--- date: 2022-01-22 tags: [ web/quick-notes ] --- # 2022-01-22 Tags: #web/quick-notes Refs: ? ## Questions #todo/questions - What is a [conservative functor](conservative%20functor.md)? - What is an [exit path category](exit%20path%20category)? - What is a [Kan extension](Kan%20extension.md)? - What is a [décollage](decollage)? - What is a [semisimple category](semisimple%20category)? - What is [Weil restriction](Weil%20restriction.md)? - What is an [idemptotent-complete category](idemptotent-complete%20category.md)? ## 01:05 Complete Segal spaces: ![](figures/2022-01-22_01-11-28.png) - Spaces can be [stratified](stratified.md) by posets. - For $P$ a [poset](poset), $\mathrm{sd}(P)$ is the poset of linearly ordered finite subsets of $P$. ![](figures/2022-01-22_01-16-11.png) ## 01:20 Some [equivariant homotopy theory](equivariant%20homotopy%20theory.md). See ![](figures/2022-01-22_01-20-05.png) ![](figures/2022-01-22_01-22-05.png) - $\ho\Finset$ is the [Lawvere theory](Lawvere%20theory) for $\Comm\Mon$ ![](figures/2022-01-22_01-34-27.png) ![](figures/2022-01-22_01-34-56.png) ![](figures/2022-01-22_01-37-16.png) ![](figures/2022-01-22_01-38-12.png) - Representation theory over $\KU$ is a smooth deformation of representation theory of $\ZZpadic$. - For $\cat C$ a category, the \(\K\dash\)theory space is $\Loop^\infty \K([\BG, \cat C])$ when $G$ is a finite group. - Nice result: $\Rep(G)\slice \CC \cong \K_0 [\BG, \Vect^\fd \slice \CC]$. ![](figures/2022-01-22_01-43-53.png) Commutative monoid objects in a category: ![](figures/2022-01-22_15-53-24.png) [Polynomial functors](Polynomial%20functors) ![](figures/2022-01-22_15-55-43.png) ![](figures/2022-01-22_16-05-51.png) ![](figures/2022-01-22_16-06-17.png) Analytic functors: ![](figures/2022-01-22_15-56-09.png) Categorical $G\dash$spaces and orbits: ![](figures/2022-01-22_15-57-24.png) $G\dash$symmetric monoid objects: ![](figures/2022-01-22_15-58-26.png) Multiplications/folds and [transfers](transfers.md): ![](figures/2022-01-22_15-59-02.png) Connection to Mackey functors: ![](figures/2022-01-22_15-59-16.png) [Perfect objects](Perfect%20objects) (in spectral DM stacks): ![](figures/2022-01-22_16-04-37.png) Algebraic \(\K\dash\)theory as a functor: ![](figures/2022-01-22_16-07-05.png) Tambara functors: ![](figures/2022-01-22_16-09-18.png) Genuine $(G, \EE_\infty)\dash$spectra: ![](figures/2022-01-22_16-09-49.png) Algebraic \(\K\dash\)theory is a homotopical Tambara functor: ![](figures/2022-01-22_16-10-34.png) For $\cat{C}$ a $G\dash$symmetric monoidal category in the naive sense, $\K(\cat C)$ is a [Green functor](Green%20functor). ![](figures/2022-01-22_16-11-23.png) ![](figures/2022-01-22_16-12-41.png) ## 16:50 [Derived categories](Derived%20categories): now the standard approach for [microlocal analysis](microlocal%20analysis), and a base for [noncommutative algebraic geometry](noncommutative%20algebraic%20geometry.md). [Unsorted/HH](Unsorted/HH.md) can distinguish equivalence classes of derived categories. Used in the representation theory of finite Chevalley groups.