--- date: 2021-04-26 --- Tags: #spectral-sequences # Computation of $H^*(\CP^2)$ View rendered version [here](https://rawgit.com/dzackgarza/Notes/master/Research/Computations/Computation%20of%20HCP2.html) ## Theorem Suppose $F \to E \to B $ is a fibration satisfying (conditions). Then there exists a spectral sequence $E_*$ such that 1. $E_2^{p,q} = H^p(B, H^q(F;\ZZ)) = H^p(B;\ZZ) \tensor H^q(F;\ZZ)$ 2. $E_\infty^{p,q} \Rightarrow H^{p+q}(E)$ ## Computation Use the above theorem with the fibration $S^1 \into S^5 \into \CP^2$, as well as the following facts: 1. $H^*(S^1) = \ZZ\delta_0 + \ZZ\delta_1$ 2. $H^*(S^5) = \ZZ\delta_0 + \ZZ\delta_5$ 3. $H^0(\CP^2) = \ZZ$ (i.e. it is simply connected) 4. $d_2: E_2^{p,q} \to E_2^{p-2, q+1}$ By the theorem, we have $$E_2^{p,q} = H^p(\CP^2) \tensor H^q(S^1)$$ Thus the $E_2$ page of the spectral sequence looks like this: ```latex {cmd=true hide=true run_on_save=true} \documentclass{standalone} \usepackage{tikz} \usepackage{dsfont} \usepackage{amsmath, amsthm, amssymb} \usetikzlibrary{matrix} \newcommand*\Z{\mathds{Z}} \newcommand*\CP{\mathbb{CP}} \newcommand*\ee[2]{H^{#1}(\CP^2) \otimes_{\Z} H^{#2}(S^1)} \newcommand*\zt[2]{#1 \otimes_{\Z} #2} \newcommand*\HT[2]{H^{#1}(\CP^2) \otimes_{\Z} #2} \newcommand*\HCP[1]{H^{#1}(\CP^2)} \begin{document} \begin{tikzpicture} \matrix (m) [matrix of math nodes, nodes in empty cells,nodes={minimum width=5ex, minimum height=5ex,outer sep=-5pt}, column sep=1ex,row sep=1ex]{ % S^1& & & & & & & & \\ % 0& \ee{0}{5}& \ee{1}{5}& \ee{2}{5}& \ee{3}{5}& \ee{4}{5}& \ee{5}{5}& &\\ 0& \ee{0}{4}& \ee{1}{4}& \ee{2}{4}& \ee{3}{4}& \ee{4}{4}& \ee{5}{4}& &\\ 0& \ee{0}{3}& \ee{1}{3}& \ee{2}{3}& \ee{3}{3}& \ee{4}{3}& \ee{5}{3}& &\\ 0& \ee{0}{2}& \ee{1}{2}& \ee{2}{2}& \ee{3}{2}& \ee{4}{2}& \ee{5}{2}& &\\ 0& \ee{0}{1}& \ee{1}{1}& \ee{2}{1}& \ee{3}{1}& \ee{4}{1}& \ee{5}{1}& &\\ 0& \ee{0}{0}& \ee{1}{0}& \ee{2}{0}& \ee{3}{0}& \ee{4}{0}& \ee{5}{0}& &\\ \quad\strut % & 0& 1& 2& 3& 4& 5& \CP_2& \strut \\}; % \draw[thick] (m-8-1.east) -- (m-1-1.east) ; \draw[thick] (m-8-1.north) -- (m-8-9.north) ; \end{tikzpicture} \end{document} ``` Using the facts above, we can substitute in some known groups: ```latex {cmd=true, hide=true, run_on_save=true} \documentclass{standalone} \usepackage{tikz} \usepackage{dsfont} \usepackage{amsmath, amsthm, amssymb} \usetikzlibrary{matrix} \newcommand*\Z{\mathds{Z}} \newcommand*\CP{\mathbb{CP}} \newcommand*\ee[2]{H^{#1}(\CP^2) \otimes_{\Z} H^{#2}(S^1)} \newcommand*\zt[2]{#1 \otimes_{\Z} #2} \newcommand*\HT[2]{H^{#1}(\CP^2) \otimes_{\Z} #2} \newcommand*\HCP[1]{H^{#1}(\CP^2)} \begin{document} \begin{tikzpicture} \matrix (m) [matrix of math nodes, nodes in empty cells,nodes={minimum width=5ex, minimum height=5ex,outer sep=-5pt}, column sep=1ex,row sep=1ex]{ % S^1& & & & & & & & \\ % 0& \zt{\Z}{0}& \HT{1}{0}& \HT{2}{0}& \HT{3}{0}& \HT{4}{0}& \HT{5}{0}& &\\ 0& \zt{\Z}{0}& \HT{1}{0}& \HT{2}{0}& \HT{3}{0}& \HT{4}{0}& \HT{5}{0}& &\\ 0& \zt{\Z}{0}& \HT{1}{0}& \HT{2}{0}& \HT{3}{0}& \HT{4}{0}& \HT{5}{0}& &\\ 0& \zt{\Z}{0}& \HT{1}{0}& \HT{2}{0}& \HT{3}{0}& \HT{4}{0}& \HT{5}{0}& &\\ 0& \zt{\Z}{\Z}& \HT{1}{\Z}& \HT{2}{\Z}& \HT{3}{\Z}& \HT{4}{\Z}& \HT{5}{\Z}& &\\ 0& \zt{\Z}{\Z}& \HT{1}{\Z}& \HT{2}{\Z}& \HT{3}{\Z}& \HT{4}{\Z}& \HT{5}{\Z}& &\\ \quad\strut % & 0& 1& 2& 3& 4& 5& \CP_2& \strut \\}; % \draw[thick] (m-8-1.east) -- (m-1-1.east) ; \draw[thick] (m-8-1.north) -- (m-8-9.north) ; \end{tikzpicture} \end{document} ``` Now recalling two useful properties of the tensor product: 1. $A \tensor_\ZZ 0 = 0$, and 2. $A \tensor_\ZZ \ZZ = A$, we obtain the following simplified version of the $E_2$ page, with several of the potentially non-trivial differentials indicated: ```latex {cmd=true, hide=true, run_on_save=true} \documentclass{standalone} \usepackage{tikz} \usepackage{dsfont} \usepackage{amsmath, amsthm, amssymb} \usetikzlibrary{matrix} \newcommand*\Z{\mathds{Z}} \newcommand*\CP{\mathbb{CP}} \newcommand*\ee[2]{H^{#1}(\CP^2) \otimes_{\Z} H^{#2}(S^1)} \newcommand*\zt[2]{#1 \otimes_{\Z} #2} \newcommand*\HT[2]{H^{#1}(\CP^2) \otimes_{\Z} #2} \newcommand*\HCP[1]{H^{#1}(\CP^2)} \begin{document} \begin{tikzpicture} \matrix (m) [matrix of math nodes, nodes in empty cells,nodes={minimum width=5ex, minimum height=5ex,outer sep=-5pt}, column sep=1ex,row sep=1ex]{ % S^1& & & & & & & & \\ % 5& 0& 0& 0& 0& 0& 0& &\\ 4& 0& 0& 0& 0& 0& 0& &\\ 3& 0& 0& 0& 0& 0& 0& &\\ 2& 0& 0& 0& 0& 0& 0& &\\ 1& \Z& \HCP{1}& \HCP{2}& \HCP{3}& \HCP{4}& \HCP{5}& \cdots&\\ 0& \Z& \HCP{1}& \HCP{2}& \HCP{3}& \HCP{4}& \HCP{5}& \cdots&\\ \quad\strut % & 0& 1& 2& 3& 4& 5& \CP_2& \strut \\}; % \draw[thick] (m-8-1.east) -- (m-1-1.east) ; \draw[thick] (m-8-1.north) -- (m-8-9.north) ; \draw[-stealth] (m-6-2.south east) -- (m-7-4.north west); \draw[-stealth] (m-6-3.south east) -- (m-7-5.north west); \draw[-stealth] (m-6-4.south east) -- (m-7-6.north west); \draw[-stealth] (m-6-5.south east) -- (m-7-7.north west); \draw[-stealth] (m-6-6.south east) -- (m-7-8.north west); \end{tikzpicture} \end{document} ``` Now we use the fact that the spectral sequence converges to make several deductions: ## Claim: $$H^1(S^5) = 0 \implies H^2(\CP^2) \cong \ZZ~\text{and}~H^1(\CP^2) = 0$$ (This will be a template argument for most of the rest, so I will spell out more details here and gloss over them later.) - This means that $E_\infty^{0,1} \oplus E_\infty^{1,0} = 0$. - Consider the process of obtaining the $E_3$ page: - $E_3^{0,1}$ is obtained from the homology of the complex $0 \into \ZZ \mapsvia{\del_1} H^2(\CP^2) \into 0$, i.e. we have $E_3^{0,1} = \frac{\ker \del_1}{\im 0} = \ker \del_1$ - Note that all differentials after the $E_3$ page extend into the $p<0$ and $q<0$ quadrants, so there is stabiization here and $E_3^{0,1} = E_\infty^{0,1}$ - But if the homology of this sequence is not zero, then $E_3^{1,0} \neq 0$, so $E_\infty^{0,1} \neq 0$ and $E_\infty^{0,1} \oplus E_\infty^{1,0} \neq 0$, a contradiction. - So this is an acyclic complex, and thus an exact sequence. - **So $\del_1$ is an isomorphism, and $H^2(\CP^2) \cong \ZZ$** - $E_3^{1,0}$ is obtained from the homology of $0 \into H^1(\CP^2) \into 0$ - By the same argument, this spot stabilizes at $E_3$ and so this complex must have trivial homology. - **But this can only happen if $H^1(\CP^2) = 0$** ## Claim: $$H^2(S^5) = 0 \implies H^1(\CP^2) \cong H^3(\CP^2) ~\text{and}~ H^2(\CP^2) = \ZZ$$ We have $H^2(S^5) = E_\infty^{0,2} \oplus E_\infty^{1,1} \oplus E_\infty^{2,0}$. Note that $E_2^{0,2} = 0$, so $E_\infty^{0,2} = 0$ there are only two contributing terms to consider. $E_\infty^{1,1}$: This involves looking at the complex $0 \into H^1(\CP^2) \mapsvia{\del_2} H^3(\CP^2) \into 0$. All differentials extend into zero quadrants starting at $E_3$, so this entry stabilizes at $E_3$. But any homology in this complex would contribute a nonzero contribution to $H^2(S^5)$, so this complex is acyclic/exact and $\del_2$ is an isomorphism. $E_\infty^{2,0}$: This involves $0 \into \ZZ \mapsvia{f} H^2(\CP^2) \into 0$, where the $E^3$ differentials extend into zero quadrants and thus this entry stabilizes at $E^3$. Any nonzero homology here yields a nonzero contribution to $H^2(S^5)$, so this complex is acyclic/exact and thus $f$ is an isomorphism. ## Claim: $$H^3(S^5) = 0 \implies H^2(\CP^4) \cong H^4(\CP^2) \cong H^6(\CP^2),~ H^1(\CP^2) \cong H^3(\CP^2) \cong H^5(\CP^2)$$ Note: this is the first spot where the differentials may not extend into zero quadrants, but since the total homology is zero, this is not a real issue yet. We have $H^3(S^5) = \displaystyle\bigoplus_{p+q = n}E_\infty^{p,q} = E_\infty^{0,3} \oplus E_\infty^{1,2} \oplus E_\infty^{2,1} \oplus E_\infty^{3,0}$. Every summand must be zero, so we examine them individually. $E_\infty^{0,3}$: We have $E_2^{0,3} = 0$ and is involved in a complex of the form $0 \into E_2^{0,3} \into E_2^{2,2} \into E_2^{4,1} \into E_2^{6,0} \into 0$, which we can identify as $0 \into 0 \into 0 \into H^4(\CP^2) \into H^6(\CP^2) \into 0$, which must be exact, so we have $H^4(\CP^2) \cong H^6(\CP^2)$. $E_\infty^{1,2}$: We have the complex $0 \into E_2^{1,2} \into E_2^{3,1} \into E_2^{5, 0} \into 0$ which equals $0 \into 0 \into H^3(\CP^2) \mapsvia{f} H^5(\CP^2) \into 0$, which must be exact and so $f$ is an isomorphism yielding $H^3(\CP^2) \cong H^5(\CP^2)$. $E_\infty^{2,1}$: We have the complex $0 \into E_2^{0, 2} \into E_2^{2, 1} \into E_2^{4, 0} \into 0$ which equals $0 \into 0 \into H^2(\CP^2) \into H^4(\CP^2) \into 0$, so $H^2(\CP^2) \cong H^4(\CP^2)$. (Here we are using the fact that $E_2^{0,2} = H^2(S^1) = 0$ instead of the automatic zeros from the differentials extending into zero quadrants.) $E_\infty^{3,0}$: We have $0 \into E_2^{1,1} \into E_2^{3,0} \into 0$ which equals $0 \into H^1(\CP^2) \into H^3(\CP^2) \into 0$ which must be exact and so $H^1(\CP^2) \cong H^3(\CP^2)$ Note that $H^4(S^5) = 0$ doesn't give any new information at this point. ## Claim $$H^5(S^5) = \ZZ \implies H^6(\CP^2) = 0$$ We have $H^5(S^5) = \displaystyle\bigoplus_{p+q=n}E_2^{p,q}$, and so there must now be a nonzero term in this sum. Since $q > 1$ stabilizes to zero on $E_2$, the nonzero term must come from $E_2^{5,0}$ or $E_2^{4,1}$. $E_2^{5,0}$: The complex is $0 \into H^3(\CP^2) \into H^5(\CP^2) \into 0$ $E_2^{4,1}$: The complex is $0 \into H^4(\CP^2) \into H^6(\CP^2) \into 0$ In order for an $E_3$ term to be nonzero, one of these complexes must have nonzero homology. But by the previous claim, $0 \into H^3(\CP^2) \into H^5(\CP^2) \into 0$ does have zero homology, so we consider the second complex instead. We know from our current results that $0 \into H^4(\CP^2) \into H^6(\CP^2) \into 0$ is equal to $0 \into \ZZ \mapsvia{f} H^6(\CP^2) \into 0$, and we know that $\frac{\ker f}{\im 0} = \ker f \cong H^5(S^5) = \ZZ$, since this is the only possible nonzero term in the above sum. (Not sure how to use $\ker f = 0$ to show $H^6(\CP^2) = 0$, or how to inductively compute $H^*(\CP^n)$.)