\input{"preamble.tex"} \addbibresource{Talbot.bib} \let\Begin\begin \let\End\end \newcommand\wrapenv[1]{#1} \makeatletter \def\ScaleWidthIfNeeded{% \ifdim\Gin@nat@width>\linewidth \linewidth \else \Gin@nat@width \fi } \def\ScaleHeightIfNeeded{% \ifdim\Gin@nat@height>0.9\textheight 0.9\textheight \else \Gin@nat@width \fi } \makeatother \setkeys{Gin}{width=\ScaleWidthIfNeeded,height=\ScaleHeightIfNeeded,keepaspectratio}% \title{ \textbf{ Preview } \\ {\normalsize University of Georgia} \\ } \begin{document} \date{} \maketitle \begin{flushleft} \textit{D. Zack Garza} \\ \textit{University of Georgia} \\ \textit{\href{mailto: dzackgarza@gmail.com}{dzackgarza@gmail.com}} \\ {\tiny \textit{Last updated:} 2022-06-15 } \end{flushleft} \newpage % Note: addsec only in KomaScript \addsec{Table of Contents} \tableofcontents \newpage \hypertarget{preliminaries}{% \subsection{Preliminaries}\label{preliminaries}} \begin{remark} \begin{quote} Reference: \autocite{Zak17b} \end{quote} Where we are: \begin{itemize} \tightlist \item Yesterday: classical scissors congruence. \item Today: \(\mathrm{SC}\to {\mathsf{K}}\), i.e.~how can we encode/detect scissors congruence in the language of \({\mathsf{K}}\) theory using assemblers? \item Tomorrow: \({\mathsf{K}}\to \mathrm{SC}\): enriching motivic measures, generalizing assemblers to other cut-and-paste problems, towards a topological approach on a generalized Hilbert's 3rd problem. \end{itemize} \end{remark} \begin{definition}[Varieties] Let \(k\) be a field and \({\mathsf{Var}}_{/ {k}}\) be the category of \textbf{varieties} over \(k\), i.e.~reduced separated schemes of finite-type over the point \(\operatorname{Spec}k\). Two varieties \(X, Y\) are isomorphic iff they are isomorphic in \({\mathsf{Sch}}_{/ {k}}\). \textbf{Write this as \(X\cong Y\).} \end{definition} \begin{warnings} Note that an morphism (and hence an isomorphism) of schemes is \emph{not} a morphism of ringed spaces! Instead, they are defined as maps defined on an open affine cover which are induced by ring morphisms. \end{warnings} \begin{definition}[Stratified spaces] A \textbf{stratification} of a topological space \(X\) is the data of a partition \(X=\biguplus_{i \in I} X_{i}\) into locally closed subsets over a poset \(I\) such that for each \(j \in I\) we have \begin{align*} \overline{X_{j}} \subset \biguplus_{i \leq j} X_{i} \end{align*} The parts \(X_{i}\) are called the \textbf{strata} of the stratification. \end{definition} \begin{definition}[The Grothendieck ring of varieties] Let \({\mathsf{Sp}}\) be a category of spectra -- in particular, we use symmetric spectra of simplicial sets, where we take stable model structure with levelwise cofibrations. Let \({\mathcal{V}}= {\mathcal{V}}_k\) to be the assembler of varieties over \(k\) and closed inclusions (locally closed embeddings) and \({\mathsf{K}}({\mathcal{V}})\) its associated \({\mathsf{K}}{\hbox{-}}\)theory spectrum. The group \begin{align*} {\mathsf{K}}_0({\mathcal{V}})\coloneqq\pi_0 {\mathsf{K}}({\mathcal{V}}) \end{align*} has a ring structure and coincides with the \textbf{Grothendieck ring of varieties} as in Michael's talk (Talk 7). We'll write elements in this ring as \([X]\). \end{definition} \begin{definition}[The annihilator of the Lefschetz motive] The element \({\mathbb{L}}\coloneqq[{\mathbb{A}}^1_{/ {k}} ]\) is the \textbf{Lefschetz motive}, the class of the affine line. This is an element of a ring, so define \begin{align*}\operatorname{Ann}({\mathbb{L}}) \coloneqq\ker({\mathsf{K}}_0({\mathcal{V}}) \xrightarrow{\cdot {\mathbb{L}}} {\mathsf{K}}_0({\mathcal{V}}) )\end{align*} where \(\cdot {\mathbb{L}}\) is the map induced by the map of varieties \(X\mapsto X{ \underset{\scriptscriptstyle {k} }{\times} }{\mathbb{A}}^1_{/ {k}}\). \end{definition} \begin{fact} Recall from commutative algebra that \({\mathbb{L}}\) is a zero divisor \(\iff \operatorname{Ann}({\mathbb{L}}) = 0\). \end{fact} \begin{example}[Working with $\LL$] If \({\mathcal{E}}\to X\) is a rank \(n\) vector bundle (Zariski-locally trivial fibration with fibers \({\mathbb{A}}^n\)) then \begin{align*} [{\mathcal{E}}] = [X]\cdot [{\mathbb{A}}^n] = [X]\cdot {\mathbb{L}}^n .\end{align*} \end{example} \begin{definition}[Birational varieties] \(X, Y\) are \textbf{birational} iff there is an isomorphism \(\varphi: U { \, \xrightarrow{\sim}\, }V\) of dense open subschemes. \textbf{Write this as \(X\overset{\sim}{\dashrightarrow}Y\).} \end{definition} \begin{remark} So in equations \(\varphi\) is given by rational functions. How to think of these: ``almost isomorphisms'' which allow not just polynomial but rational functions, and are isomorphisms away from an exceptional set of e.g.~poles or a branch locus Motivations: the minimal model program, which is a research program aimed at classifying varieties, and it turns out the studying them up to birational equivalence yields a good classification theory in which each birational isomorphism class admits a ``minimal'' representative. \end{remark} \begin{definition}[Stably birational varieties] \(X, Y\) are \textbf{stably birational} iff \(X\times {\mathbb{P}}^N \overset{\sim}{\dashrightarrow}Y\times {\mathbb{P}}^M\) for some \(N, M\). \textbf{Write this as \(X\overset{\sim_{ {\operatorname{Stab}}} }{\dashrightarrow}Y\).} \end{definition} \begin{remark} Lots of interesting aspects of birational geometry, e.g.~\(h^0(X; \Omega_X), \pi_1(X^{\mathrm{an}}), {\operatorname{CH}}_0(X)\), are \emph{stable} birational invariants -- see recent 2010s work of Claire Voisin. \end{remark} \begin{definition}[Piecewise isomorphisms] \(X,Y\) are \textbf{piecewise isomorphic} if there are stratifications \(X = \biguplus_{i\in I} X_i\) and \(Y = \biguplus_{i\in I} Y_i\) with each \(X_i \cong Y_i\). \textbf{Write this as \(X\underset{\mathrm{pw}}{\cong}Y\).} \end{definition} \begin{remark} Think of this as cut-and-paste equivalence for varieties. Note \begin{align*} X\underset{\mathrm{pw}}{\cong}Y \implies [X] = [Y] \in {\mathsf{K}}_0({\mathcal{V}}) .\end{align*} If \(X \overset{\sim}{\dashrightarrow}Y\) and additionally \(X\setminus U \cong Y\setminus V\), then \(X \underset{\mathrm{pw}}{\cong}Y\) and \([X] = [Y]\). \includegraphics{attachments/Pasted image 20220612045700.png} \begin{figure} \centering \resizebox{\columnwidth}{!}{% \begin{tikzpicture} \fontsize{22pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Obsidian/Projects/2022 Talbot/figures}{2022-06-15_22-38.pdf_tex} }; \end{tikzpicture} } \end{figure} \end{remark} \hypertarget{motivation}{% \subsubsection{Motivation}\label{motivation}} Summary of big questions: \begin{question} When is \({\mathsf{K}}_0({\mathcal{V}}) \to {\mathsf{K}}_0({\mathcal{V}}){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\) injective? I.e., when are equations in the localization still valid in the original ring? \end{question} \begin{question} What does equality in \({\mathsf{K}}_0({\mathcal{V}})\) mean geometrically? Given an equation in this ring, what geometric information is this telling you? \end{question} \begin{remark} There are two primary structural questions concerning \({\mathsf{K}}_0({\mathcal{V}})\) that we're looking at in this paper: \end{remark} \hypertarget{question-1-does-mathsfk_0mathcalv_k-detect-birationality-or-piecewise-isomorphisms}{% \subsubsection{\texorpdfstring{Question 1: Does \({\mathsf{K}}_0({\mathcal{V}}_k)\) detect birationality or piecewise isomorphisms?}{Question 1: Does \{\textbackslash mathsf\{K\}\}\_0(\{\textbackslash mathcal\{V\}\}\_k) detect birationality or piecewise isomorphisms?}}\label{question-1-does-mathsfk_0mathcalv_k-detect-birationality-or-piecewise-isomorphisms}} \begin{fact} There is a filtration on \({\mathsf{K}}_0({\mathcal{V}}_k)\) where \({\mathsf{gr}\,}_n\) is induced by the image of \begin{align*} {\mathsf{gr}\,}_n {\mathsf{K}}_0({\mathcal{V}}) = \operatorname{im}\qty{ {\mathbb{Z} { \left[ \scriptstyle {X \mathrel{\Big|}\operatorname{dim} X \leq n} \right] } \over \left\langle{ [X]=[Y]+[X \backslash Y]}\right\rangle} \overset{\psi_n}\longrightarrow {\mathsf{K}}_{0}({\mathcal{V}}_k)} \end{align*} \end{fact} \begin{question}[Gromov] If \(U,V\hookrightarrow X\) with \(X\setminus U \cong X\setminus V\), how far are \(U\) and \(V\) from being birational? \end{question} \begin{question}[Larsen-Lunts] Is it true that \([X] = [Y] \implies X\underset{\mathrm{pw}}{\cong}Y\)? \end{question} \begin{answer} No! Borisov and Karzhemanov construct counterexamples for \(k\hookrightarrow{\mathbb{C}}\), Inna shows that this fails for \emph{convenient} fields. \end{answer} \begin{conjecture} This is almost true, and the only obstructions come from \(\operatorname{Ann}({\mathbb{L}})\). \end{conjecture} \begin{conjecture} For certain varieties, \([X] = [Y] \implies X,Y\) are \textbf{stably birational}. \end{conjecture} \begin{remark} We'll encode these questions as questions about injectivity of \(\psi_n\), so when \(\ker \psi_n = 0\). Thus we can equivalently ask: when does \(X\overset{\sim}{\dashrightarrow}Y\) extend to \(X\underset{\mathrm{pw}}{\cong}Y\)? \end{remark} \hypertarget{question-2-is-operatornameannmathbbl-zero-if-so-when}{% \subsubsection{\texorpdfstring{Question 2: Is \(\operatorname{Ann}({\mathbb{L}})\) zero? If so, when?}{Question 2: Is \textbackslash operatorname\{Ann\}(\{\textbackslash mathbb\{L\}\}) zero? If so, when?}}\label{question-2-is-operatornameannmathbbl-zero-if-so-when}} \begin{question} When is \(\operatorname{Ann}({\mathbb{L}})\) nonzero? \end{question} \begin{remark} Important for motivic measures, rationality questions. \end{remark} \begin{answer} An answer due to Borisov: \({\mathbb{L}}\) generally \textbf{is} a zero divisor, Borisov and Karzhemanov construct elements in \(\operatorname{Ann}({\mathbb{L}})\) and seemingly coincidentally constructs elements in \(\ker \psi_n\). \end{answer} \begin{proposition}[Borisov, Theorem 2.13] The cut-and-paste conjecture of Larsen and Lunts fails. \end{proposition} \begin{proof}[?] There are certain ``mirror'' varieties \(X_W\) and \(Y_W\) which are known to not be birational and for which stable birationality would imply birationality. An equality in the Grothendieck ring shows: \begin{align*} \left[X_{W}\right]\left({\mathbb{L}}^{2}-1\right)({\mathbb{L}}-1) {\mathbb{L}}^{7} &= \left[Y_{W}\right]\left({\mathbb{L}}^{2}-1\right)({\mathbb{L}}-1) {\mathbb{L}}^{7} \\ \implies [ \operatorname{GL}_2({\mathbb{C}}) \times {\mathbb{C}}^6 \times X_W] &= [ \operatorname{GL}_2({\mathbb{C}}) \times {\mathbb{C}}^6 \times Y_W] \\ \implies \operatorname{GL}_2({\mathbb{C}}) \times {\mathbb{C}}^6 \times X_W &\underset{\mathrm{pw}}{\cong}\operatorname{GL}_2({\mathbb{C}}) \times {\mathbb{C}}^6 \times Y_W \\ \implies X_{W} \times \operatorname{GL}_2(\mathbb{C}) \times \mathbb{C}^{6} &\overset{\sim}{\dashrightarrow}Y_{W} \times \operatorname{GL}_2(\mathbb{C}) \times \mathbb{C}^{6} \\ \implies X_W &\overset{\sim_{ {\operatorname{Stab}}} }{\dashrightarrow}Y_W \\ \implies X_W &\overset{\sim}{\dashrightarrow}Y_W \qquad \contradiction .\end{align*} \end{proof} \begin{question} How and why are \(\operatorname{Ann}({\mathbb{L}})\) and \(\ker \psi_n\) related? This paper gives a precise answer. \end{question} \hypertarget{outline-of-results}{% \subsubsection{Outline of Results}\label{outline-of-results}} \begin{slogan} Slogans for what's shown in this paper: \begin{itemize} \tightlist \item \textbf{Thm A:} Constructs a stable (filtered) homotopy type \({\mathsf{K}}({\mathcal{V}})\) where \({\mathsf{gr}\,}{\mathsf{K}}({\mathcal{V}})\) is simpler than \({\mathsf{gr}\,}{\mathsf{K}}_0({\mathcal{V}})\). \item \textbf{Thm B}: The associated spectral sequence is an obstruction theory for birational automorphisms extending to piecewise isomorphisms. Thus this detects \(\ker \psi_n\) for various \(n\). \item \textbf{Thm C:} Questions 1 and 2 are precisely linked: elements in \(\operatorname{Ann}({\mathbb{L}})\) yield elements in \(\ker(\psi_n)\). \item \textbf{Thm D}: Partial characterizations of \(\operatorname{Ann}({\mathbb{L}})\). \item \textbf{Thm E}: Identification of \({\mathsf{K}}_0({\mathcal{V}})/\left\langle{{\mathbb{L}}}\right\rangle\) in terms of stable birational geometry. \end{itemize} One main conclusions is that elements in \(\operatorname{Ann}({\mathbb{L}})\) \emph{always} produce elements in \(\ker \psi_n\) \end{slogan} \hypertarget{theorems}{% \subsection{Theorems}\label{theorems}} \hypertarget{thm-a-there-is-a-homotopical-enrichment-of-mathsfk_0mathcalv-with-a-simple-associated-graded}{% \subsubsection{\texorpdfstring{Thm A: There is a homotopical enrichment of \({\mathsf{K}}_0({\mathcal{V}})\) with a simple associated graded}{Thm A: There is a homotopical enrichment of \{\textbackslash mathsf\{K\}\}\_0(\{\textbackslash mathcal\{V\}\}) with a simple associated graded}}\label{thm-a-there-is-a-homotopical-enrichment-of-mathsfk_0mathcalv-with-a-simple-associated-graded}} \begin{theorem}[A: There is a homotopical enrichment of $\K_0(\mcv)$ with a simple associated graded] Let \begin{itemize} \tightlist \item \({\mathcal{V}}^{(n)}_k\) be the \(n\)th filtered assembler of \({\mathcal{V}}\) generated by varieties of dimension \(d\leq n\). \item \(\mathop{\mathrm{Aut}}_k\, k(X)\) be the group of birational automorphisms of the variety \(X\). \item \(B_n\) be the set of birational isomorphism classes of varieties of dimension \(d=n\). \end{itemize} There is a spectrum \({\mathsf{K}}({\mathcal{V}})\) such that \({\mathsf{K}}_0({\mathcal{V}}) \coloneqq\pi_0 {\mathsf{K}}({\mathcal{V}})\) coincides with the Grothendieck group of varieties discussed previously, and \({\mathcal{V}}^{(n)}\) induces a filtration on the \({\mathsf{K}}({\mathcal{V}})\) such that \begin{align*} {\mathsf{gr}\,}_n {\mathsf{K}}({\mathcal{V}}) = \bigvee_{[X]\in B_n} \Sigma^\infty_+ {\mathbf{B}}\mathop{\mathrm{Aut}}_k\, k(X), \end{align*} with an associated spectral sequence \begin{align*}E_{p, q}^1 = \bigvee_{[X]\in B_n} \qty{\pi_p \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}_k\, k(X) \oplus \pi_p {\mathbb{S}}} \Rightarrow{\mathsf{K}}_p({\mathcal{V}})\end{align*} \end{theorem} \begin{remark} Note that the \(p=0\) column converges to \({\mathsf{K}}_0({\mathcal{V}})\). \end{remark} \begin{proof}[of theorem] \envlist \begin{itemize} \tightlist \item Define \({\mathcal{V}}^{(n. n-1)} = {\mathsf{Var}}^{\dim = n}_{/ {k}} \cup\left\{{\emptyset}\right\}\), the varieties of dimension \emph{exactly} \(n\). \item Zak17b Thm. 1.8: extract cofibers in the filtration to see the associated graded: \end{itemize} \begin{center} \begin{tikzcd} {{\mathsf{K}}({\mathcal{V}})} \\ \vdots \\ {{\mathsf{K}}({\mathcal{V}}^{(n)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{{\mathsf{K}}({\mathcal{V}}^{(n-1)})} \\ {{\mathsf{K}}({\mathcal{V}}^{(n-1)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{{\mathsf{K}}({\mathcal{V}}^{(n-1, n-2)})} \\ \vdots \\ {{\mathsf{K}}({\mathcal{V}}^{(2)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{{\mathsf{K}}({\mathcal{V}}^{(2, 1)})} \\ {{\mathsf{K}}({\mathcal{V}}^{(1)})} \\ {\operatorname{Fil}}&& {\operatorname{Fil}}\\ {} \arrow[hook, from=7-1, to=6-1] \arrow[hook, from=6-1, to=5-1] \arrow[hook, from=5-1, to=4-1] \arrow[hook, from=4-1, to=3-1] \arrow[hook, from=3-1, to=2-1] \arrow[hook, from=2-1, to=1-1] \arrow[two heads, from=3-1, to=3-3] \arrow[two heads, from=4-1, to=4-3] \arrow[two heads, from=6-1, to=6-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTMsWzAsMiwiXFxLKFxcbWN2Xnsobil9KSJdLFswLDQsIlxcdmRvdHMiXSxbMCwzLCJcXEsoXFxtY3ZeeyhuLTEpfSkiXSxbMCw1LCJcXEsoXFxtY3ZeeygyKX0pIl0sWzAsNiwiXFxLKFxcbWN2XnsoMSl9KSJdLFswLDEsIlxcdmRvdHMiXSxbMCwwLCJcXEsoXFxtY3YpIl0sWzIsNSwiXFxLKFxcbWN2XnsoMiwgMSl9KSIsWzAsNjAsNjAsMV1dLFsyLDMsIlxcSyhcXG1jdl57KG4tMSwgbi0yKX0pIixbMCw2MCw2MCwxXV0sWzIsMiwiXFxLKFxcbWN2Xnsobi0xKX0pIixbMCw2MCw2MCwxXV0sWzAsOF0sWzAsNywiXFxGaWwiXSxbMiw3LCJcXEZpbCJdLFs0LDMsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMSwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMSwyLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsyLDAsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzAsNSwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNSw2LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFswLDksIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFsyLDgsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFszLDcsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dXQ==}{Link to Diagram} \end{quote} \begin{itemize} \tightlist \item Finish by a magic computation: \end{itemize} \begin{align*} {\mathsf{K}}({\mathcal{V}}^{(n, n-1)}) &\simeq\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)}) \\ &\simeq{\mathsf{K}}(\mathsf{C}) \\ &\simeq{\mathsf{K}}\qty{\bigvee_{\alpha\in B_n} \mathsf{C}_{X_\alpha}} \\ &\simeq\bigvee_{\alpha\in B_n}{\mathsf{K}}(\mathsf{C}_{X_\alpha}) \\ &\cong \bigvee_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}_k k(X_\alpha) \qquad \text{Zak17a}\\ &\coloneqq\bigvee_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}(\alpha). ,\end{align*} where \begin{itemize} \tightlist \item \(\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)})\): the full subassembler of irreducible varieties. \begin{itemize} \tightlist \item \textbf{Why the reduction works:} general theorem \autocite[ Thm. 1.9]{Zak17b} on subassemblers with enough disjoint open covers \end{itemize} \item \(\mathsf{C} \leq {\mathcal{V}}^{(n, n-1)}\): subvarieties of some \(X_\alpha\) representing some \(\alpha\), as \(\alpha\) ranges over \(B_n\). \begin{itemize} \tightlist \item \textbf{Why the reduction works:} apply \autocite[ Thm. 1.9]{Zak17b} again \end{itemize} \item \(\mathsf{C}_{X_\alpha}\) is the subassembler of only those varieties admitting a (unique) morphism to \(X_\alpha\) for a fixed \(\alpha\). \begin{itemize} \tightlist \item \textbf{Why the reduction works:} each nonempty variety admits a morphism to exactly one \(X_\alpha\) representing some \(\alpha\) -- otherwise, if \(X\mapsto X_\alpha, X_\beta\) then \(X_\alpha\) and \(X_\beta\) are forced to be birational (the morphisms are inclusions of dense opens) implying \(\alpha = \beta\) \end{itemize} \item \(\mathop{\mathrm{Aut}}(\alpha) \coloneqq\mathop{\mathrm{Aut}}_k k(X)\) for any \(X\) representing \(\alpha\in B_n\). \end{itemize} \end{proof} \hypertarget{thm-b-the-spectral-sequence-measures-ker-psi_n-and-how-birational-morphisms-can-fail-to-extend-to-piecewise-isomorphisms}{% \subsubsection{\texorpdfstring{Thm B: the spectral sequence measures \(\ker \psi_n\) and how birational morphisms can fail to extend to piecewise isomorphisms}{Thm B: the spectral sequence measures \textbackslash ker \textbackslash psi\_n and how birational morphisms can fail to extend to piecewise isomorphisms}}\label{thm-b-the-spectral-sequence-measures-ker-psi_n-and-how-birational-morphisms-can-fail-to-extend-to-piecewise-isomorphisms}} \begin{theorem}[B:] There exists nontrivial differentials \(d_r\) from column 1 to column 0 in some page of \(E^* \iff \displaystyle\bigcup_n \ker \psi_n\neq 0\) (\(\psi_n\) has a nonzero kernel for some \(n\)), More precisely, \(\varphi \in \mathop{\mathrm{Aut}}_k k(X)\) extends to a piecewise automorphism \(\iff d_r[\varphi] = 0 \quad \forall r\geq 1\). \end{theorem} \begin{remark} Before proving, a look at this spectral sequence: \begin{center} \begin{tikzcd} \textcolor{rgb,255:red,92;green,214;blue,92}{q} \\ & {} & \vdots && \vdots \\ {{\operatorname{Fil}}_n} && {{\mathsf{K}}_0({\mathcal{V}}^{(n, n-1)})} && {{\mathsf{K}}_1({\mathcal{V}}^{(n, n-1)})} & \cdots \\ {{\operatorname{Fil}}_{n-1}} && {{\mathsf{K}}_0({\mathcal{V}}^{(n-1, n-2)})} && {{\mathsf{K}}_1({\mathcal{V}}^{(n-1, n-2)})} & \cdots \\ \vdots && \vdots && \vdots \\ {{\operatorname{Fil}}_0} && {{\mathsf{K}}_0({\mathcal{V}}^{(1, 0)})} && {{\mathsf{K}}_1({\mathcal{V}}^{(1, 0)})} & \cdots \\ & {} &&&& {} \\ && {\pi_0} && {\pi_1} && \textcolor{rgb,255:red,92;green,214;blue,92}{p} \arrow[no head, from=7-2, to=7-6] \arrow["{d_1}"', curve={height=6pt}, from=3-5, to=4-3] \arrow["{d_n}", curve={height=6pt}, from=3-5, to=6-3] \arrow[no head, from=2-2, to=7-2] \arrow[curve={height=6pt}, dashed, from=3-5, to=5-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMjQsWzIsMiwiXFxLXzAoXFxtY3ZeeyhuLCBuLTEpfSkiXSxbMiwzLCJcXEtfMChcXG1jdl57KG4tMSwgbi0yKX0pIl0sWzIsNCwiXFx2ZG90cyJdLFsyLDUsIlxcS18wKFxcbWN2XnsoMSwgMCl9KSJdLFs0LDIsIlxcS18xKFxcbWN2Xnsobiwgbi0xKX0pIl0sWzQsMywiXFxLXzEoXFxtY3ZeeyhuLTEsIG4tMil9KSJdLFs0LDUsIlxcS18xKFxcbWN2XnsoMSwgMCl9KSJdLFs0LDQsIlxcdmRvdHMiXSxbMiw3LCJcXHBpXzAiXSxbNCw3LCJcXHBpXzEiXSxbMCw1LCJcXEZpbF8wIl0sWzAsMywiXFxGaWxfe24tMX0iXSxbMCwyLCJcXEZpbF9uIl0sWzEsMV0sWzEsNl0sWzUsNl0sWzAsNCwiXFx2ZG90cyJdLFsyLDEsIlxcdmRvdHMiXSxbNCwxLCJcXHZkb3RzIl0sWzUsMiwiXFxjZG90cyJdLFs1LDMsIlxcY2RvdHMiXSxbNSw1LCJcXGNkb3RzIl0sWzYsNywicCIsWzEyMCw2MCw2MCwxXV0sWzAsMCwicSIsWzEyMCw2MCw2MCwxXV0sWzE0LDE1LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzQsMSwiZF8xIiwyLHsiY3VydmUiOjF9XSxbNCwzLCJkX24iLDAseyJjdXJ2ZSI6MX1dLFsxMywxNCwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs0LDIsIiIsMCx7ImN1cnZlIjoxLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=}{Link to Diagram} \end{quote} Compute \begin{align*} {\mathsf{K}}_p({\mathcal{V}}^{(n, n-1)}) &\coloneqq\pi_p {\mathsf{K}}({\mathcal{V}}^{(n, n-1)}) \\ &\simeq\pi_p \bigvee_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}(\alpha) \\ &\cong \bigoplus_{\alpha\in B_n} \pi_p \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}(\alpha) ,\end{align*} and use \(\pi_p \Sigma_+^\infty {{\mathbf{B}}G}\) is \({\mathbb{Z}}\) for \(p=0\) and \(G^{\operatorname{ab}}\oplus C_2\) for \(p=2\) to identify \begin{center} \begin{tikzcd} \textcolor{rgb,255:red,92;green,214;blue,92}{q} \\ & {} & \vdots && \vdots \\ {{\operatorname{Fil}}_n} && {\bigoplus_{\alpha\in B_{n}} \mathbb{Z}} && {\bigoplus_{\alpha\in B_{n}} \mathop{\mathrm{Aut}}(\alpha)^{\operatorname{ab}}\oplus C_2} & \cdots \\ {{\operatorname{Fil}}_{n-1}} && {\bigoplus_{\alpha\in B_{n-1}} \mathbb{Z}} && {\bigoplus_{\alpha\in B_{n-1}} \mathop{\mathrm{Aut}}(\alpha)^{\operatorname{ab}}\oplus C_2} & \cdots \\ \vdots && \vdots && \vdots \\ {{\operatorname{Fil}}_0} && {\bigoplus_{\alpha\in B_0} \mathbb{Z}} && {\bigoplus_{\alpha\in B_{0}} \mathop{\mathrm{Aut}}(\alpha)^{\operatorname{ab}}\oplus C_2} & \cdots \\ & {} &&&& {} \\ && {\pi_0} && {\pi_1} && \textcolor{rgb,255:red,92;green,214;blue,92}{p} \arrow[no head, from=7-2, to=7-6] \arrow["{d_1}"', curve={height=12pt}, from=3-5, to=4-3] \arrow["{d_n}", curve={height=12pt}, from=3-5, to=6-3] \arrow[no head, from=2-2, to=7-2] \arrow[curve={height=12pt}, dashed, from=3-5, to=5-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMjQsWzIsMiwiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl97bn19IFxcbWF0aGJie1p9Il0sWzIsMywiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl97bi0xfX0gXFxtYXRoYmJ7Wn0iXSxbMiw0LCJcXHZkb3RzIl0sWzIsNSwiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl8wfSBcXG1hdGhiYntafSJdLFs0LDIsIlxcYmlnb3BsdXNfe1xcYWxwaGFcXGluIEJfe259fSBcXEF1dChcXGFscGhhKV5cXGFiIFxcb3BsdXMgQ18yIl0sWzQsMywiXFxiaWdvcGx1c197XFxhbHBoYVxcaW4gQl97bi0xfX0gXFxBdXQoXFxhbHBoYSleXFxhYiBcXG9wbHVzIENfMiJdLFs0LDUsIlxcYmlnb3BsdXNfe1xcYWxwaGFcXGluIEJfezB9fSBcXEF1dChcXGFscGhhKV5cXGFiIFxcb3BsdXMgQ18yIl0sWzQsNCwiXFx2ZG90cyJdLFsyLDcsIlxccGlfMCJdLFs0LDcsIlxccGlfMSJdLFswLDUsIlxcRmlsXzAiXSxbMCwzLCJcXEZpbF97bi0xfSJdLFswLDIsIlxcRmlsX24iXSxbMSwxXSxbMSw2XSxbNSw2XSxbMCw0LCJcXHZkb3RzIl0sWzIsMSwiXFx2ZG90cyJdLFs0LDEsIlxcdmRvdHMiXSxbNSwyLCJcXGNkb3RzIl0sWzUsMywiXFxjZG90cyJdLFs1LDUsIlxcY2RvdHMiXSxbNiw3LCJwIixbMTIwLDYwLDYwLDFdXSxbMCwwLCJxIixbMTIwLDYwLDYwLDFdXSxbMTQsMTUsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbNCwxLCJkXzEiLDIseyJjdXJ2ZSI6Mn1dLFs0LDMsImRfbiIsMCx7ImN1cnZlIjoyfV0sWzEzLDE0LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzQsMiwiIiwwLHsiY3VydmUiOjIsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==}{Link to Diagram} \end{quote} There is a boundary map \({{\partial}}\) coming from the connecting map in the LES in homotopy of a pair for the filtration. \end{remark} \begin{lemma}[3.2: Let's try to understand $\K_1$!] If \(\varphi\in \mathop{\mathrm{Aut}}(\alpha)\) for \(\alpha\in B_q\) is represented by \(\varphi: U\to V\) then \begin{align*} {{\partial}}[\varphi] = [X\setminus V] - [X\setminus U] \quad \in {\mathsf{K}}_0({\mathcal{V}}^{(q-1)}) \end{align*} \end{lemma} \begin{proof}[of lemma 3.2] \envlist \begin{itemize} \tightlist \item In general, \(x\in {\mathsf{K}}_1({\mathcal{V}}^{(q, q-1) })\) corresponds to data: \(X\) a variety, a dense open subset embedded in two different ways, and the two possible complements, where \(\left\{{X_i}\right\}\) is a covering family over \(X\) where \(\displaystyle\bigcup_i X_i\) is a dense open subset of \(X\), and the complemenets are of dimension at most \(q-1\): \end{itemize} \begin{center} \begin{tikzcd} &&&& {Y = X\setminus\operatorname{im}(F)} \\ {\bigcup_i X_i} && X \\ &&&& {Z = X \setminus\operatorname{im}(G)} \arrow[from=1-5, to=2-3] \arrow[from=3-5, to=2-3] \arrow["G"', shift right=2, from=2-1, to=2-3] \arrow["F", shift left=2, from=2-1, to=2-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNCxbMCwxLCJcXGJpZ2N1cF9pIFhfaSJdLFsyLDEsIlgiXSxbNCwwLCJZID0gWFxcc20gXFxpbSAoRikiXSxbNCwyLCJaID0gWCBcXHNtIFxcaW0oRykiXSxbMiwxXSxbMywxXSxbMCwxLCJHIiwyLHsib2Zmc2V0IjoyfV0sWzAsMSwiRiIsMCx7Im9mZnNldCI6LTJ9XV0=}{Link to Diagram} \end{quote} \begin{itemize} \tightlist \item \autocite[ Prop 3.13]{Zak17B} shows that for this data, \begin{align*}{{\partial}}[x] = [Z] - [Y] \in {\mathsf{K}}_0({\mathcal{V}}^{(q-1)})\end{align*} \item For \(\varphi\), we can represent it with the data: \end{itemize} \begin{center} \begin{tikzcd} &&&& {Y = X\setminus\operatorname{im}(\iota_U)} \\ U & {} & X \\ & V &&& {Z = X \setminus\operatorname{im}(\iota_V\circ \varphi)} \arrow[from=1-5, to=2-3] \arrow[from=3-5, to=2-3] \arrow["{\iota_U}", shift left=2, from=2-1, to=2-3] \arrow["\varphi"', shift right=2, from=2-1, to=3-2] \arrow["{\iota_V}"', from=3-2, to=2-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNixbMCwxLCJVIl0sWzIsMSwiWCJdLFs0LDAsIlkgPSBYXFxzbSBcXGltIChcXGlvdGFfVSkiXSxbNCwyLCJaID0gWCBcXHNtIFxcaW0oXFxpb3RhX1ZcXGNpcmMgXFxwaGkpIl0sWzEsMiwiViJdLFsxLDFdLFsyLDFdLFszLDFdLFswLDEsIlxcaW90YV9VIiwwLHsib2Zmc2V0IjotMn1dLFswLDQsIlxccGhpIiwyLHsib2Zmc2V0IjoyfV0sWzQsMSwiXFxpb3RhX1YiLDJdXQ==}{Link to Diagram} \end{quote} \begin{itemize} \tightlist \item Then \begin{align*} {{\partial}}[\varphi] = [Z] - [Y] = [X\setminus V] - [X\setminus U] .\end{align*} \end{itemize} \end{proof} \begin{proof}[of theorem B] \(\implies\): suppose \(\varphi\) extends to a piecewise automorphism. \begin{itemize} \tightlist \item Then \([X\setminus U] = [X\setminus V]\in {\mathsf{K}}_0({\mathcal{V}}^{q-1})\) since \(X\setminus U { \, \xrightarrow{\sim}\, }X\setminus V\) by assumption \item By lemma 3.2 above, \begin{align*}{{\partial}}[\varphi] = [X\setminus V] - [X\setminus U] = 0\end{align*} \item \autocite[ Lemma 2.1]{Zak17b} shows that \(d_1\) and higher \(d_r\) are built using \({{\partial}}\), so \({{\partial}}(x) = 0 \implies d_r(x) = 0\) for all \(r\geq 1\) (permanent boundary). \end{itemize} \(\impliedby\): suppose \(d_r[\varphi] = 0\) for all \(r\geq 1\). \begin{itemize} \tightlist \item Since \(d_1[\varphi] = 0\) in particular, \begin{align*}[X\setminus U] = [X\setminus V]\in {\mathsf{K}}_0({\mathcal{V}}^{(q, q-1)})\end{align*} since \(d_1 = {{\partial}}\circ p\) for some map \(p\). \item An inductive argument allows one to write \(X = U_r \uplus X_r' = V_r \uplus Y_r'\) where \begin{align*} U_r \underset{\mathrm{pw}}{\cong}V_r, \quad \dim X_r',\, \dim Y_r' < n-r, \quad {{\partial}}[\varphi] = [Y_r'] - [X_r'] \end{align*} \item Take \(r=n\) to get \begin{align*} \dim X_n', \dim Y_n' < 0 \implies X_n' = Y_n' = \emptyset \quad\text{and}\quad X = U_n = V_n \end{align*} \item Then \begin{align*}{{\partial}}[\varphi] = [\emptyset] - [\emptyset] = 0 \implies \varphi \text{ extends}.\end{align*} \end{itemize} \end{proof} \begin{remark} A general remark on why \({{\partial}}[\varphi] =0\) implies it extends: \begin{itemize} \tightlist \item \({{\partial}}[\varphi]\) measures the failure of \(\varphi\) to extend to a piecewise isomorphism: \begin{align*} {{\partial}}[\varphi] = 0 \implies [X\setminus V] = [X\setminus U] \implies \exists \psi: X\setminus V \underset{\mathrm{pw}}{\cong}X\setminus U \end{align*} \item If additionally \(U\cong V\) then \(\varphi \uplus \psi\) assemble to a piecewise automorphism of \(X\). \end{itemize} \end{remark} \hypertarget{thm-c-there-is-a-direct-link-between-displaystylebigcup_ngeq-0-ker-psi_n-and-operatornameannmathbbl}{% \subsubsection{\texorpdfstring{Thm C: There is a direct link between \(\displaystyle\bigcup_{n\geq 0} \ker \psi_n\) and \(\operatorname{Ann}({\mathbb{L}})\)}{Thm C: There is a direct link between \textbackslash displaystyle\textbackslash bigcup\_\{n\textbackslash geq 0\} \textbackslash ker \textbackslash psi\_n and \textbackslash operatorname\{Ann\}(\{\textbackslash mathbb\{L\}\})}}\label{thm-c-there-is-a-direct-link-between-displaystylebigcup_ngeq-0-ker-psi_n-and-operatornameannmathbbl}} \begin{theorem}[C] Let \(k\) be a \textbf{convenient field}, e.g.~\(\operatorname{ch}k = 0\). Then \({\mathbb{L}}\) is a zero divisor in \({\mathsf{K}}_0({\mathcal{V}})\) \(\implies \psi_n\) is not injective for some \(n\). In other words, for \(k\) convenient, \begin{align*}\operatorname{Ann}({\mathbb{L}})\neq 0 \implies \displaystyle\bigcup_n \ker \psi_n \neq \emptyset.\end{align*} \end{theorem} \begin{proof}[of theorem C] \envlist \begin{itemize} \tightlist \item Strategy: contrapositive. Suppose \(\ker \psi_n = 0\) for all \(n\). Write \({\mathcal{V}}\coloneqq{\mathcal{V}}_k\). \item There is a cofiber sequence \begin{align*}{\mathsf{K}}({\mathcal{V}}) \xhookrightarrow{\cdot {\mathbb{L}}} {\mathsf{K}}({\mathcal{V}}) \xrightarrow[]{\ell} { \mathrel{\mkern-16mu}\rightarrow }\, {\mathsf{K}}({\mathcal{V}}/{\mathbb{L}}) \end{align*} where \({\mathcal{V}}/{\mathbb{L}}\) is a ``cofiber assembler'' \autocite[ Def 1.11]{Zak17b}. \item Take the LES to identify \(\ker(\cdot {\mathbb{L}})\) with \(\operatorname{coker}(\ell)\): \end{itemize} \begin{center} \begin{tikzcd} &&&& \vdots \\ \\ {{\mathsf{K}}_1({\mathcal{V}})} && \textcolor{rgb,255:red,92;green,92;blue,214}{{\mathsf{K}}_1({\mathcal{V}})} && \textcolor{rgb,255:red,92;green,92;blue,214}{{\mathsf{K}}_1({\mathcal{V}}/{\mathbb{L}})} & {} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{{\mathsf{K}}_0({\mathcal{V}})} && \textcolor{rgb,255:red,214;green,92;blue,92}{{\mathsf{K}}_0({\mathcal{V}})} && {{\mathsf{K}}_0({\mathcal{V}}/{\mathbb{L}})} \arrow["{\cdot {\mathbb{L}}}", from=3-1, to=3-3] \arrow["\ell", color={rgb,255:red,92;green,92;blue,214}, from=3-3, to=3-5] \arrow["{{\partial}}", from=3-5, to=5-1] \arrow["{\cdot {\mathbb{L}}}", color={rgb,255:red,214;green,92;blue,92}, from=5-1, to=5-3] \arrow["\ell", from=5-3, to=5-5] \arrow[dashed, from=1-5, to=3-1] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsOCxbMCw0LCJcXEtfMChcXG1jdikiLFswLDYwLDYwLDFdXSxbMiw0LCJcXEtfMChcXG1jdikiLFswLDYwLDYwLDFdXSxbNCw0LCJcXEtfMChcXG1jdi9cXExMKSJdLFs0LDIsIlxcS18xKFxcbWN2L1xcTEwpIixbMjQwLDYwLDYwLDFdXSxbMiwyLCJcXEtfMShcXG1jdikiLFsyNDAsNjAsNjAsMV1dLFswLDIsIlxcS18xKFxcbWN2KSJdLFs0LDAsIlxcdmRvdHMiXSxbNSwyXSxbNSw0LCJcXGNkb3QgXFxMTCJdLFs0LDMsIlxcZWxsIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXX0sWzI0MCw2MCw2MCwxXV0sWzMsMCwiXFxiZCJdLFswLDEsIlxcY2RvdCBcXExMIiwwLHsiY29sb3VyIjpbMCw2MCw2MF19LFswLDYwLDYwLDFdXSxbMSwyLCJcXGVsbCJdLFs2LDUsIiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==}{Link to Diagram} \end{quote} \begin{itemize} \item Reduce to analyzing \begin{align*}\operatorname{coker}(E_{1, q}^\infty \to \tilde E_{1, q}^\infty )\end{align*} where \(\tilde E\) is an auxiliary spectral sequence. \item Suppose all \(\alpha\) extend, then all differentials from column 1 to column 0 are zero. \item The map \(E^r \to \tilde E^r\) is surjective for all \(r\) on all components that survive to \(E^\infty\). \item All differentials out of these components are zero, so \(E^\infty \twoheadrightarrow\tilde E^\infty\). \item Then \({\mathsf{K}}_1({\mathcal{V}}) \xrightarrow[]{\ell} { \mathrel{\mkern-16mu}\rightarrow }\, {\mathsf{K}}_1({\mathcal{V}}/{\mathbb{L}})\), making \(0 = \operatorname{coker}(\ell) = \ker(\cdot {\mathbb{L}})\) so \({\mathbb{L}}\) is not a zero divisor. \end{itemize} \end{proof} \hypertarget{thm-d-equality-in-mathsfk_0-doesnt-imply-pw-iso-and-elements-in-operatornameannmathbbl-give-rise-to-elements-in-displaystylebigcupker-psi_n.}{% \subsubsection{\texorpdfstring{Thm D: Equality in \({\mathsf{K}}_0\) doesn't imply PW iso and elements in \(\operatorname{Ann}({\mathbb{L}})\) give rise to elements in \(\displaystyle\bigcup\ker \psi_n\).}{Thm D: Equality in \{\textbackslash mathsf\{K\}\}\_0 doesn't imply PW iso and elements in \textbackslash operatorname\{Ann\}(\{\textbackslash mathbb\{L\}\}) give rise to elements in \textbackslash displaystyle\textbackslash bigcup\textbackslash ker \textbackslash psi\_n.}}\label{thm-d-equality-in-mathsfk_0-doesnt-imply-pw-iso-and-elements-in-operatornameannmathbbl-give-rise-to-elements-in-displaystylebigcupker-psi_n.}} \begin{theorem}[D] Suppose that \(k\) is a \emph{convenient} field. If \(\chi \in \operatorname{Ann}({\mathbb{L}})\) then \(\chi = [X]-[Y]\) where \begin{align*}\left[X \times \mathbb{A}^{1}\right]=\left[Y \times \mathbb{A}^{1}\right] \quad \text{but } X \times \mathbb{A}^{1}\not \underset{\mathrm{pw}}{\cong}Y \times \mathbb{A}^{1} .\end{align*} Thus elements in \(\operatorname{Ann}({\mathbb{L}})\) give rise to elements in \(\displaystyle\bigcup\ker \psi_n\). \end{theorem} \begin{proof}[of theorem D] \envlist \begin{itemize} \tightlist \item Let \(\chi \in \ker(\cdot {\mathbb{L}})\) and pullback in the LES to \(x \in {\mathsf{K}}({\mathcal{V}}^{(n)}/{\mathbb{L}})\) where \(n\) is minimal among filtration degrees: \end{itemize} \begin{center} \begin{tikzcd} &&&& \vdots \\ \\ {{\mathsf{K}}_1({\mathcal{V}}^{(n-1)})} && \textcolor{rgb,255:red,92;green,92;blue,214}{{\mathsf{K}}_1({\mathcal{V}}^{(n)})} && \textcolor{rgb,255:red,92;green,92;blue,214}{{\mathsf{K}}_1({\mathcal{V}}^{(n)}/{\mathbb{L}})\ni x} & {} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{{\mathsf{K}}_0({\mathcal{V}}^{(n-1)})} && \textcolor{rgb,255:red,214;green,92;blue,92}{{\mathsf{K}}_0({\mathcal{V}}^{(n)})} && {{\mathsf{K}}_0({\mathcal{V}}^{(n)}/{\mathbb{L}})} \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\chi} && \textcolor{rgb,255:red,214;green,92;blue,92}{0} \arrow["{\cdot {\mathbb{L}}}", from=3-1, to=3-3] \arrow["\ell", color={rgb,255:red,92;green,92;blue,214}, from=3-3, to=3-5] \arrow["{{\partial}}", from=3-5, to=5-1] \arrow["{\cdot {\mathbb{L}}}", color={rgb,255:red,214;green,92;blue,92}, from=5-1, to=5-3] \arrow["\ell", from=5-3, to=5-5] \arrow[dashed, from=1-5, to=3-1] \arrow[draw={rgb,255:red,214;green,92;blue,92}, maps to, from=6-1, to=6-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTAsWzAsNCwiXFxLXzAoXFxtY3ZeeyhuLTEpfSkiLFswLDYwLDYwLDFdXSxbMiw0LCJcXEtfMChcXG1jdl57KG4pfSkiLFswLDYwLDYwLDFdXSxbNCw0LCJcXEtfMChcXG1jdl57KG4pfS9cXExMKSJdLFs0LDIsIlxcS18xKFxcbWN2Xnsobil9L1xcTEwpXFxuaSB4IixbMjQwLDYwLDYwLDFdXSxbMiwyLCJcXEtfMShcXG1jdl57KG4pfSkiLFsyNDAsNjAsNjAsMV1dLFswLDIsIlxcS18xKFxcbWN2Xnsobi0xKX0pIl0sWzQsMCwiXFx2ZG90cyJdLFs1LDJdLFswLDUsIlxcY2hpIixbMCw2MCw2MCwxXV0sWzIsNSwiMCIsWzAsNjAsNjAsMV1dLFs1LDQsIlxcY2RvdCBcXExMIl0sWzQsMywiXFxlbGwiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfSxbMjQwLDYwLDYwLDFdXSxbMywwLCJcXGJkIl0sWzAsMSwiXFxjZG90IFxcTEwiLDAseyJjb2xvdXIiOlswLDYwLDYwXX0sWzAsNjAsNjAsMV1dLFsxLDIsIlxcZWxsIl0sWzYsNSwiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzgsOSwiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=}{Link to Diagram} \end{quote} \begin{itemize} \item Write \({{\partial}}[x] = [X] - [Y]\) with \(X,Y\) of minimal dimension. \item By \autocite[ Cor 5]{LS10}, \begin{align*} [X\times {\mathbb{A}}^1] = [Y\times {\mathbb{A}}^1] &\implies \dim X + 1 = \dim Y + 1 \\ &\implies \dim X = \dim Y = d \end{align*} \end{itemize} \begin{claim} \(d\) is small: \(d < n-1\). \end{claim} Note that we're done if this claim is true: proceed by showing \(X\) and \(Y\) are not piecewise isomorphic by showing \(\ker \psi_n\) is nontrivial by a diagram chase. \begin{proof}[of claim] If \({\mathbb{L}}([X] - [Y]) \in \ker ?\) then we can produce an element in \(\ker \psi_n\). Diagram chase: \begin{center} \begin{tikzcd} && \textcolor{rgb,255:red,214;green,92;blue,92}{1} & {} & \textcolor{rgb,255:red,214;green,92;blue,92}{2} \\ && \textcolor{rgb,255:red,63;green,90;blue,243}{[X] - [Y] \not\in \operatorname{im}{{\partial}}^{(n-1)}} & {} & \textcolor{rgb,255:red,63;green,90;blue,243}{{\mathbb{L}}([X]-[Y]) \neq 0} \\ {{\mathsf{K}}_1({\mathcal{V}}^{(n-1)}/{\mathbb{L}})} && {{\mathsf{K}}_0({\mathcal{V}}^{(n-2)}/{\mathbb{L}})} && {{\mathsf{K}}_0({\mathcal{V}}^{(n-1)})} \\ &&&& {} & \textcolor{rgb,255:red,214;green,92;blue,92}{4} \\ {{\mathsf{K}}_1({\mathcal{V}}^{(n)}/{\mathbb{L}})} & {} & {{\mathsf{K}}_0({\mathcal{V}}^{(n-1)}/{\mathbb{L}})} && {{\mathsf{K}}_0({\mathcal{V}}^{(n)})} \\ && \textcolor{rgb,255:red,63;green,90;blue,243}{i_*^{n-1}([X]- [Y])\in \operatorname{im}{{\partial}}^{(n)}} && \textcolor{rgb,255:red,63;green,90;blue,243}{0} \\ && \textcolor{rgb,255:red,214;green,92;blue,92}{3} \arrow["{{{\partial}}^{(n-1)}}", from=3-1, to=3-3] \arrow["{{{\partial}}^{(n)}}", from=5-1, to=5-3] \arrow[from=3-1, to=5-1] \arrow["{i_*^{n-1}}", from=3-3, to=5-3] \arrow["{\cdot {\mathbb{L}}_{n-1}}", from=5-3, to=5-5] \arrow["{\cdot {\mathbb{L}}_{n-2}}", from=3-3, to=3-5] \arrow["{i_*^{n-1}}", from=3-5, to=5-5] \arrow[color={rgb,255:red,63;green,90;blue,243}, dotted, maps to, from=6-3, to=6-5] \arrow[color={rgb,255:red,63;green,90;blue,243}, curve={height=-24pt}, dotted, maps to, from=2-3, to=6-3] \arrow[color={rgb,255:red,63;green,90;blue,243}, curve={height=-24pt}, dotted, maps to, from=2-5, to=6-5] \arrow[color={rgb,255:red,63;green,90;blue,243}, dashed, maps to, from=2-3, to=2-5] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTgsWzAsMiwiXFxLXzEoXFxtY3ZeeyhuLTEpfS9cXExMKSJdLFswLDQsIlxcS18xKFxcbWN2Xnsobil9L1xcTEwpIl0sWzIsMiwiXFxLXzAoXFxtY3ZeeyhuLTIpfS9cXExMKSJdLFs0LDIsIlxcS18wKFxcbWN2Xnsobi0xKX0pIl0sWzIsNCwiXFxLXzAoXFxtY3ZeeyhuLTEpfS9cXExMKSJdLFs0LDQsIlxcS18wKFxcbWN2Xnsobil9KSJdLFsxLDRdLFsyLDEsIltYXSAtIFtZXSBcXG5vdFxcaW4gXFxpbSBcXGJkXnsobi0xKX0iLFsyMzEsODgsNjAsMV1dLFs0LDEsIlxcTEwoW1hdLVtZXSkgXFxuZXEgMCIsWzIzMSw4OCw2MCwxXV0sWzIsNSwiaV8qXntuLTF9KFtYXS0gW1ldKVxcaW4gXFxpbSBcXGJkXnsobil9IixbMjMxLDg4LDYwLDFdXSxbNCw1LCIwIixbMjMxLDg4LDYwLDFdXSxbMiwwLCIxIixbMCw2MCw2MCwxXV0sWzQsMCwiMiIsWzAsNjAsNjAsMV1dLFsyLDYsIjMiLFswLDYwLDYwLDFdXSxbNSwzLCI0IixbMCw2MCw2MCwxXV0sWzQsM10sWzMsMF0sWzMsMV0sWzAsMiwiXFxiZF57KG4tMSl9Il0sWzEsNCwiXFxiZF57KG4pfSJdLFswLDFdLFsyLDQsImlfKl57bi0xfSJdLFs0LDUsIlxcY2RvdCBcXExMX3tuLTF9Il0sWzIsMywiXFxjZG90IFxcTExfe24tMn0iXSxbMyw1LCJpXypee24tMX0iXSxbOSwxMCwiIiwwLHsiY29sb3VyIjpbMjMxLDg4LDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9LCJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19XSxbNyw5LCIiLDAseyJjdXJ2ZSI6LTQsImNvbG91ciI6WzIzMSw4OCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifSwiYm9keSI6eyJuYW1lIjoiZG90dGVkIn19fV0sWzgsMTAsIiIsMix7ImN1cnZlIjotNCwiY29sb3VyIjpbMjMxLDg4LDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9LCJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19XSxbNyw4LCIiLDIseyJjb2xvdXIiOlsyMzEsODgsNjBdLCJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==}{Link to Diagram} \end{quote} \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \([X] - [Y] \not \in \operatorname{im}({{\partial}})\) by the minimality of \(n\) for \(x\), noting \({{\partial}}[x] = [X] - [Y]\). \item By exactness \(\operatorname{im}{{\partial}}= \ker(\cdot {\mathbb{L}})\), so \({\mathbb{L}}([X] - [Y]) \neq 0\). \item By choice of \(n\), \(i_*({\mathbb{L}}([X] - [Y])) \in \operatorname{im}{{\partial}}= \ker(\cdot {\mathbb{L}})\) in bottom row, so \({\mathbb{L}}([X] - [Y]) = 0\) in bottom-right. \item Commutativity forces \({\mathbb{L}}([X] - [Y]) \in \ker i_*^{n-1}\). \end{enumerate} Thus \({\mathbb{L}}([X] - [Y])\) corresponds to an element in \(\ker \psi_n\). (???) \end{proof} \end{proof} \hypertarget{thm-e-mathsfk-theory-operatornamemodmathbbl-models-stable-birational-geometry}{% \subsubsection{\texorpdfstring{Thm E: \({\mathsf{K}}\)-theory \(\operatorname{mod}{\mathbb{L}}\) models stable birational geometry}{Thm E: \{\textbackslash mathsf\{K\}\}-theory \textbackslash operatorname\{mod\}\{\textbackslash mathbb\{L\}\} models stable birational geometry}}\label{thm-e-mathsfk-theory-operatornamemodmathbbl-models-stable-birational-geometry}} \begin{theorem}[E] There is an isomorphism \begin{align*} {\mathsf{K}}_0({\mathcal{V}}_{\mathbb{C}})/\left\langle{{\mathbb{L}}}\right\rangle { \, \xrightarrow{\sim}\, }{\mathbb{Z}}[\mathsf{SB}_{\mathbb{C}}] \qquad \in {\mathbb{Z}{\hbox{-}}\mathsf{Mod}}. \end{align*} \end{theorem} \begin{remark} Proof: omitted. \end{remark} \hypertarget{closing-remarks}{% \subsection{Closing Remarks}\label{closing-remarks}} \begin{remark} What we've accomplished: establishing a precise relationship between questions 1 and 2. \end{remark} \begin{question} Some currently open questions: \begin{itemize} \tightlist \item What fields are convenient? \item What is the associated graded for the filtration induced by \(\psi_n\)? \item Is there a characterization of \(\operatorname{Ann}({\mathbb{L}})\)? \item (Interesting) What is the kernel of the localization \({\mathsf{K}}_0({\mathcal{V}}_k) \to {\mathsf{K}}_0({\mathcal{V}}_k){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\)? \item Does \(\psi_n\) fail to be injective over \emph{every} field \(k\)? \end{itemize} \end{question} \begin{conjecture} A correction to Question 1 on \(\ker \psi_n\): Let \(X,Y\) be varieties over a convenient field with \([X] = [Y\). Then there exist varieties \(X', Y'\) such that \begin{itemize} \tightlist \item \([X'] \neq [Y']\) \item \([X'\times {\mathbb{A}}^1] = [X']{\mathbb{L}}= [Y']{\mathbb{L}}= [Y'\times {\mathbb{A}}^1]\) \item \(X{\textstyle\coprod}X'\times {\mathbb{A}}^1 \underset{\mathrm{pw}}{\cong}Y{\textstyle\coprod}Y'\times {\mathbb{A}}^1\) \end{itemize} \end{conjecture} \begin{remark} If the conjecture holds, when \(X, Y\) are not birational but are \emph{stably} birational, then the error of birationality is measured by a power of \({\mathbb{L}}\). Possibly contingent upon conjecture: \begin{align*}[X] \equiv [Y] \operatorname{mod}{\mathbb{L}}\implies X \overset{\sim_{ {\operatorname{Stab}}} }{\dashrightarrow}Y.\end{align*} \end{remark} \newpage \printbibliography[title=Bibliography] \end{document}