92}, from=5-1, to=5-3] \arrow["\ell", from=5-3, to=5-5] \arrow[dashed, from=1-5, to=3-1] \arrow[draw={rgb,255:red,214;green,92;blue,92}, maps to, from=6-1, to=6-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsNCwiXFxLXzAoXFxtY3ZeeyhuLTEpfSkiLFswLDYwLDYwLDFdXSxbMiw0LCJcXEtfMChcXG1jdl57KG4pfSkiLFswLDYwLDYwLDFdXSxbNCw0LCJcXEtfMChcXG1jdl57KG4pfS9cXExMKSJdLFs0LDIsIlxcS18xKFxcbWN2Xnsobil9L1xcTEwpXFxuaSB4IixbMjQwLDYwLDYwLDFdXSxbMiwyLCJcXEtfMShcXG1jdl57KG4pfSkiLFsyNDAsNjAsNjAsMV1dLFswLDIsIlxcS18xKFxcbWN2Xnsobi0xKX0pIl0sWzQsMCwiXFx2ZG90cyJdLFs1LDJdLFswLDUsIlxcY2hpIixbMCw2MCw2MCwxXV0sWzIsNSwiMCIsWzAsNjAsNjAsMV1dLFs1LDQsIlxcY2RvdCBcXExMIl0sWzQsMywiXFxlbGwiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfSxbMjQwLDYwLDYwLDFdXSxbMywwLCJcXGJkIl0sWzAsMSwiXFxjZG90IFxcTEwiLDAseyJjb2xvdXIiOlswLDYwLDYwXX0sWzAsNjAsNjAsMV1dLFsxLDIsIlxcZWxsIl0sWzYsNSwiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzgsOSwiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=) - Write $\bd[x] = [X] - [Y]$ with $X,Y$ of minimal dimension. - By [@LS10 Cor 5], \[ [X\times \AA^1] = [Y\times \AA^1] &\implies \dim X + 1 = \dim Y + 1 \\ &\implies \dim X = \dim Y = d \] :::{.claim} $d$ is small: $d < n-1$. ::: Note that we're done if this claim is true: proceed by showing $X$ and $Y$ are not piecewise isomorphic by showing $\ker \psi_n$ is nontrivial by a diagram chase. :::{.proof title="of claim"} If $\LL([X] - [Y]) \in \ker ?$ then we can produce an element in $\ker \psi_n$. Diagram chase: \begin{tikzcd} && \textcolor{rgb,255:red,214;green,92;blue,92}{1} & {} & \textcolor{rgb,255:red,214;green,92;blue,92}{2} \\ && \textcolor{rgb,255:red,63;green,90;blue,243}{[X] - [Y] \not\in \im \bd^{(n-1)}} & {} & \textcolor{rgb,255:red,63;green,90;blue,243}{\LL([X]-[Y]) \neq 0} \\ {\K_1(\mcv^{(n-1)}/\LL)} && {\K_0(\mcv^{(n-2)}/\LL)} && {\K_0(\mcv^{(n-1)})} \\ &&&& {} & \textcolor{rgb,255:red,214;green,92;blue,92}{4} \\ {\K_1(\mcv^{(n)}/\LL)} & {} & {\K_0(\mcv^{(n-1)}/\LL)} && {\K_0(\mcv^{(n)})} \\ && \textcolor{rgb,255:red,63;green,90;blue,243}{i_*^{n-1}([X]- [Y])\in \im \bd^{(n)}} && \textcolor{rgb,255:red,63;green,90;blue,243}{0} \\ && \textcolor{rgb,255:red,214;green,92;blue,92}{3} \arrow["{\bd^{(n-1)}}", from=3-1, to=3-3] \arrow["{\bd^{(n)}}", from=5-1, to=5-3] \arrow[from=3-1, to=5-1] \arrow["{i_*^{n-1}}", from=3-3, to=5-3] \arrow["{\cdot \LL_{n-1}}", from=5-3, to=5-5] \arrow["{\cdot \LL_{n-2}}", from=3-3, to=3-5] \arrow["{i_*^{n-1}}", from=3-5, to=5-5] \arrow[color={rgb,255:red,63;green,90;blue,243}, dotted, maps to, from=6-3, to=6-5] \arrow[color={rgb,255:red,63;green,90;blue,243}, curve={height=-24pt}, dotted, maps to, from=2-3, to=6-3] \arrow[color={rgb,255:red,63;green,90;blue,243}, curve={height=-24pt}, dotted, maps to, from=2-5, to=6-5] \arrow[color={rgb,255:red,63;green,90;blue,243}, dashed, maps to, from=2-3, to=2-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTgsWzAsMiwiXFxLXzEoXFxtY3ZeeyhuLTEpfS9cXExMKSJdLFswLDQsIlxcS18xKFxcbWN2Xnsobil9L1xcTEwpIl0sWzIsMiwiXFxLXzAoXFxtY3ZeeyhuLTIpfS9cXExMKSJdLFs0LDIsIlxcS18wKFxcbWN2Xnsobi0xKX0pIl0sWzIsNCwiXFxLXzAoXFxtY3ZeeyhuLTEpfS9cXExMKSJdLFs0LDQsIlxcS18wKFxcbWN2Xnsobil9KSJdLFsxLDRdLFsyLDEsIltYXSAtIFtZXSBcXG5vdFxcaW4gXFxpbSBcXGJkXnsobi0xKX0iLFsyMzEsODgsNjAsMV1dLFs0LDEsIlxcTEwoW1hdLVtZXSkgXFxuZXEgMCIsWzIzMSw4OCw2MCwxXV0sWzIsNSwiaV8qXntuLTF9KFtYXS0gW1ldKVxcaW4gXFxpbSBcXGJkXnsobil9IixbMjMxLDg4LDYwLDFdXSxbNCw1LCIwIixbMjMxLDg4LDYwLDFdXSxbMiwwLCIxIixbMCw2MCw2MCwxXV0sWzQsMCwiMiIsWzAsNjAsNjAsMV1dLFsyLDYsIjMiLFswLDYwLDYwLDFdXSxbNSwzLCI0IixbMCw2MCw2MCwxXV0sWzQsM10sWzMsMF0sWzMsMV0sWzAsMiwiXFxiZF57KG4tMSl9Il0sWzEsNCwiXFxiZF57KG4pfSJdLFswLDFdLFsyLDQsImlfKl57bi0xfSJdLFs0LDUsIlxcY2RvdCBcXExMX3tuLTF9Il0sWzIsMywiXFxjZG90IFxcTExfe24tMn0iXSxbMyw1LCJpXypee24tMX0iXSxbOSwxMCwiIiwwLHsiY29sb3VyIjpbMjMxLDg4LDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9LCJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19XSxbNyw5LCIiLDAseyJjdXJ2ZSI6LTQsImNvbG91ciI6WzIzMSw4OCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifSwiYm9keSI6eyJuYW1lIjoiZG90dGVkIn19fV0sWzgsMTAsIiIsMix7ImN1cnZlIjotNCwiY29sb3VyIjpbMjMxLDg4LDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9LCJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19XSxbNyw4LCIiLDIseyJjb2xvdXIiOlsyMzEsODgsNjBdLCJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) 1. $[X] - [Y] \not \in \im(\bd)$ by the minimality of $n$ for $x$, noting $\bd [x] = [X] - [Y]$. 2. By exactness $\im \bd = \ker(\cdot \LL)$, so $\LL([X] - [Y]) \neq 0$. 3. By choice of $n$, $i_*(\LL([X] - [Y])) \in \im \bd = \ker(\cdot \LL)$ in bottom row, so $\LL([X] - [Y]) = 0$ in bottom-right. 4. Commutativity forces $\LL([X] - [Y]) \in \ker i_*^{n-1}$. Thus $\LL([X] - [Y])$ corresponds to an element in $\ker \psi_n$. (???) ::: ::: ### Thm E: $\K$-theory $\mod \LL$ models stable birational geometry :::{.theorem title="E"} There is an isomorphism $$ \K_0(\mcv_\CC)/\gens{\LL} \iso \ZZ[\SB_\CC] \qquad \in \zmod. $$ ::: :::{.remark} Proof: omitted. ::: ## Closing Remarks :::{.remark} What we've accomplished: establishing a precise relationship between questions 1 and 2. ::: :::{.question} Some currently open questions: - What fields are convenient? - What is the associated graded for the filtration induced by $\psi_n$? - Is there a characterization of $\Ann(\LL)$? - (Interesting) What is the kernel of the localization $\K_0(\mcv_k) \to \K_0(\mcv_k)\invert{\LL}$? - Does $\psi_n$ fail to be injective over *every* field $k$? ::: :::{.conjecture} A correction to Question 1 on $\ker \psi_n$: Let $X,Y$ be varieties over a convenient field with $[X] = [Y$. Then there exist varieties $X', Y'$ such that - $[X'] \neq [Y']$ - $[X'\times \AA^1] = [X']\LL = [Y']\LL = [Y'\times \AA^1]$ - $X\disjoint X'\times \AA^1 \pwiso Y\disjoint Y'\times \AA^1$ ::: :::{.remark} If the conjecture holds, when $X, Y$ are not birational but are *stably* birational, then the error of birationality is measured by a power of $\LL$. Possibly contingent upon conjecture: $$[X] \equiv [Y] \mod \LL \implies X \sbirational Y.$$ :::