--- date: 2021-04-26 --- Tags: #homotopy #physics # Homotopy Groups of SO(n) ![Homotopy Groups of $SO^n$](attachments/2-22ReadingNotes-591bd%201%201.png) # Useful Higher Homotopy used in Physics ![Various higher homotopy groups](attachments/2-22ReadingNotes-0ea10%201%201.png) $\pi_n$ are equal for the following spaces: - $SO^3$ - $\RP^3$ - $S^3$ - $SU^2$ (Maybe these are all diffeomorphic) Also $\pi_n(\RP^n) = \pi_n(S^n)$. \[ Sp^4 = SU^2 \cross SU^2 .\] \[ J: \pi_k(SO^n) \to \pi_{n+k} S^n .\] # Homotopy of Infinite Grassmannian ![Homotopy of infinite Grassmannian](attachments/2-22ReadingNotes-f759d%201%201.png) # Misc - $\pi_1(SL_n(\RR)) = \ZZ\delta_2 + \ZZ_2 \delta_{n\geq 3}$ See [Lemma 5.3](http://www.math.rice.edu/~andyp/notes/HomotopySpheresLowDimTop.pdf) - $\pi_1(SO_n(\RR)) = \pi_1(SL_n(\RR))$